1
|
Doumatey AP, Bentley AR, Akinyemi R, Olanrewaju TO, Adeyemo A, Rotimi C. Genes, environment, and African ancestry in cardiometabolic disorders. Trends Endocrinol Metab 2023; 34:601-621. [PMID: 37598069 PMCID: PMC10548552 DOI: 10.1016/j.tem.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
The past two decades have been characterized by a substantial global increase in cardiometabolic diseases, but the prevalence and incidence of these diseases and related traits differ across populations. African ancestry populations are among the most affected yet least included in research. Populations of African descent manifest significant genetic and environmental diversity and this under-representation is a missed opportunity for discovery and could exacerbate existing health disparities and curtail equitable implementation of precision medicine. Here, we discuss cardiometabolic diseases and traits in the context of African descent populations, including both genetic and environmental contributors and emphasizing novel discoveries. We also review new initiatives to include more individuals of African descent in genomics to address current gaps in the field.
Collapse
Affiliation(s)
- Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training and Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Neurology, University College Hospital, Ibadan, Nigeria
| | - Timothy O Olanrewaju
- Division of Nephrology, Department of Medicine, University of Ilorin & University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Katsukunya JN, Soko ND, Naidoo J, Rayner B, Blom D, Sinxadi P, Chimusa ER, Dandara M, Dzobo K, Jones E, Dandara C. Pharmacogenomics of Hypertension in Africa: Paving the Way for a Pharmacogenetic-Based Approach for the Treatment of Hypertension in Africans. Int J Hypertens 2023; 2023:9919677. [PMID: 38633331 PMCID: PMC11022520 DOI: 10.1155/2023/9919677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 04/19/2024] Open
Abstract
In Africa, the burden of hypertension has been rising at an alarming rate for the last two decades and is a major cause for cardiovascular disease (CVD) mortality and morbidity. Hypertension is characterised by elevated blood pressure (BP) ≥ 140/90 mmHg. Current hypertension guidelines recommend the use of antihypertensives belonging to the following classes: calcium channel blockers (CCB), angiotensin converting inhibitors (ACEI), angiotensin receptor blockers (ARB), diuretics, β-blockers, and mineralocorticoid receptor antagonists (MRAs), to manage hypertension. Still, a considerable number of hypertensives in Africa have their BP uncontrolled due to poor drug response and remain at the risk of CVD events. Genetic factors are a major contributing factor, accounting for 20% to 80% of individual variability in therapy and poor response. Poor response to antihypertensive drug therapy is characterised by elevated BPs and occurrence of adverse drug reactions (ADRs). As a result, there have been numerous studies which have examined the role of genetic variation and its influence on antihypertensive drug response. These studies are predominantly carried out in non-African populations, including Europeans and Asians, with few or no Africans participating. It is important to note that the greatest genetic diversity is observed in African populations as well as the highest prevalence of hypertension. As a result, this warrants a need to focus on how genetic variation affects response to therapeutic interventions used to manage hypertension in African populations. In this paper, we discuss the implications of genetic diversity in CYP11B2, GRK4, NEDD4L, NPPA, SCNN1B, UMOD, CYP411, WNK, CYP3A4/5, ACE, ADBR1/2, GNB3, NOS3, B2, BEST3, SLC25A31, LRRC15 genes, and chromosome 12q loci on hypertension susceptibility and response to antihypertensive therapy. We show that African populations are poorly explored genetically, and for the few characterised genes, they exhibit qualitative and quantitative differences in the profile of pharmacogene variants when compared to other ethnic groups. We conclude by proposing prioritization of pharmacogenetics research in Africa and possible adoption of pharmacogenetic-guided therapies for hypertension in African patients. Finally, we outline the implications, challenges, and opportunities these studies present for populations of non-European descent.
Collapse
Affiliation(s)
- Jonathan N. Katsukunya
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Nyarai D. Soko
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Jashira Naidoo
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk Blom
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Lipidology and Cape Heart Institute, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Clinical Pharmacology, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R. Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear NE1 8ST, UK
| | - Michelle Dandara
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Medical Research Council-SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Erika Jones
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Tang J, Huang M, He S, Zeng J, Zhu H. Uncovering the extensive trade-off between adaptive evolution and disease susceptibility. Cell Rep 2022; 40:111351. [PMID: 36103812 DOI: 10.1016/j.celrep.2022.111351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
Favored mutations in the human genome may make the carriers adapt to changing environments and lifestyles but also susceptible to specific diseases. The scale and details of the trade-off between adaptive evolution and disease susceptibility are unclear because most favored mutations in different populations remain unidentified. As no statistical test can discriminate favored mutations from nearby hitchhiking neutral ones, we report a deep-learning network (DeepFavored) to integrate multiple statistical tests and divide identifying favored mutations into two subtasks. We identify favored mutations in three human populations and analyzed the correlation between favored/hitchhiking mutations and genome-wide association study (GWAS) sites. Both favored and hitchhiking neutral mutations are enriched in GWAS sites with population-specific features, and the enrichment and population specificity are prominent in genes in specific Gene Ontology (GO) terms. These provide evidence for extensive and population-specific trade-offs between adaptive evolution and disease susceptibility. The unveiled scale helps understand and investigate differences and diseases of humans.
Collapse
Affiliation(s)
- Ji Tang
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Maosheng Huang
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sha He
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junxiang Zeng
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Abstract
The development of high blood pressure is influenced by genetic and environmental factors, with high salt intake being a known environmental contributor. Humans display a spectrum of sodium-sensitivity, with some individuals displaying a significant blood pressure rise in response to increased sodium intake while others experience almost no change. These differences are, in part, attributable to genetic variation in pathways involved in sodium handling and excretion. ENaC (epithelial sodium channel) is one of the key transporters responsible for the reabsorption of sodium in the distal nephron. This channel has an important role in the regulation of extracellular fluid volume and consequently blood pressure. Herein, we review the role of ENaC in the development of salt-sensitive hypertension, and present mechanistic insights into the regulation of ENaC activity and how it may accelerate sodium-induced damage and dysfunction. We discuss the traditional role of ENaC in renal sodium reabsorption and review work addressing ENaC expression and function in the brain, vasculature, and immune cells, and how this has expanded the implications for its role in the initiation and progression of salt-sensitive hypertension.
Collapse
Affiliation(s)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, and Department of Molecular Physiology and Biophysics Vanderbilt University, Nashville, TN (A.K.)
| | - Thomas R Kleyman
- From the Department of Medicine (S.M.M., T.R.K.), University of Pittsburgh, PA.,Department of Cell Biology (T.R.K.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (T.R.K.), University of Pittsburgh, PA
| |
Collapse
|
6
|
HIV-positive demonstrate more salt sensitivity and nocturnal non-dipping blood pressure than HIV-negative individuals. Clin Hypertens 2021; 27:2. [PMID: 33446278 PMCID: PMC7809779 DOI: 10.1186/s40885-020-00160-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background High dietary salt and a lack of reduced blood pressure (BP) at night (non-dipping) are risk factors for the development of hypertension which may result in end-organ damage and death. The effect of high dietary salt on BP in black people of sub-Saharan Africa living with HIV is not well established. The goal of this study was to explore the associations between salt sensitivity and nocturnal blood pressure dipping according to HIV and hypertension status in a cohort of adult Zambian population. Methods We conducted an interventional study among 43 HIV-positive and 42 HIV-negative adults matched for age and sex. Study participants were instructed to consume a low (4 g) dietary salt intake for a week followed by high (9 g) dietary salt intake for a week. Salt resistance and salt sensitivity were defined by a mean arterial pressure difference of ≤5 mmHg and ≥ 8 mmHg, respectively, between the last day of low and high dietary salt intervention. Nocturnal dipping was defined as a 10–15% decrease in night-time blood pressure measured with an ambulatory blood pressure monitor. Results The median age was 40 years for both the HIV-positive and the HIV-negative group with 1:1 male to female ratio. HIV positive individuals with hypertension exhibited a higher BP sensitivity to salt (95%) and non-dipping BP (86%) prevalence compared with the HIV negative hypertensive (71 and 67%), HIV positive (10 and 24%) and HIV-negative normotensive (29 and 52%) groups, respectively (p < 0.05). Salt sensitivity was associated with non-dipping BP and hypertension in both the HIV-positive and HIV-negative groups even after adjustment in multivariate logistic regression (< 0.001). Conclusions The results of the present study suggest that high dietary salt intake raises blood pressure and worsens nocturnal BP dipping to a greater extent in hypertensive than normotensive individuals and that hypertensive individuals have higher dietary salt intake than their normotensive counterparts. Regarding HIV status, BP of HIV-positive hypertensive patients may be more sensitive to salt intake and demonstrate more non-dipping pattern compared to HIV-negative hypertensive group. However, further studies with a larger sample size are required to validate this. Supplementary Information The online version contains supplementary material available at 10.1186/s40885-020-00160-0.
Collapse
|