1
|
Werfel L, Martens H, Hennies I, Gjerstad AC, Fröde K, Altarescu G, Banerjee S, Valenzuela Palafoll I, Geffers R, Kirschstein M, Christians A, Bjerre A, Haffner D, Weber RG. Diagnostic Yield and Benefits of Whole Exome Sequencing in CAKUT Patients Diagnosed in the First Thousand Days of Life. Kidney Int Rep 2023; 8:2439-2457. [PMID: 38025229 PMCID: PMC10658255 DOI: 10.1016/j.ekir.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.
Collapse
Affiliation(s)
- Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kerstin Fröde
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Gheona Altarescu
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anna Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G. Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
den Bakker E, Bökenkamp A, Haffner D. Assessment of Kidney Function in Children. Pediatr Clin North Am 2022; 69:1017-1035. [PMID: 36880920 DOI: 10.1016/j.pcl.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A good understanding of kidney function tests is essential for patient care. Urinalysis is the commonest used test for screening purposes in ambulatory settings. Glomerular function is assessed further by urine protein excretion and estimated glomerular filtration rate and tubular function by various tests such as urine anion gap and excretion of sodium, calcium, and phosphate. In addition, kidney biopsy and/or genetic analyses may be required to further characterize the underlying kidney disease. In this article, we discuss maturation and the assessment of kidney function in children.
Collapse
Affiliation(s)
- Emil den Bakker
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, Meibergdreef 9, Amsterdam NL-1105 AZ, the Netherlands
| | - Arend Bökenkamp
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Meibergdreef 9, Amsterdam NL-1105 AZ, the Netherlands
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| |
Collapse
|
3
|
Mirshahi UL, Bhan A, Tholen LE, Fang B, Chen G, Moore B, Cook A, Anand PM, Patel K, Haas ME, Lotta LA, Igarashi P, de Baaij JH, Ferrè S, Hoenderop JG, Carey DJ, Chang AR. Framework From a Multidisciplinary Approach for Transitioning Variants of Unknown Significance From Clinical Genetic Testing in Kidney Disease to a Definitive Classification. Kidney Int Rep 2022; 7:2047-2058. [PMID: 36090499 PMCID: PMC9459028 DOI: 10.1016/j.ekir.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Monogenic causes in over 300 kidney-associated genes account for approximately 12% of end stage kidney disease (ESKD) cases. Advances in sequencing and large customized panels enable the noninvasive diagnosis of monogenic kidney disease at relatively low cost, thereby allowing for more precise management for patients and their families. A major challenge is interpreting rare variants, many of which are classified as variants of unknown significance (VUS). We present a framework in which we thoroughly evaluated and provided evidence of pathogenicity for HNF1B-p.Arg303His, a VUS returned from clinical diagnostic testing for a kidney transplant candidate. Methods A blueprint was designed by a multidisciplinary team of clinicians, molecular biologists, and diagnostic geneticists. The blueprint included using a health system-based cohort with genetic and clinical information to perform deep phenotyping of VUS heterozygotes to identify the candidate VUS and rule out other VUS, examination of existing genetic databases, as well as functional testing. Results Our approach demonstrated evidence for pathogenicity for HNF1B-p.Arg303His by showing similar burden of kidney manifestations in this variant to known HNF1B pathogenic variants, and greater burden compared to noncarriers. Conclusion Determination of a molecular diagnosis for the example family allows for proper surveillance and management of HNF1B-related manifestations such as kidney disease, diabetes, and hypomagnesemia with important implications for safe living-related kidney donation. The candidate gene-variant pair also allows for clinical biomarker testing for aberrations of linked pathways. This working model may be applicable to other diseases of genetic etiology.
Collapse
Affiliation(s)
| | - Ahana Bhan
- Kidney Health Research Institute, Geisinger, Danville, Pennsylvania, USA
| | - Lotte E. Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Brian Fang
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, USA
| | - Guoli Chen
- Department of Pathology, Penn State Health Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Bryn Moore
- Department of Molecular and Functional Genomics, Geisinger, Pennsylvania, USA
| | - Adam Cook
- Department of Molecular and Functional Genomics, Geisinger, Pennsylvania, USA
| | - Prince Mohan Anand
- Department of Nephrology, Medical University of South Carolina, Lancaster, South Carolina, USA
| | - Kashyap Patel
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Mary E. Haas
- Regeneron Genetics Center, Sawmill Road, Tarrytown, New York, USA
| | - Luca A. Lotta
- Regeneron Genetics Center, Sawmill Road, Tarrytown, New York, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Silvia Ferrè
- National Kidney Foundation, New York, New York, USA
| | - Joost G.J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David J. Carey
- Department of Molecular and Functional Genomics, Geisinger, Pennsylvania, USA
| | - Alexander R. Chang
- Kidney Health Research Institute, Geisinger, Danville, Pennsylvania, USA
| |
Collapse
|
4
|
Sinha R, Pradhan S, Banerjee S, Jahan A, Akhtar S, Pahari A, Raut S, Parakh P, Basu S, Srivastava P, Nayak S, Thenral SG, Ramprasad V, Ashton E, Bockenhauer D, Mandal K. Whole-exome sequencing and variant spectrum in children with suspected inherited renal tubular disorder: the East India Tubulopathy Gene Study. Pediatr Nephrol 2022; 37:1811-1836. [PMID: 35006361 DOI: 10.1007/s00467-021-05388-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inherited tubulopathies are a heterogeneous group of genetic disorders making whole-exome sequencing (WES) the preferred diagnostic methodology. METHODS This was a multicenter descriptive study wherein children (< 18 years) with clinically suspected tubular disorders were recruited for molecular testing through WES. Multiplex ligation-dependent probe amplification (MLPA) and Sanger sequencing were done when required. Variants were classified as per American College of Medical Genetics 2015 guidelines and pathogenic (P)/likely pathogenic (LP) variants were considered causative. RESULTS There were 77 index cases (male =73%). Median age at diagnosis was 48 months (IQR 18.5 to 108 months). At recruitment, the number of children in each clinical group was as follows: distal renal tubular acidosis (dRTA) = 25; Bartter syndrome = 18; isolated hypophosphatemic rickets (HP) = 6; proximal tubular dysfunction (pTD) = 12; nephrogenic diabetes insipidus (NDI) = 6; kidney stone/nephrocalcinosis (NC) = 6; others = 4. We detected 55 (24 novel) P/LP variants, providing genetic diagnoses in 54 children (70%). The diagnostic yield of WES was highest for NDI (100%), followed by HP (83%; all X-linked HP), Bartter syndrome (78%), pTD (75%), dRTA (64%), and NC (33%). Molecular testing had a definite impact on clinical management in 24 (31%) children. This included revising clinical diagnosis among 14 children (26% of those with a confirmed genetic diagnosis and 18% of the overall cohort), detection of previously unrecognized co-morbidities among 8 children (sensorineural deafness n = 5, hemolytic anemia n = 2, and dental changes n = 1) and facilitating specific medical treatment for 7 children (primary hyperoxaluria n = 1, cystinosis n = 4, tyrosinemia n = 2). CONCLUSION WES is a powerful tool in the diagnosis and management of children with inherited tubulopathies in the Indian population. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Rajiv Sinha
- Institute of Child Health, Kolkata, India
- Apollo Hospital, Kolkata, India
| | | | - Sushmita Banerjee
- Institute of Child Health, Kolkata, India
- Calcutta Medical and Research Institute, Kolkata, India
| | - Afsana Jahan
- Renowell Clinic and Pratiksha Hospital, Gauhati, India
| | | | | | | | | | | | - Priyanka Srivastava
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | - Emma Ashton
- Rare & Inherited Disease Laboratory, NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- UCL Department of Renal Medicine and Renal Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
5
|
Saha A, Pande P, Vala K, Kapadia S, Patel H. Clinical exome sequencing uncovers an unsuspected diagnosis of Bartter syndrome type 2 in a child with incidentally detected nephrocalcinosis. CEN Case Rep 2022; 11:417-421. [PMID: 35195872 DOI: 10.1007/s13730-022-00694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 11/25/2022] Open
Abstract
Nephrocalcinosis is a characteristic feature of both type 1 and type 2 Bartter syndrome. Bartter syndrome type 2 presents antenatally and very early in life. Late-onset presentation with isolated nephrocalcinosis is extremely rare. We describe an 11-year-old girl with incidentally detected medullary nephrocalcinosis on renal ultrasonography. She was clinically suspected to have primary hyperoxaluria based on high urine oxalate. However, clinical exome sequencing revealed a pathogenic missense variant in the KCNJ1 gene leading to the molecular diagnosis of Bartter syndrome type 2. Both parents were heterozygous carriers of the same variant. Subsequent investigations did reveal a mild Bartter syndrome phenotype with mild metabolic alkalosis, high urine chloride and high renin and aldosterone. Our case illustrates phenotypic heterogeneity of Bartter syndrome type 2 and the usefulness of genetic testing in establishing the correct diagnosis and guiding further management in such cases.
Collapse
Affiliation(s)
- Anshuman Saha
- Department of Nephrology, Institute of Kidney Diseases and Research Centre, Gujarat University of Transplantation Sciences, Asarwa, Ahmedabad, Gujarat, 380016, India.
| | - Priyadarshini Pande
- Med Genome Labs Ltd, 3rd Floor, Narayana Netralaya Building, Narayana Health City, #258/A, Bommasandra, Hosur Rd, Bengaluru, Karnataka, 560099, India
| | - Kinnari Vala
- Department of Nephrology, Institute of Kidney Diseases and Research Centre, Gujarat University of Transplantation Sciences, Asarwa, Ahmedabad, Gujarat, 380016, India
| | - Shahenaz Kapadia
- Department of Nephrology, Institute of Kidney Diseases and Research Centre, Gujarat University of Transplantation Sciences, Asarwa, Ahmedabad, Gujarat, 380016, India
| | - Himanshu Patel
- Department of Nephrology, Institute of Kidney Diseases and Research Centre, Gujarat University of Transplantation Sciences, Asarwa, Ahmedabad, Gujarat, 380016, India
| |
Collapse
|
6
|
Forst AL, Reichold M, Kleta R, Warth R. Distinct Mitochondrial Pathologies Caused by Mutations of the Proximal Tubular Enzymes EHHADH and GATM. Front Physiol 2021; 12:715485. [PMID: 34349672 PMCID: PMC8326905 DOI: 10.3389/fphys.2021.715485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The mitochondria of the proximal tubule are essential for providing energy in this nephron segment, whose ATP generation is almost exclusively oxygen dependent. In addition, mitochondria are involved in a variety of metabolic processes and complex signaling networks. Proximal tubular mitochondrial dysfunction can therefore affect renal function in very different ways. Two autosomal dominantly inherited forms of renal Fanconi syndrome illustrate how multifaceted mitochondrial pathology can be: Mutation of EHHADH, an enzyme in fatty acid metabolism, results in decreased ATP synthesis and a consecutive transport defect. In contrast, mutations of GATM, an enzyme in the creatine biosynthetic pathway, leave ATP synthesis unaffected but do lead to mitochondrial protein aggregates, inflammasome activation, and renal fibrosis with progressive renal failure. In this review article, the distinct pathophysiological mechanisms of these two diseases are presented, which are examples of the spectrum of proximal tubular mitochondrial diseases.
Collapse
Affiliation(s)
- Anna-Lena Forst
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Markus Reichold
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Robert Kleta
- Centre for Nephrology, University College London, London, United Kingdom
| | - Richard Warth
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|