1
|
Catanese L, Siwy J, Wendt R, Amann K, Beige J, Hendry B, Mischak H, Mullen W, Paterson I, Schiffer M, Wolf M, Rupprecht H. Differentiating primary and secondary FSGS using non-invasive urine biomarkers. Clin Kidney J 2024; 17:sfad296. [PMID: 38313685 PMCID: PMC10833144 DOI: 10.1093/ckj/sfad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 02/06/2024] Open
Abstract
Background Focal segmental glomerulosclerosis (FSGS) is divided into genetic, primary (p), uncertain cause, and secondary (s) forms. The subclasses differ in management and prognosis with differentiation often being challenging. We aimed to identify specific urine proteins/peptides discriminating between clinical and biopsy-proven pFSGS and sFSGS. Methods Sixty-three urine samples were collected in two different centers (19 pFSGS and 44 sFSGS) prior to biopsy. Samples were analysed using capillary electrophoresis-coupled mass spectrometry. For biomarker definition, datasets of age-/sex-matched normal controls (NC, n = 98) and patients with other chronic kidney diseases (CKDs, n = 100) were extracted from the urinary proteome database. Independent specificity assessment was performed in additional data of NC (n = 110) and CKD (n = 170). Results Proteomics data from patients with pFSGS were first compared to NC (n = 98). This resulted in 1179 biomarker (P < 0.05) candidates. Then, the pFSGS group was compared to sFSGS, and in a third step, pFSGS data were compared to data from different CKD etiologies (n = 100). Finally, 93 biomarkers were identified and combined in a classifier, pFSGS93. Total cross-validation of this classifier resulted in an area under the receiving operating curve of 0.95. The specificity investigated in an independent set of NC and CKD of other etiologies was 99.1% for NC and 94.7% for CKD, respectively. The defined biomarkers are largely fragments of different collagens (49%). Conclusion A urine peptide-based classifier that selectively detects pFSGS could be developed. Specificity of 95%-99% could be assessed in independent samples. Sensitivity must be confirmed in independent cohorts before routine clinical application.
Collapse
Affiliation(s)
- Lorenzo Catanese
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, Bayreuth, Germany
- Kuratorium for Dialysis and Transplantation (KfH) Bayreuth, Bayreuth, Germany
- Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Ralph Wendt
- Division of Nephrology, St. Georg Hospital Leipzig, Leipzig, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Joachim Beige
- Kuratorium for Dialysis and Transplantation (KfH) Renal Unit, Leipzig, Germany
- Department of Internal Medicine II, Martin-Luther-University Halle/Wittenberg, Halle/Saale, Germany
| | | | | | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Mario Schiffer
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Research Center on Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | | | - Harald Rupprecht
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, Bayreuth, Germany
- Kuratorium for Dialysis and Transplantation (KfH) Bayreuth, Bayreuth, Germany
- Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Murugesan S, Saha A, Deepthi B, Kaur M, Basak T, Sengupta S, Batra V, Upadhyay AD. Urinary Apolipoprotein A1 and Neutrophil Gelatinase-associated Lipocalin in Children with Idiopathic Nephrotic Syndrome. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2023; 34:13-20. [PMID: 38092712 DOI: 10.4103/1319-2442.390998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Urinary biomarkers are a promising diagnostic modality whose role was explored in nephrotic syndrome (NS). We estimated urinary apolipoprotein A1 (Apo A1) and neutrophil gelatinase-associated lipocalin (NGAL) in children with first-episode NS (FENS) and controls with a longitudinal follow-up to see the serial changes during remission. The study groups comprised 35 children with FENS and an equal number of age- and sex-matched controls. Patients were followed up at regular intervals, and 32 patients were classified as having steroid-sensitive NS (SSNS) and 3 as having steroid-resistant NS (SRNS). The mean follow-up period was 8.7 ± 4.2 months. Three patients in the SSNS group were labeled as having frequent relapses or steroid-dependent disease during follow-up. Of the three children with SRNS, two had minimal changes in the disease and one had idiopathic membranous nephropathy. The levels of Apo A1:creatinine, NGAL:creatinine, and spot urinary protein:urinary creatinine ratios were significantly higher in children with FENS compared with controls. The levels of the urine biomarkers decreased significantly at subsequent follow-up with remission. The Apo A1 and NGAL levels in SSNS patients were significantly high compared with both the controls and FENS patients. Urinary Apo A1 levels in SRNS patients were lower at initial presentation. This longitudinal study revealed changes in the urinary Apo A1 and NGAL in NS over the course of the disease.
Collapse
Affiliation(s)
- Suresh Murugesan
- Department of Pediatrics, Division of Pediatric Nephrology, Postgraduate Institute of Medical Education and Research and Associated Dr. Ram Manohar Lohia Hospital, Baba Kharak Singh Marg, New Delhi, India
| | - Abhijeet Saha
- Department of Pediatrics, Division of Pediatric Nephrology, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Bobbity Deepthi
- Department of Pediatrics, Division of Pediatric Nephrology, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Manpreet Kaur
- Department of Pediatrics, Division of Pediatric Nephrology, Postgraduate Institute of Medical Education and Research and Associated Dr. Ram Manohar Lohia Hospital, Baba Kharak Singh Marg, New Delhi, India
| | - Trayambak Basak
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Department of Biological Sciences (CSIR-IGIB), Academy of Scientific and Innovative Research, Delhi, India
| | - Shantanu Sengupta
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Department of Biological Sciences (CSIR-IGIB), Academy of Scientific and Innovative Research, Delhi, India
| | - Vineeta Batra
- Department of Pathology, GB Pant Hospital, New Delhi, India
| | - Ashish Dutt Upadhyay
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Zhong J, Yang HC, Shelton EL, Matsusaka T, Clark AJ, Yermalitsky V, Mashhadi Z, May-Zhang LS, Linton MF, Fogo AB, Kirabo A, Davies SS, Kon V. Dicarbonyl-modified lipoproteins contribute to proteinuric kidney injury. JCI Insight 2022; 7:161878. [PMID: 36125905 PMCID: PMC9675465 DOI: 10.1172/jci.insight.161878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Lipoprotein modification by reactive dicarbonyls, including isolevuglandin (IsoLG), produces dysfunctional particles. Kidneys participate in lipoprotein metabolism, including tubular uptake. However, the process beyond the proximal tubule is unclear, as is the effect of kidney injury on this pathway. We found that patients and animals with proteinuric injury have increased urinary apolipoprotein AI (apoAI), IsoLG, and IsoLG adduct enrichment of the urinary apoAI fraction compared with other proteins. Proteinuric mice, induced by podocyte-specific injury, showed more tubular absorption of IsoLG-apoAI and increased expression of lipoprotein transporters in proximal tubular cells compared with uninjured animals. Renal lymph reflects composition of the interstitial compartment and showed increased apoAI and IsoLG in proteinuric animals, supporting a tubular cell-interstitium-lymph pathway for renal handling of lipoproteins. IsoLG-modified apoAI was not only a marker of renal injury but also directly damaged renal cells. IsoLG-apoAI increased inflammatory cytokines in cultured tubular epithelial cells (TECs), activated lymphatic endothelial cells (LECs), and caused greater contractility of renal lymphatic vessels than unmodified apoAI. In vivo, inhibition of IsoLG by a dicarbonyl scavenger reduced both albuminuria and urinary apoAI and decreased TEC and LEC injury, lymphangiogenesis, and interstitial fibrosis. Our results indicate that IsoLG-modified apoAI is, to our knowledge, a novel pathogenic mediator and therapeutic target in kidney disease.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics and,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pediatrics and,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Taiji Matsusaka
- Institute of Medical Sciences and Department of Molecular Life Sciences, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | - Zahra Mashhadi
- Department of Pharmacology, Division of Clinical Pharmacology
| | | | | | - Agnes B. Fogo
- Department of Pediatrics and,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, and
| | - Annet Kirabo
- Department of Pharmacology, Division of Clinical Pharmacology,,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean S. Davies
- Department of Pharmacology, Division of Clinical Pharmacology
| | | |
Collapse
|
4
|
González MA, Barrera-Chacón R, Peña FJ, Fernández-Cotrina J, Robles NR, Pérez-Merino EM, Martín-Cano FE, Duque FJ. Urinary proteome of dogs with renal disease secondary to leishmaniosis. Res Vet Sci 2022; 149:108-118. [PMID: 35777279 DOI: 10.1016/j.rvsc.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 10/17/2022]
Abstract
Canine leishmaniosis is frequently associated with the development of renal disease. Its pathogenesis is complex and not fully understood. For this reason, this study aimed to describe the urinary proteome, and identify possible new biomarkers in dogs with kidney disease secondary to leishmaniosis. Urine samples were collected from 20 dogs, 5 from healthy dogs, and 15 from stages Leishvet III and IV. Urine samples were analyzed by UHPLC-MS/MS. The data are available via ProteomeXchange with identifier PXD029165. A total of 951 proteins were obtained. After bioinformatic analysis, 93 urinary proteins were altered in the study group. Enrichment analysis performed on these proteins showed an overrepresentation of the complement activation pathway, among others. Finally, 12 discriminant variables were found in dogs with renal disease secondary to leishmaniosis, highlighting C4a anaphylatoxin, apolipoprotein A-I, haptoglobin, leucine-rich alpha-2-glycoprotein 1, and beta-2-microglobulin. This study is the first to describe the urinary proteomics of dogs with renal disease caused by leishmaniosis, and it provides new possible biomarkers for the diagnosis and monitoring of this disease.
Collapse
Affiliation(s)
- Mario A González
- Animal Medicine Department, University of Extremadura, 10003 Cáceres, Spain.
| | | | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Javier Fernández-Cotrina
- LeishmanCeres Laboratory (GLP Compliance Certified), Parasitology Unit, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Nicolás R Robles
- Nephrology Service, Badajoz University Hospital, University of Extremadura, 06080 Badajoz, Spain
| | - Eva M Pérez-Merino
- Animal Medicine Department, University of Extremadura, 10003 Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Francisco J Duque
- Animal Medicine Department, University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
5
|
Marro J, Chetwynd AJ, Wright RD, Dliso S, Oni L. Urinary Protein Array Analysis to Identify Key Inflammatory Markers in Children with IgA Vasculitis Nephritis. CHILDREN 2022; 9:children9050622. [PMID: 35626799 PMCID: PMC9139281 DOI: 10.3390/children9050622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022]
Abstract
Chronic kidney disease is a recognised complication of immunoglobulin A vasculitis, (IgAV; formerly Henoch–Schonlein purpura—HSP). The pathophysiology of IgAV and why some patients develop significant renal involvement remains largely unknown. Identifying urinary inflammatory markers could direct targets for earlier intervention. The aim of this cross-sectional exploratory study was to perform a large protein array analysis to identify urinary markers to provide insight into the mechanisms of kidney inflammation in children with established IgAV nephritis (IgAVN). Determination of the relative levels of 124 key proteins was performed using commercially available proteome profiler array kits. Twelve children were recruited: IgAVN, n = 4; IgAV without nephritis (IgAVwoN), n = 4; healthy controls (HCs), n = 4. The urinary concentrations of twenty proteins were significantly different in IgAVN compared to IgAVwoN. The largest fold changes were reported for B-cell activating factor (BAFF), Cripto-1, sex-hormone-binding globulin and angiotensinogen. The urinary levels of complement components C5/C5a and factor D were also significantly elevated in patients with IgAVN. A total of 69 urinary proteins significantly raised levels in comparisons made between IgAVN vs. HCs and nine proteins in IgAVwoN vs. HCs, respectively. This study identified key urinary proteins potentially involved in IgAVN providing new insight into the pathophysiology. Further longitudinal studies with larger cohorts are needed to quantitatively analyse these biomarkers.
Collapse
Affiliation(s)
- Julien Marro
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L12 2AP, UK; (J.M.); (A.J.C.); (R.D.W.)
| | - Andrew J. Chetwynd
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L12 2AP, UK; (J.M.); (A.J.C.); (R.D.W.)
| | - Rachael D. Wright
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L12 2AP, UK; (J.M.); (A.J.C.); (R.D.W.)
| | - Silothabo Dliso
- NIHR Alder Hey Clinical Research Facility, Clinical Research Division, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK;
| | - Louise Oni
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L12 2AP, UK; (J.M.); (A.J.C.); (R.D.W.)
- Department of Paediatric Nephrology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
- Correspondence: ; Tel.: +44-(0)151-252-5441
| |
Collapse
|
6
|
Kon V, Yang HC, Smith LE, Vickers KC, Linton MF. High-Density Lipoproteins in Kidney Disease. Int J Mol Sci 2021; 22:ijms22158201. [PMID: 34360965 PMCID: PMC8348850 DOI: 10.3390/ijms22158201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Decades of epidemiological studies have established the strong inverse relationship between high-density lipoprotein (HDL)-cholesterol concentration and cardiovascular disease. Recent evidence suggests that HDL particle functions, including anti-inflammatory and antioxidant functions, and cholesterol efflux capacity may be more strongly associated with cardiovascular disease protection than HDL cholesterol concentration. These HDL functions are also relevant in non-cardiovascular diseases, including acute and chronic kidney disease. This review examines our current understanding of the kidneys’ role in HDL metabolism and homeostasis, and the effect of kidney disease on HDL composition and functionality. Additionally, the roles of HDL particles, proteins, and small RNA cargo on kidney cell function and on the development and progression of both acute and chronic kidney disease are examined. The effect of HDL protein modification by reactive dicarbonyls, including malondialdehyde and isolevuglandin, which form adducts with apolipoprotein A-I and impair proper HDL function in kidney disease, is also explored. Finally, the potential to develop targeted therapies that increase HDL concentration or functionality to improve acute or chronic kidney disease outcomes is discussed.
Collapse
Affiliation(s)
- Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (V.K.); (H.-C.Y.)
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (V.K.); (H.-C.Y.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Loren E. Smith
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kasey C. Vickers
- Atherosclerosis Research Unit, Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - MacRae F. Linton
- Atherosclerosis Research Unit, Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
7
|
A Specific Tubular ApoA-I Distribution Is Associated to FSGS Recurrence after Kidney Transplantation. J Clin Med 2021; 10:jcm10102174. [PMID: 34069888 PMCID: PMC8157584 DOI: 10.3390/jcm10102174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023] Open
Abstract
A major complication of primary focal segmental glomerulosclerosis (FSGS) is its recurrence after kidney transplantation that happens in 30 to 40% of the patients. The diagnosis of these relapses is not always easy as the histological lesions are not highly specific and appear after the proteinuria increase. Currently, there are no accurate biomarkers to detect FSGS recurrence. Our group identified a modified form of Apolipoprotein A-I (ApoA-I), named ApoA-Ib, specifically present in the urine of recurrent FSGS patients after kidney transplantation. Aberrant forms of ApoA-I have also been described in the urine of native primary FSGS patients; this feature has been associated with prominent staining of ApoA-I at the apical membrane of the tubular cells. In this study, we aim to analyze the ApoA-I distribution in kidney allograft biopsies of recurrent FSGS patients. We detected ApoA-I by immunohistochemistry in kidney allograft biopsies of patients with FSGS relapse after kidney transplantation and in kidney allograft biopsies of patients with a disease different from FSGS in the native kidney (non-FSGS). In recurrent FSGS patients, ApoA-I was prominently localized at the brush border of the tubular cells, while in the non-FSGS patients, ApoA-I was found along the cytoplasm of the tubular cells. The localization of ApoA-I at the brush border of the tubular cells is a specific feature of primary FSGS in relapse. This suggests that ApoA-I staining in kidney biopsies, coupled with ApoA-Ib measurement in urine, could be used as a diagnostic tool of primary FSGS relapse after kidney transplantation due to its highly specific tubular distribution.
Collapse
|
8
|
Chen J, Qiao XH, Mao JH. Immunopathogenesis of idiopathic nephrotic syndrome in children: two sides of the coin. World J Pediatr 2021; 17:115-122. [PMID: 33660135 DOI: 10.1007/s12519-020-00400-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Idiopathic nephrotic syndrome is a common form of glomerular nephropathy in children, with an incidence rate of 1.15-16.9/100,000 depending on different nationalities and ethnicities. The etiological factors and mechanisms of childhood idiopathic nephrotic syndrome have not yet been fully elucidated. This review summarizes the progress of the immunopathogenesis of idiopathic nephrotic syndrome in children. DATA SOURCES We review the literature on the immunopathogenesis of idiopathic nephrotic syndrome in children. Databases including Medline, Scopus, and Web of Science were searched for studies published in any language with the terms "children", "idiopathic nephrotic syndrome", "immunopathogenesis", "T cells", "circulating permeability factors", and "B cells". RESULTS Dysfunction in T lymphocytes and pathogenic circulatory factors were indicated to play key roles in the pathogenesis of idiopathic nephrotic syndrome. Recently, some studies have shown that cellular immune dysfunction may also be involved in the pathogenesis of idiopathic nephrotic syndrome. CONCLUSIONS Both T- and B-cell dysfunction may play significant roles in the pathogenesis of idiopathic nephrotic syndrome, like two sides of one coin, but the role of B cell seems more important than T cells.
Collapse
Affiliation(s)
- Jing Chen
- Department of Nephrology, Ningbo Women and Children's Hospital, 339 LiutingRd, Ningbo, 315012, China
| | - Xiao-Hui Qiao
- Department of Nephrology, Ningbo Women and Children's Hospital, 339 LiutingRd, Ningbo, 315012, China.
| | - Jian-Hua Mao
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, 57 Zhuganxiang, Hangzhou, 310003, China
| |
Collapse
|
9
|
Jacobs-Cachá C, Vergara A, García-Carro C, Agraz I, Toapanta-Gaibor N, Ariceta G, Moreso F, Serón D, López-Hellín J, Soler MJ. Challenges in primary focal segmental glomerulosclerosis diagnosis: from the diagnostic algorithm to novel biomarkers. Clin Kidney J 2020; 14:482-491. [PMID: 33623672 PMCID: PMC7886539 DOI: 10.1093/ckj/sfaa110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Primary or idiopathic focal segmental glomerulosclerosis (FSGS) is a kidney entity that involves the podocytes, leading to heavy proteinuria and in many cases progresses to end-stage renal disease. Idiopathic FSGS has a bad prognosis, as it involves young individuals who, in a considerably high proportion (∼15%), are resistant to corticosteroids and other immunosuppressive treatments as well. Moreover, the disease recurs in 30–50% of patients after kidney transplantation, leading to graft function impairment. It is suspected that this relapsing disease is caused by a circulating factor(s) that would permeabilize the glomerular filtration barrier. However, the exact pathologic mechanism is an unsettled issue. Besides its poor outcome, a major concern of primary FSGS is the complexity to confirm the diagnosis, as it can be confused with other variants or secondary forms of FSGS and also with other glomerular diseases, such as minimal change disease. New efforts to optimize the diagnostic approach are arising to improve knowledge in well-defined primary FSGS cohorts of patients. Follow-up of properly classified primary FSGS patients will allow risk stratification for predicting the response to different treatments. In this review we will focus on the diagnostic algorithm used in idiopathic FSGS both in native kidneys and in disease recurrence after kidney transplantation. We will emphasize those potential confusing factors as well as their detection and prevention. In addition, we will also provide an overview of ongoing studies that recruit large cohorts of glomerulopathy patients (Nephrotic Syndrome Study Network and Cure Glomerulonephropathy, among others) and the experimental studies performed to find novel reliable biomarkers to detect primary FSGS.
Collapse
Affiliation(s)
- Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Ander Vergara
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Clara García-Carro
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Irene Agraz
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Nestor Toapanta-Gaibor
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Gema Ariceta
- Red de Investigaciones Renales (RedInRen), Madrid, Spain.,Department of Paediatric Nephrology, Hospital Universitari Vall d'Hebron. Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Francesc Moreso
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Daniel Serón
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| | - Joan López-Hellín
- Red de Investigaciones Renales (RedInRen), Madrid, Spain.,Department of Biochemistry, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Biochemistry Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain
| | - Maria José Soler
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain.,Red de Investigaciones Renales (RedInRen), Madrid, Spain
| |
Collapse
|
10
|
Jacobs-Cachá C, Puig-Gay N, Helm D, Rettel M, Sellarès J, Meseguer A, Savitski MM, Moreso FJ, Soler MJ, Seron D, Lopez-Hellin J. A misprocessed form of Apolipoprotein A-I is specifically associated with recurrent Focal Segmental Glomerulosclerosis. Sci Rep 2020; 10:1159. [PMID: 31980684 PMCID: PMC6981185 DOI: 10.1038/s41598-020-58197-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Apolipoprotein A-Ib (ApoA-Ib) is a high molecular weight form of Apolipoprotein A-I (ApoA-I) found specifically in the urine of kidney-transplanted patients with recurrent idiopathic focal segmental glomerulosclerosis (FSGS). To determine the nature of the modification present in ApoA-Ib, we sequenced the whole APOA1 gene in ApoA-Ib positive and negative patients, and we also studied the protein primary structure using mass spectrometry. No genetic variations in the APOA1 gene were found in the ApoA-Ib positive patients that could explain the increase in its molecular mass. The mass spectrometry analysis revealed three extra amino acids at the N-Terminal end of ApoA-Ib that were not present in the standard plasmatic form of ApoA-I. These amino acids corresponded to half of the propeptide sequence of the immature form of ApoA-I (proApoA-I) indicating that ApoA-Ib is a misprocessed form of proApoA-I. The description of ApoA-Ib could be relevant not only because it can allow the automated analysis of this biomarker in the clinical practice but also because it has the potential to shed light into the molecular mechanisms that cause idiopathic FSGS, which is currently unknown.
Collapse
Affiliation(s)
- Conxita Jacobs-Cachá
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain. .,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain.
| | - Natàlia Puig-Gay
- Renal Physiopathology Group-CIBBIM. Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Dominic Helm
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mandy Rettel
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Joana Sellarès
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Anna Meseguer
- Renal Physiopathology Group-CIBBIM. Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Mikhail M Savitski
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany.,Genome Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francesc J Moreso
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Maria José Soler
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Daniel Seron
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Joan Lopez-Hellin
- Renal Physiopathology Group-CIBBIM. Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain. .,Biochemistry Department, Hospital Vall d'Hebrón, Barcelona, Spain.
| |
Collapse
|
11
|
Should high molecular weight forms of apolipoprotein A-I be analyzed in urine of relapsing FSGS patients? Pediatr Nephrol 2019; 34:2423-2424. [PMID: 31342149 DOI: 10.1007/s00467-019-04309-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
|
12
|
Clark AJ, Yang H, Kon V. Urinary apoAl: novel marker of renal disease? Pediatr Nephrol 2019; 34:2425-2426. [PMID: 31402404 PMCID: PMC6801088 DOI: 10.1007/s00467-019-04328-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Amanda J. Clark
- Monroe Carrell Children’s Hospital at Vanderbilt, Department of Pediatrics
| | - Haichun Yang
- Monroe Carrell Children’s Hospital at Vanderbilt, Division of Pediatric Nephrology,Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology
| | - Valentina Kon
- Department of Pediatrics, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|