1
|
Barrios V, Martín-Rivada Á, Guerra-Cantera S, Campillo-Calatayud A, Camarneiro RA, Graell M, Chowen JA, Argente J. Reduction in Pappalysin-2 Levels and Lower IGF-I Bioavailability in Female Adolescents With Anorexia Nervosa. J Clin Endocrinol Metab 2024; 109:e920-e931. [PMID: 38066647 DOI: 10.1210/clinem/dgad713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 02/21/2024]
Abstract
CONTEXT Anorexia nervosa (AN) can cause severe undernutrition associated with alterations in the IGF axis. Pappalysins (PAPP-A, PAPP-A2) and stanniocalcins (STC-1, STC-2) modulate IGF binding-protein (IGFBP) cleavage and IGF bioavailability, but their implications in AN are unknown. OBJECTIVE We determined serum levels of PAPP-As and STCs in relationship with classical IGF axis parameters in female adolescents with AN and their association with nutritional status and secondary amenorrhea. METHODS Parameters of the IGF axis were determined in fasting serum samples of 68 female adolescents with AN at diagnosis and 62 sex- and age-matched controls. Standardized body mass index (BMI) and bone mineral density (BMD) were calculated. RESULTS Patients with AN had lower concentrations of total and free IGF-I, total IGFBP-3, acid-labile subunit (ALS), insulin, PAPP-A2, STC-1, and STC-2 and higher levels of IGF-II and IGFBP-2. Their free/total IGF-I ratio was decreased and the intact/total IGFBP-3 and -4 ratios increased. BMI was directly related to total IGF-I and intact IGFBP-3 and inversely with IGFBP-2 and intact IGFBP-4. Weight loss was directly correlated with intact IGFBP-4 and negatively with intact IGFBP-3, ALS, STC-2, and PAPP-A2 concentrations. BMD was directly related to intact IGFBP-3 and inversely with intact IGFBP-4 and PAPP-A2 levels. Patients with amenorrhea had lower levels of total IGF-I and IGFBP-3 than those with menses. CONCLUSION The reduction of PAPP-A2 in patients with AN may be involved in a decline in IGFBP cleavage, which could underlie the decrease in IGF-I bioavailability that is influenced by nutritional status and amenorrhea.
Collapse
Affiliation(s)
- Vicente Barrios
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
| | - Álvaro Martín-Rivada
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
| | - Santiago Guerra-Cantera
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
| | - Ana Campillo-Calatayud
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
| | - Ricardo A Camarneiro
- Department of Psychiatry and Clinical Psychology, Hospital Infantil Universitario Niño Jesús, E-28009 Madrid, Spain
| | - Montserrat Graell
- Department of Psychiatry and Clinical Psychology, Hospital Infantil Universitario Niño Jesús, E-28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, E-28009 Madrid, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049 Madrid, Spain
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", E-28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
2
|
Ali H, Abu-Farha M, Alshawaf E, Devarajan S, Bahbahani Y, Al-Khairi I, Cherian P, Alsairafi Z, Vijayan V, Al-Mulla F, Al Attar A, Abubaker J. Association of significantly elevated plasma levels of NGAL and IGFBP4 in patients with diabetic nephropathy. BMC Nephrol 2022; 23:64. [PMID: 35148702 PMCID: PMC8840773 DOI: 10.1186/s12882-022-02692-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a type of progressive kidney disease affecting approximately 40% of patients with diabetes. Current DN diagnostic criteria predominantly rely on albuminuria and serum creatinine (sCr) levels. However, the specificity and reliability of both markers are limited. Hence, reliable biomarkers are required for early diagnosis to effectively manage DN progression. Methods In this study, a cohort of 159 individuals were clinically evaluated and the plasma levels of NGAL, IGFBP-1, IGFBP-3, and IGFBP-4 were determined using Multiplexing Assays. Additionally, the association between the plasma levels of NGAL, IGFBP-1, IGFBP-3, and IGFBP-4 in patients with DN were compared to those in patients with T2D without kidney disease and control participants. Results Circulating level of NGAL were significantly higher in people with DN compared to people with T2D and non-diabetic groups (92.76 ± 7.5, 57.22 ± 8.7, and 52.47 ± 2.9 mg/L, respectively; p < 0.0001). IGFBP-4 showed a similar pattern, where it was highest in people with DN (795.61 ng/ml ±130.7) compared to T2D and non-diabetic people (374.56 ng/ml ±86.8, 273.06 ng/ml ±27.8 respectively, ANOVA p < 0.01). The data from this study shows a significant positive correlation between NGAL and IGFBP-4 in people with DN (ρ = .620, p < 0.005). IGFBP-4 also correlated positively with creatinine level and negatively with eGFR, in people with DN supporting its involvement in DN. Conclusion The data from this study shows a parallel increase in the plasma levels of NGAL and IGFBP-4 in DN. This highlights the potential to use these markers for early diagnosis of DN. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02692-z.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait City, Kuwait.,Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Sriraman Devarajan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Yousif Bahbahani
- Medical Division, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Zahra Alsairafi
- Department of Pharmacy Practice, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Kuwait City, Kuwait
| | - Vidya Vijayan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Abdulnabi Al Attar
- Medical Division, Dasman Diabetes Institute (DDI), Dasman, Kuwait.,Diabetology Unit, Amiri Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait.
| |
Collapse
|
3
|
Brown DD, Dauber A. Growth Hormone and Insulin-Like Growth Factor Dysregulation in Pediatric Chronic Kidney Disease. Horm Res Paediatr 2022; 94:105-114. [PMID: 34256372 DOI: 10.1159/000516558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/15/2021] [Indexed: 11/19/2022] Open
Abstract
Poor growth is a common finding in children with chronic kidney disease (CKD) that has been associated with poor long-term outcomes. The etiology of poor growth in this population is multifactorial and includes dysregulation of the growth hormone (GH) and insulin-like growth factor (IGF) axis. In this review, we describe the data on GH resistance or insensitivity and inappropriate levels or reduced bioactivity of IGF proposed as contributing factors of growth impairment in children with CKD. Additionally, we describe the theorized negative effect of metabolic acidosis, another frequent finding in pediatric CKD, on the GH/IGF axis and growth. Last, we present the current and potential therapies for the treatment of short stature in pediatric CKD that target the GH/IGF hormonal axis.
Collapse
Affiliation(s)
- Denver D Brown
- Division of Nephrology, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Andrew Dauber
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA.,Division of Endocrinology, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Wang S, Chi K, Wu D, Hong Q. Insulin-Like Growth Factor Binding Proteins in Kidney Disease. Front Pharmacol 2022; 12:807119. [PMID: 35002740 PMCID: PMC8728008 DOI: 10.3389/fphar.2021.807119] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
The seven members of the insulin-like growth factor (IGF) binding protein family (IGFBPs) were initially considered to be the regulatory proteins of IGFs in the blood circulation, mainly as the subsequent reserve for bidirectional regulation of IGF function during environmental changes. However, in recent years, IGFBPs has been found to have many functions independent of IGFs. The role of IGFBPs in regulating transcription, inducing cell migration and apoptosis is closely related to the occurrence and development of kidney disease. IGFBP-1, IGFBP-3, IGFBP-4 are closely associated with diabetes and diabetic nephropathy. IGFBP-3, IGFBP-4, IGFBP-5, IGFBP-6 are involved in different kidney disease such as diabetes, FSGS and CKD physiological process as apoptosis proteins, IGFBP-7 has been used in clinical practice as a biomarker for early diagnosis and prognosis of AKI. This review focuses on the differential expression and pathogenesis of IGFBPs in kidney disease.
Collapse
Affiliation(s)
- Shuqiang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China.,Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kun Chi
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Di Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
5
|
Karava V, Dotis J, Christoforidis A, Kondou A, Printza N. Muscle-bone axis in children with chronic kidney disease: current knowledge and future perspectives. Pediatr Nephrol 2021; 36:3813-3827. [PMID: 33534001 DOI: 10.1007/s00467-021-04936-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/06/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Bone and muscle tissue are developed hand-in-hand during childhood and adolescence and interact through mechanical loads and biochemical pathways forming the musculoskeletal system. Chronic kidney disease (CKD) is widely considered as both a bone and muscle-weakening disease, eventually leading to frailty phenotype, with detrimental effects on overall morbidity. CKD also interferes in the biomechanical communication between two tissues. Pathogenetic mechanisms including systemic inflammation, anorexia, physical inactivity, vitamin D deficiency and secondary hyperparathyroidism, metabolic acidosis, impaired growth hormone/insulin growth factor 1 axis, insulin resistance, and activation of renin-angiotensin system are incriminated for longitudinal uncoordinated loss of bone mineral content, bone strength, muscle mass, and muscle strength, leading to mechanical impairment of the functional muscle-bone unit. At the same time, CKD may also interfere in the biochemical crosstalk between the two organs, through inhibiting or stimulating the expression of certain osteokines and myokines. This review focuses on presenting current knowledge, according to in vitro, in vivo, and clinical studies, concerning the pathogenetic pathways involved in the muscle-bone axis, and suggests approaches aimed at preventing bone loss and muscle wasting in the pediatric population. Novel therapeutic targets for preserving musculoskeletal health in the context of CKD are also discussed.
Collapse
Affiliation(s)
- Vasiliki Karava
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece.
| | - John Dotis
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Athanasios Christoforidis
- Pediatric Endocrinology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Kondou
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Nikoleta Printza
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| |
Collapse
|
6
|
Paschou SA, Kanaka-Gantenbein C, Chrousos GP, Vryonidou A. Growth hormone axis in patients with chronic kidney disease. Hormones (Athens) 2019; 18:71-73. [PMID: 30255481 DOI: 10.1007/s42000-018-0066-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Stavroula A Paschou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, Athanasaki 1, 11526, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, Athanasaki 1, 11526, Athens, Greece.
| |
Collapse
|
7
|
Al Shawaf E, Abu-Farha M, Devarajan S, Alsairafi Z, Al-Khairi I, Cherian P, Ali H, Mathur A, Al-Mulla F, Al Attar A, Abubaker J. ANGPTL4: A Predictive Marker for Diabetic Nephropathy. J Diabetes Res 2019; 2019:4943191. [PMID: 31772941 PMCID: PMC6854918 DOI: 10.1155/2019/4943191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 09/07/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND ANGPTL4 is a glycoprotein that is involved in regulating triglyceride metabolism by inhibiting LPL activity under fasting conditions. Additionally, ANGPTL4 has been suggested as a link between hypertriglyceridemia and albuminuria in the nephrotic syndrome. In this study, we examined levels of circulating ANGPTL4 in people with diabetic nephropathy (DN) and its association with established DN-associated proteins such as IGFBP1 and IGFBP4. METHODS We quantified circulating ANGPTL4, IGFBP1, IGFBP3, and IGFBP4 in fasting plasma samples of 122 Kuwaiti participants using a multiplexing assay. The study involved 36 controls, as well as 86 people with type 2 diabetes (T2D) including 37 people with normal kidney function and 49 people with DN. RESULTS ANGPTL4 level was increased in people with DN (241.56 ± 14.1 μg/ml) compared to the control group (178.43 ± 24.09 μg/ml). The increase in ANGPTL4 correlated with clinical parameters of DN including albumin-to-creatinine ratio (r = 0.271, P = 0.002), serum creatinine (r = 0.381, P = 0.0001), and eGFR (r = -0.349, P < 0.0001). Furthermore, ANGPTL4 correlated positively with both IGFBP1 (r = 0.202, P = 0.026) and IGFBP4 (r = 0.364, P < 0.0001). Multiple regression analysis showed increased IGFBP1 and TG as predictors of higher ANGPTL4 in people with DN. In people with T2D, only IGFBP1 acted as a positive predictor of a rise in ANGPTL4. CONCLUSION In this study, our data showed a significant increase in circulating ANGPTL4, IGFBP1, and IGFBP4 in patients with DN. The elevation in ANGPTL4 correlated significantly with clinical markers of DN such as ACR, serum creatinine, and eGFR, as well as IGFBP1 and IGFBP4. Altogether, this suggests a potential role for ANGPTL4 in DN perhaps through its role in inhibiting LPL activity and promotes ANGPTL4 as a biochemical marker for the detection of a diabetic kidney disease in patients with T2D.
Collapse
Affiliation(s)
- Eman Al Shawaf
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait
| | | | - Zahra Alsairafi
- Department of Pharmacy Practice, Faculty of Pharmacy, Kuwait
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait
| | - Hamad Ali
- Functional Genomic Unit, Dasman Diabetes Institute, Kuwait
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait
| | - Aditi Mathur
- National Dasman Diabetes Biobank, Dasman Diabetes Institute, Kuwait
| | - Fahd Al-Mulla
- Functional Genomic Unit, Dasman Diabetes Institute, Kuwait
| | | | - Jehad Abubaker
- National Dasman Diabetes Biobank, Dasman Diabetes Institute, Kuwait
| |
Collapse
|
8
|
Silverstein DM. Growth and Nutrition in Pediatric Chronic Kidney Disease. Front Pediatr 2018; 6:205. [PMID: 30155452 PMCID: PMC6103270 DOI: 10.3389/fped.2018.00205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Children with chronic kidney disease (CKD) feature significant challenges to the maintenance of adequate nutrition and linear growth. Moreover, the impaired nutritional state contributes directly to poor growth. Therefore, it is necessary to consider nutritional status in the assessment of etiology and treatment of sub-optimal linear growth. The major causes of poor linear growth including dysregulation of the growth hormone/insulin-like growth factor-I (IGF-I) axis, nutritional deficiency, metabolic acidosis, anemia, renal osteodystrophy/bone mineral disease, and inflammation. This review summarizes the causes and assessment tools of growth and nutrition while providing a summary of state of the art therapies for these co-morbidities of pediatric CKD.
Collapse
Affiliation(s)
- Douglas M Silverstein
- Division of Reproductive, Gastrorenal, and Urology Devices, Office of Device Evaluation, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
9
|
Akchurin O, Sureshbabu A, Doty SB, Zhu YS, Patino E, Cunningham-Rundles S, Choi ME, Boskey A, Rivella S. Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease. Am J Physiol Renal Physiol 2016; 311:F877-F889. [PMID: 27440777 PMCID: PMC5130453 DOI: 10.1152/ajprenal.00089.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/15/2016] [Indexed: 01/04/2023] Open
Abstract
Growth delay is common in children with chronic kidney disease (CKD), often associated with poor quality of life. The role of anemia in uremic growth delay is poorly understood. Here we describe an induction of uremic growth retardation by a 0.2% adenine diet in wild-type (WT) and hepcidin gene (Hamp) knockout (KO) mice, compared with their respective littermates fed a regular diet. Experiments were started at weaning (3 wk). After 8 wk, blood was collected and mice were euthanized. Adenine-fed WT mice developed CKD (blood urea nitrogen 82.8 ± 11.6 mg/dl and creatinine 0.57 ± 0.07 mg/dl) and were 2.1 cm shorter compared with WT controls. WT adenine-fed mice were anemic and had low serum iron, elevated Hamp, and elevated IL6 and TNF-α. WT adenine-fed mice had advanced mineral bone disease (serum phosphorus 16.9 ± 3.1 mg/dl and FGF23 204.0 ± 115.0 ng/ml) with loss of cortical and trabecular bone volume seen on microcomputed tomography. Hamp disruption rescued the anemia phenotype resulting in improved growth rate in mice with CKD, thus providing direct experimental evidence of the relationship between Hamp pathway and growth impairment in CKD. Hamp disruption ameliorated CKD-induced growth hormone-insulin-like growth factor 1 axis derangements and growth plate alterations. Disruption of Hamp did not mitigate the development of uremia, inflammation, and mineral and bone disease in this model. Taken together, these results indicate that an adenine diet can be successfully used to study growth in mice with CKD. Hepcidin appears to be related to pathways of growth retardation in CKD suggesting that investigation of hepcidin-lowering therapies in juvenile CKD is warranted.
Collapse
Affiliation(s)
| | | | - Steve B Doty
- Hospital for Special Surgery, New York, New York; and
| | | | | | | | | | - Adele Boskey
- Weill Cornell Medicine, New York, New York
- Hospital for Special Surgery, New York, New York; and
| | - Stefano Rivella
- Weill Cornell Medicine, New York, New York
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Insulin-Like Growth Factor Binding Protein-4 as a Marker of Chronic Lupus Nephritis. PLoS One 2016; 11:e0151491. [PMID: 27019456 PMCID: PMC4809566 DOI: 10.1371/journal.pone.0151491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
Kidney biopsy remains the mainstay of Lupus Nephritis (LN) diagnosis and prognostication. The objective of this study is to identify non-invasive biomarkers that closely parallel renal pathology in LN. Previous reports have demonstrated that serum Insulin-like growth factor binding protein 4 (IGFBP-4) was increased in diabetic nephropathy in both animal models and patients. We proceeded to assess if IGFBP4 could be associated with LN. We performed ELISA using the serum of 86 patients with LN. Normal healthy adults (N = 23) and patients with other glomerular diseases (N = 20) served as controls. Compared to the healthy controls or other glomerular disease controls, serum IGFBP-4 levels were significantly higher in the patients with LN. Serum IGFBP-4 did not correlate well with systemic lupus erythematosus disease activity index (SLEDAI), renal SLEDAI or proteinuria, but it did correlate with estimated glomerular filtration rate (R = 0.609, P < 0.0001). Interestingly, in 18 patients with proliferative LN whose blood samples were obtained at the time of renal biopsy, serum IGFBP-4 levels correlated strongly with the chronicity index of renal pathology (R = 0.713, P < 0.001). IGFBP-4 emerges a potential marker of lupus nephritis, reflective of renal pathology chronicity changes.
Collapse
|
11
|
Abstract
Insulin-like growth factor binding proteins (IGFBPs) 4-6 have important roles as modulators of IGF actions. IGFBP-4 and IGFBP-6 predominantly inhibit IGF actions, whereas IGFBP-5 may enhance these actions under some circumstances. IGFBP-6 is unique among the IGFBPs for its marked IGF-II binding preference. IGFBPs 4-6 are found in the circulation as binary complexes with IGFs that can enter tissues. Additionally, about half of the circulating IGFBP-5 is found in ternary complexes with IGFs and an acid labile subunit; this high molecular complex cannot leave the circulation and acts as an IGF reservoir. IGFBPs 4-6 also have IGF-independent actions. These IGFBPs are regulated in a cell-specific manner and their dysregulation may play a role in a range of diseases including cancer. However, there is no clear clinical indication for measuring serum levels of these IGFBPs at present.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran, 3181, Australia; Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, 3004, Australia.
| |
Collapse
|
12
|
Bach LA, Hale LJ. Insulin-like growth factors and kidney disease. Am J Kidney Dis 2014; 65:327-36. [PMID: 25151409 DOI: 10.1053/j.ajkd.2014.05.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/03/2014] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factors (IGF-1 and IGF-2) are necessary for normal growth and development. They are related structurally to proinsulin and promote cell proliferation, differentiation, and survival, as well as insulin-like metabolic effects, in most cell types and tissues. In particular, IGFs are important for normal pre- and postnatal kidney development. IGF-1 mediates many growth hormone actions, and both growth hormone excess and deficiency are associated with perturbed kidney function. IGFs affect renal hemodynamics both directly and indirectly by interacting with the renin-angiotensin system. In addition to the IGF ligands, the IGF system includes receptors for IGF-1, IGF-2/mannose-6-phosphate, and insulin, and a family of 6 high-affinity IGF-binding proteins that modulate IGF action. Disordered regulation of the IGF system has been implicated in a number of kidney diseases. IGF activity is enhanced in early diabetic nephropathy and polycystic kidneys, whereas IGF resistance is found in chronic kidney failure. IGFs have a potential role in enhancing stem cell repair of kidney injury. Most IGF actions are mediated by the tyrosine kinase IGF-1 receptor, and inhibitors recently have been developed. Further studies are needed to determine the optimal role of IGF-based therapies in kidney disease.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Victoria, Australia; Department of Medicine (Alfred), Monash University, Melbourne, Victoria, Australia.
| | - Lorna J Hale
- Baker-IDI Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Kamenický P, Mazziotti G, Lombès M, Giustina A, Chanson P. Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications. Endocr Rev 2014; 35:234-81. [PMID: 24423979 DOI: 10.1210/er.2013-1071] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Besides their growth-promoting properties, GH and IGF-1 regulate a broad spectrum of biological functions in several organs, including the kidney. This review focuses on the renal actions of GH and IGF-1, taking into account major advances in renal physiology and hormone biology made over the last 20 years, allowing us to move our understanding of GH/IGF-1 regulation of renal functions from a cellular to a molecular level. The main purpose of this review was to analyze how GH and IGF-1 regulate renal development, glomerular functions, and tubular handling of sodium, calcium, phosphate, and glucose. Whenever possible, the relative contributions, the nephronic topology, and the underlying molecular mechanisms of GH and IGF-1 actions were addressed. Beyond the physiological aspects of GH/IGF-1 action on the kidney, the review describes the impact of GH excess and deficiency on renal architecture and functions. It reports in particular new insights into the pathophysiological mechanism of body fluid retention and of changes in phospho-calcium metabolism in acromegaly as well as of the reciprocal changes in sodium, calcium, and phosphate homeostasis observed in GH deficiency. The second aim of this review was to analyze how the GH/IGF-1 axis contributes to major renal diseases such as diabetic nephropathy, renal failure, renal carcinoma, and polycystic renal disease. It summarizes the consequences of chronic renal failure and glucocorticoid therapy after renal transplantation on GH secretion and action and questions the interest of GH therapy in these conditions.
Collapse
Affiliation(s)
- Peter Kamenický
- Assistance Publique-Hôpitaux de Paris (P.K., M.L., P.C.), Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Le Kremlin Bicêtre F-94275, France; Univ Paris-Sud (P.K., M.L., P.C.), Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre F-94276, France; Inserm Unité 693 (P.K., M.L., P.C.), Le Kremlin Bicêtre F-94276, France; and Department of Clinical and Experimental Sciences (A.G., G.M.), Chair of Endocrinology, University of Brescia, 25125 Brescia, Italy
| | | | | | | | | |
Collapse
|
14
|
Kiepe D, Tönshoff B. Insulin-like growth factors in normal and diseased kidney. Endocrinol Metab Clin North Am 2012; 41:351-74, vii. [PMID: 22682635 DOI: 10.1016/j.ecl.2012.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This article reviews the physiology of the insulin-like growth factor (IGF) system in the kidney and the changes and potential role of this system in selected renal diseases. The potential therapeutic uses of recombinant human IGF-I for the treatment of acute and chronic kidney failure are briefly discussed.
Collapse
Affiliation(s)
- Daniela Kiepe
- Department of Pediatrics I, University Children's Hospital Heidelberg, INF 430, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
15
|
Oh Y. The insulin-like growth factor system in chronic kidney disease: Pathophysiology and therapeutic opportunities. Kidney Res Clin Pract 2012; 31:26-37. [PMID: 26889406 PMCID: PMC4715090 DOI: 10.1016/j.krcp.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/24/2011] [Accepted: 11/24/2011] [Indexed: 12/21/2022] Open
Abstract
The growth hormone-insulin-like growth factor-insulin-like growth factor binding protein (GH-IGF-IGFBP) axis plays a critical role in the maintenance of normal renal function and the pathogenesis and progression of chronic kidney disease (CKD). Serum IGF-I and IGFBPs are altered with different stages of CKD, the speed of onset, the amount of proteinuria, and the potential of remission. Recent studies demonstrate that growth failure in children with CKD is due to a relative GH insensitivity and functional IGF deficiency. The functional IGF deficiency in CKD results from either IGF resistance due to increased circulating levels of IGFBPs or IGF deficiency due to increased urinary excretion of serum IGF-IGFBP complexes. In addition, not only GH and IGFs in circulation, but locally produced IGFs, the high-affinity IGFBPs, and low-affinity insulin-like growth factor binding protein-related proteins (IGFBP-rPs) may also affect the kidney. With respect to diabetic kidney disease, there is growing evidence suggesting that GH, IGF-I, and IGFBPs are involved in the pathogenesis of diabetic nephropathy (DN). Thus, prevention of GH action by blockade either at the receptor level or along its signal transduction pathway offers the potential for effective therapeutic opportunities. Similarly, interrupting IGF-I and IGFBP actions also may offer a way to inhibit the development or progression of DN. Furthermore, it is well accepted that the systemic inflammatory response is a key player for progression of CKD, and how to prevent and treat this response is currently of great interest. Recent studies demonstrate existence of IGF-independent actions of high-affinity and low-affinity-IGFBPs, in particular, antiinflammatory action of IGFBP-3 and profibrotic action of IGFBP-rP2/CTGF. These findings reinforce the concept in support of the clinical significance of the IGF-independent action of IGFBPs in the assessment of pathophysiology of kidney disease and its therapeutic potential for CKD. Further understanding of GH-IGF-IGFBP etiopathophysiology in CKD may lead to the development of therapeutic strategies for this devastating disease. It would hold promise to use of GH, somatostatin analogs, IGFs, IGF agonists, GHR and insulin-like growth factor-I receptor (IGF-IR) antagonists, IGFBP displacer, and IGFBP antagonists as well as a combination treatment as therapeutic agents for CKD.
Collapse
Affiliation(s)
- Youngman Oh
- Cancer and Metabolic Syndrome Research Laboratory, Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
16
|
|
17
|
Janjua HS, Mahan JD. Growth in chronic kidney disease. Adv Chronic Kidney Dis 2011; 18:324-31. [PMID: 21896373 DOI: 10.1053/j.ackd.2011.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/18/2011] [Accepted: 02/14/2011] [Indexed: 11/11/2022]
Abstract
Poor growth is a common sequela of CKD in childhood. It not only affects the psychosocial development of a child but also has significant effects even in the adult life. The multifactorial etiology and severe consequences of growth failure in CKD warrant evaluation of all the modifiable and nonmodifiable causes. Treatment strategies must be directed toward the specific factors for each child with CKD. Among the various metabolic, nutritional, and hormonal disturbances complicating CKD, disordered growth hormone (GH) and insulin-like growth factor-1 axis are important contributors toward poor growth in children with CKD. CKD is recognized as a state of GH resistance rather than GH deficiency, with multiple mechanisms contributing to this GH resistance. Recombinant GH (rGH) therapy can be used in this population to accelerate growth velocity. Although its use has been shown to be effective and safe in children with CKD, there continues to be some uncertainty and reluctance among practitioners and families regarding its usage, thereby resulting in a surprisingly low use in children with CKD. This review focuses on the pathogenesis of growth failure, its effect, and management strategies in children with CKD.
Collapse
|
18
|
The IGF/IGFBP system in relation to macroscopic bone architecture in pediatric renal transplant patients. Pediatr Nephrol 2010; 25:659-67. [PMID: 20033221 DOI: 10.1007/s00467-009-1405-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/11/2009] [Accepted: 11/21/2009] [Indexed: 10/20/2022]
Abstract
The post-transplant bone disease of the peripheral skeleton in pediatric renal transplant recipients is characterized by an inadequately thin bone cortex in relation to muscular force. A major hormonal modulator of periosteal growth is the insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system. We therefore hypothesized that the reduced cortical thickness in these patients may be due to functional IGF deficiency. To test this hypothesis, we investigated 55 patients (mean estimated glomerular filtration rate 86.3 +/- 30.0 ml/min/1.73 m(2)) in a cross-sectional study. Parameters of macroscopic bone architecture and forearm muscle size were analyzed by peripheral quantitative computed tomography (pQCT), and serum IGF/IGFBP system components were measured by specific radioimmunoassays. The mean (+/- standard deviation) standardized serum IGF-I (0.20 +/- 1.16 score) level was normal, while the mean IGF-II (1.16 +/- 0.11 score) level was significantly elevated. Serum IGFBP-1 and IGFBP-2 levels were not altered, whereas the IGFBP-3 (1.34 +/- 0.15 score) level was significantly increased. The serum IGFBP-4 level was slightly elevated (by 11%), the IGFBP-6 level was markedly (2.3-fold) elevated, while the IGFBP-5 level was comparable to that of the control. The respective age-adjusted cortical thickness at both the proximal (r = 0.407, P < 0.005) and distal (r = 0.383, P < 0.01) forearm was positively correlated with the standardized serum IGF-I level. In conclusion, the serum IGF/IGFBP system in pediatric renal transplant recipients is characterized by an increase in the levels of the inhibitory IGFBPs, IGFBP-3, -4 and -6, resulting in a functional IGF deficiency. The positive correlation of IGF-I with cortical thickness underlines the importance of this hormonal system in the modeling of bone, particularly periosteal growth.
Collapse
|
19
|
Schaefer F. Daily online haemodiafiltration: the perfect 'stimulus package' to induce growth? Nephrol Dial Transplant 2010; 25:658-60. [PMID: 20083477 DOI: 10.1093/ndt/gfp769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
20
|
Abstract
Growth may be severely impaired in children with chronic renal insufficiency. Since short stature can have major consequences on quality of life and self-esteem, achieving a 'normal' height is a crucial issue for renal transplant recipients. However, despite successful renal transplantation, the final height attained by most recipients is not the calculated target height. Catch-up growth spurts post-transplantation are usually insufficient to compensate for the retardation in growth that has occurred during the pre-transplant period. Longitudinal growth post-transplantation is therefore influenced by the age at transplantation but also by subsequent allograft function and steroid exposure, both of which interfere with the growth hormone/insulin-like growth factor axis. The management of growth retardation in renal transplant recipients includes adequate nutritional intake, correction of metabolic acidosis, prevention of bone disease, steroid-sparing strategies and a supraphysiological dose of recombinant human growth hormone in selected cases.
Collapse
Affiliation(s)
- Jérôme Harambat
- Département de Pédiatrie and Inserm U820, Hôpital Edouard-Herriot and Université Claude-Bernard Lyon 1, Lyon, France
| | - Pierre Cochat
- Département de Pédiatrie and Inserm U820, Hôpital Edouard-Herriot and Université Claude-Bernard Lyon 1, Lyon, France
- Département de Pédiatrie, Unité de Néphrologie Pédiatrique, Hôpital Edouard Herriot, place d’Arsonval, 69437 Lyon, France
| |
Collapse
|
21
|
Abstract
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are important physiologic regulators of growth, body composition, and kidney function. Perturbations in the GH-IGF-I axis are responsible for many important complications seen in chronic kidney disease (CKD), such as growth retardation and cachectic wasting, as well as disease progression. Recent evidence suggests that CKD is characterized by abnormalities in GH and IGF-I signal transduction and the interaction of these pathways with those that involve other molecules such as ghrelin, myostatin, and the suppressor of cytokine signaling (SOCS) family. Further understanding of GH/IGF pathophysiology in CKD may lead to the development of therapeutic strategies for these devastating complications, which are associated with high rates of mortality and morbidity.
Collapse
Affiliation(s)
- Robert H Mak
- Department of Pediatrics, Division of Pediatric Nephrology, University of California at San Diego, La Jolla, CA 92093-0634, USA.
| | | | | |
Collapse
|
22
|
Abstract
Chronic kidney disease (CKD) in children is associated with dramatic changes in the growth hormone (GH) and insulin-like growth factor (IGF-1) axis, resulting in growth retardation. Moderate-to-severe growth retardation in CKD is associated with increased morbidity and mortality. Renal failure is a state of GH resistance and not GH deficiency. Some mechanisms of GH resistance are: reduced density of GH receptors in target organs, impaired GH-activated post-receptor Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and reduced levels of free IGF-1 due to increased inhibitory IGF-binding proteins (IGFBPs). Treatment with recombinant human growth hormone (rhGH) has been proven to be safe and efficacious in children with CKD. Even though rhGH has been shown to improve catch-up growth and to allow the child to achieve normal adult height, the final adult height is still significantly below the genetic target. Growth retardation may persist after renal transplantation due to multiple factors, such as steroid use, decreased renal function and an abnormal GH-IGF1 axis. Those below age 6 years are the ones to benefit most from transplantation in demonstrating acceleration in linear growth. Newer treatment modalities targeting the GH resistance with recombinant human IGF-1 (rhIGF-1), recombinant human IGFBP3 (rhIGFBP3) and IGFBP displacers are under investigation and may prove to be more effective in treating growth failure in CKD.
Collapse
Affiliation(s)
- Shefali Mahesh
- Albert Einstein College of Medicine, Children’s Hospital at Montefiore, Bronx, NY 10467 USA
| | - Frederick Kaskel
- Albert Einstein College of Medicine, Children’s Hospital at Montefiore, Bronx, NY 10467 USA
- Division of Pediatric Nephrology, Children’s Hospital at Montefiore, 111 East 210th street, Bronx, NY 10467 USA
| |
Collapse
|
23
|
Hoeflich A, Götz W, Lichanska AM, Bielohuby M, Tönshoff B, Kiepe D. Effects of insulin-like growth factor binding proteins in bone -- a matter of cell and site. Arch Physiol Biochem 2007; 113:142-53. [PMID: 17922310 DOI: 10.1080/13813450701531193] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The actions of the insulin-like growth factor (IGF)-system are controlled by six IGF-binding proteins (IGFBPs). The IGFBPs are thought to affect local effects of IGF-I and IGF-II due to higher affinity if compared to IGF-I receptors and due to cell-type specific IGFBP expression patterns. It was found in IGFBP knockout models that the IGFBP family is functionally redundant. Thus, functional analysis of potential effects of IGFBPs is dependent on descriptive studies and models of IGFBP overexposure in vitro and in vivo. In the literature, the role of the IGFBPs for bone growth is highly controversial and, to date, no systematic look has been taken at IGFBPs resolving functional aspects of IGFBPs at levels of cell types and specific locations within bones. Since IGFBPs are thought to represent local modulators of the IGF actions and also exert IGF-independent effects, this approach is particularly reasonable on a physiological level. By sorting the huge number of in part controversial results on IGFBP effects in bone present in the literature for distinct cell types and bone sites it is possible to generate a focused, more specific and a less controversial picture of IGFBP functions in bone.
Collapse
Affiliation(s)
- A Hoeflich
- Laboratory of Mouse Genetics, Research Unit of Genetics and Biometry, Research Institute for the Biology of Farm Animals Dummerstorf (FBN), Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Ulinski T, Cochat P. Longitudinal growth in children following kidney transplantation: from conservative to pharmacological strategies. Pediatr Nephrol 2006; 21:903-9. [PMID: 16773400 DOI: 10.1007/s00467-006-0117-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 01/26/2006] [Accepted: 01/27/2006] [Indexed: 11/27/2022]
Abstract
Impairment of longitudinal growth in children with chronic renal failure (CRF) is multifactorial. It is mainly due to disturbances in the growth hormone (GH)/insulin-like growth factor (IGF)/IGF-binding protein axis. Growth failure can be managed by optimizing nutrition and fluid/electrolyte homeostasis, and overcoming the growth-inhibiting effects of uremia by high-dose recombinant human (rh) GH treatment. A sufficient catch-up growth is one of the determining issues for the overall success of pediatric kidney transplantation (Tx). However, despite satisfactory renal function, spontaneous catch-up growth is often insufficient as glucocorticoid treatment is the main inhibiting factor for longitudinal growth after Tx. In addition, longitudinal growth may be jeopardized by low glomerular filtration rate (GFR) and African American or Hispanic background. Supraphysiological doses of GH and/or IGF-I in vitro and in vivo can partially overcome the growth-inhibiting effects of glucocorticoid treatment. GH-associated increase of leukocyte proliferation and cytotoxicity with stimulated interferon synthesis have been demonstrated. However, it is not clear whether such stimulatory effects on leukocyte function are a transitory or a constant risk factor after organ Tx. Clinical trials of GH in children after renal Tx have suggested a rather moderate or transient effect of rhGH on the immune system, and corticosteroids induce a hyporesponsiveness to the action of GH. As long as corticosteroids are believed to be essential after renal Tx, rhGH should be considered to optimize longitudinal growth in children.
Collapse
Affiliation(s)
- Tim Ulinski
- Department of Pediatric Nephrology & Inserm U515, Hôpital Trousseau, AP-HP, Université Paris VI, 26, Avenue du Docteur Arnold Netter, 75012 Paris, France
| | | |
Collapse
|
25
|
Abstract
In mammals, statural growth is primarily accomplished by endochondral ossification, which takes place at the growth plate. Growth plate chondrocyte proliferation, hypertrophy/differentiation, apoptosis, and cartilage matrix synthesis all contribute to chondrogenesis or cartilage formation, a process tightly coupled to the simultaneous remodeling of the cartilage into bone at the metaphyseal border of the growth plate. Growth plate chondrogenesis is regulated by the complex interaction of molecular signals acting systemically as well locally within the growth plate. This network is often dysregulated during chronic illnesses, thus resulting in impaired growth plate chondrogenesis and, in turn, growth failure. The principal events responsible for altered growth plate chondrogenesis in chronic illness are inflammation, protein/calorie deprivation, uremia/metabolic acidosis, glucocorticoids, and impaired GH/IGF-I axis.
Collapse
Affiliation(s)
- Francesco De Luca
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134, USA.
| |
Collapse
|
26
|
Silha JV, Murphy LJ. Insulin-like growth factor binding proteins in development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:55-89. [PMID: 16370136 DOI: 10.1007/0-387-26274-1_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IGFBPs regulate growth and development by regulating IGF transport to tissues and IGF bioavailability to IGF receptors at cell membrane level. IGFBP excess leads predominantly to inhibition of IGF action and growth retardation with impaired organogenesis. Absence of human and also mouse ALS leads to decreased IGF-I levels in circulation and causes mild growth retardation. Although IGFBP KO mice demonstrate relatively minor phenotypes, the possibility of compensatory mechanisms that mask the phenotypic manifestation of lack of individual binding proteins needs to be further investigated. Recent studies of hepatic regeneration in IGFBP-1 KO mice and also with mutant IGFBP-3 Tg mice provide some limited support for the existence of IGF-independent mechanism of action in vivo.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
27
|
Tönshoff B, Kiepe D, Ciarmatori S. Growth hormone/insulin-like growth factor system in children with chronic renal failure. Pediatr Nephrol 2005; 20:279-89. [PMID: 15692833 DOI: 10.1007/s00467-005-1821-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 12/30/2004] [Indexed: 10/25/2022]
Abstract
Disturbances of the somatotropic hormone axis play an important pathogenic role in growth retardation and catabolism in children with chronic renal failure (CRF). The apparent discrepancy between normal or elevated growth hormone (GH) levels and diminished longitudinal growth in CRF has led to the concept of GH insensitivity, which is caused by multiple alterations in the distal components of the somatotropic hormone axis. Serum levels of IGF-I and IGF-II are normal in preterminal CRF, while in end-stage renal disease (ESRD) IGF-I levels are slightly decreased and IGF-II levels slightly increased. In view of the prevailing elevated GH levels in ESRD, these serum IGF-I levels appear inadequately low. Indeed, there is both clinical and experimental evidence for decreased hepatic production of IGF-I in CRF. This hepatic insensitivity to the action of GH may be partly the consequence of reduced GH receptor expression in liver tissue and partly a consequence of disturbed GH receptor signaling. The actions and metabolism of IGFs are modulated by specific high-affinity IGFBPs. CRF serum has an IGF-binding capacity that is increased by seven- to tenfold, leading to decreased IGF bioactivity of CRF serum despite normal total IGF levels. Serum levels of intact IGFBP-1, -2, -4, -6 and low molecular weight fragments of IGFBP-3 are elevated in CRF serum in relation to the degree of renal dysfunction, whereas serum levels of intact IGFBP-3 are normal. Levels of immunoreactive IGFBP-5 are not altered in CRF serum, but the majority of IGFBP-5 is fragmented. Decreased renal filtration and increased hepatic production of IGFBP-1 and -2 both contribute to high levels of serum IGFBP. Experimental and clinical evidence suggests that these excessive high-affinity IGFBPs in CRF serum inhibit IGF action in growth plate chondrocytes by competition with the type 1 IGF receptor for IGF binding. These data indicate that growth failure in CRF is mainly due to functional IGF deficiency. Combined therapy with rhGH and rhIGF-I is therefore a logical approach.
Collapse
Affiliation(s)
- Burkhard Tönshoff
- University Children's Hospital, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
28
|
Brendel C, Kuklick L, Hartmann O, Kim TD, Boudriot U, Schwell D, Neubauer A. Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes. Gene Expr 2005; 12:245-57. [PMID: 16355723 PMCID: PMC6009126 DOI: 10.3727/000000005783992043] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Broad differentiation capacity has been described for mesenchymal stem cells (MSC) from human bone marrow. We sought to identify genes associated with the immature state and pluripotency of this cell type. To prove the pluripotent state of the MSC, differentiation into osteocytes, adipocytes, and chondrocytes was performed in vitro. In contrast, normal skin cells did not harbor these differentiation abilities. We compared the expression profile of human bone marrow MSC with cDNA from one primary human skin cell line as control, using a cDNA chip providing 9600 genes. The identity of all relevant genes was confirmed by direct sequencing. Data of gene array expression were corroborated employing quantitative PCR analysis. About 80 genes were differently expressed more than threefold in MSC compared to mature skin fibroblasts. Interestingly, primary human MSC were found to upregulate a number of genes important for embryogenesis such as distal-less homeo box 5, Eyes absent homolog 2, inhibitor of DNA binding 3, and LIM protein. In contrast, mesenchymal lineage genes were downregulated in MSC in comparison to skin cells. We also detected expression of some genes involved in neural development, indicating the broad differentiation capabilities of MSC. We conclude that human mesenchymal stem cells harbor an expression profile distinct from mature skin fibroblast, and genes associated with developmental processes and stem cell function are highly expressed in adult mesenchymal stem cells.
Collapse
Affiliation(s)
- Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstrasse, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Schebek-Fürstenberg V, Ständker L, Oppermann M, Müller-Wiefel DE, Hahn W, Blum WF, Braulke T, Kübler B. IGF-binding protein-3 fragments in plasma of a child with acute renal failure. Pediatr Nephrol 2004; 19:1418-25. [PMID: 15368120 DOI: 10.1007/s00467-004-1622-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The insulin-like growth factors (IGF) -I and -II promote cellular growth and differentiation of various organs. Their growth-stimulating effects are modulated by a family of six IGF-binding proteins (IGFBPs). Altered patterns of intact and fragmented IGFBPs have been reported in serum and urine of children with chronic renal failure (CRF), and it has been suggested that this may contribute to the growth failure observed in these patients. In the present study, a rapid and comprehensive method is presented to analyze IGFBPs and IGFBP fragments in the plasma of a child with acute renal failure (ARF) who had undergone plasmapheresis. The plasma IGF-I and IGFBP-3 levels were drastically reduced. Plasmapheresis filtrate (3 l) was fractionated by cation-exchange chromatography and reversed-phase high-performance liquid chromatography. The fractions obtained were tested by ligand and immunoblotting. In addition to IGFBP-1 and -4 fragments, the majority of IGF-binding polypeptides were IGFBP-3 immunoreactive. N-terminal sequence analysis of a 17-kDa polypeptide revealed the isolation of a C-terminal fragment of IGFBP-3 starting with Lys 160. The IGF-II-binding polypeptide pattern in the ARF plasma resembles the pattern in hemofiltrate from CRF patients, suggesting that similar or identical proteases are involved in IGFBP-3 fragmentation and common mechanisms may lead to the accumulation of the fragments in both diseases.
Collapse
Affiliation(s)
- Victoria Schebek-Fürstenberg
- Department of Biochemistry, Children's Hospital, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Greenbaum LA, Del Rio M, Bamgbola F, Kaskel F. Rationale for growth hormone therapy in children with chronic kidney disease. Adv Chronic Kidney Dis 2004. [DOI: 10.1053/j.ackd.2004.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
|
32
|
Diehl D, Lahm H, Wolf E, Bauersachs S. Transcriptome analysis of a human colorectal cancer cell line shows molecular targets of insulin-like growth factor-binding protein-4 overexpression. Int J Cancer 2004; 113:588-99. [PMID: 15455346 DOI: 10.1002/ijc.20580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor II (IGF-II) is expressed commonly in colorectal tumors. IGF-binding protein-4 (IGFBP-4) counteracts the tumor promoting activities of IGF-II by binding this growth factor. We have shown previously that in LS1034 cells, which highly express IGF-II, overexpression of IGFBP-4 led to a strong reduction in proliferation, colony formation and invasive capacity. To investigate the effects of IGFBP-4 at the molecular level we analyzed growth parameters of LS1034 human colon cancer cells vs. cells expressing the murine IGFBP-4 (mIGFBP-4) and used a subtractive cDNA library approach in combination with cDNA array hybridization to detect changes in the mRNA expression profiles. The mRNA levels for several proteins that are known to affect important biological properties of neoplastic cells, such as proteolysis, proliferation and differentiation were altered by overexpression of IGFBP-4. Transcript levels for tumor markers, like the carcinoembryonic antigen-related cell adhesion molecule (CEACAM), were reduced by elevated mIGFBP-4. Changes at the mRNA level were confirmed by Western blotting for CST1 (proteolysis or protease inhibitor), COX-2 (cell motility) and CEACAM5 (tumor marker). Furthermore, the effect of mIGFBP-4 on apoptosis was investigated and no increase of apoptosis could be detected in the IGFBP-4 overexpressing LS1034 cells. Our data indicate that IGFBP-4 is involved in the regulation of gene products that are known or supposed to be important for the pathogenesis of colon cancer cells.
Collapse
Affiliation(s)
- Daniela Diehl
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University, Munich, Germany
| | | | | | | |
Collapse
|
33
|
Kiepe D, Ulinski T, Powell DR, Durham SK, Mehls O, Tönshoff B. Differential effects of insulin-like growth factor binding proteins-1, -2, -3, and -6 on cultured growth plate chondrocytes. Kidney Int 2002; 62:1591-600. [PMID: 12371959 DOI: 10.1046/j.1523-1755.2002.00603.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In children with chronic renal failure (CRF), impairment of longitudinal growth is in part due to excess amounts of circulating high-affinity insulin-like growth factor binding proteins (IGFBPs) that might decrease or prevent insulin-like growth factor (IGF) binding to its signaling receptor. However, it appears from the clinical studies that various IGFBPs may have contrasting effects on longitudinal growth. Because of the potential importance of the IGFBPs as modulators of longitudinal growth in pediatric CRF, the aim of the present study was to investigate the biological effects of IGFBP-1, -2, -3, and -6 on cultured growth plate chondrocytes that express the type 1 IGF receptor. METHODS The effects of exogenous IGFBPs on IGF-independent and IGF-dependent proliferation of rat growth plate chondrocytes in primary culture were investigated. Proliferation was assessed by colony formation of agarose-stabilized long-term suspension cultures and by the [3H]thymidine assay. The effects of IGFBPs on IGF-I binding and the binding of IGFBPs to chondrocytes were assessed by binding studies with radiolabeled proteins in monolayer culture. RESULTS Intact IGFBP-1, IGFBP-2 and IGFBP-6 inhibited in equimolar concentration the IGF-I- and IGF-II-stimulated DNA synthesis and cell proliferation, whereas the biological activity of IGFBP-3 was complex. It had an IGF-independent antiproliferative effect and also inhibited IGF-dependent chondrocyte proliferation under coincubation conditions, whereas under preincubation conditions IGFBP-3 enhanced IGF-I-responsiveness. Studies on the mechanism by which IGFBP-3 potentiated IGF activity demonstrated that under preincubation conditions IGFBP-3 is capable to associate with the cell membrane and to facilitate IGF-I cell surface binding. CONCLUSIONS Intact IGFBP-1, IGFBP-2 and IGFBP-6 act exclusively as growth inhibitors on IGF-dependent proliferation of growth plate chondrocytes. IGFBP-3, however, can either inhibit IGF-independent and IGF-dependent cell proliferation, or enhance IGF responsiveness of chondrocytes dependent on the temporal relationship to the IGF exposure.
Collapse
Affiliation(s)
- Daniela Kiepe
- Division of Pediatric Nephrology, University Children's Hospital, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
González-Parra S, Rosato RR, Chowen JA, Argente J, Groffen C, Dits N, Drop SLS. Inverse correlation between insulin-like growth factor (IGF)-binding protein-5 and IGF-I and II during postnatal development of the anterior pituitary gland. Horm Res Paediatr 2002; 57:10-4. [PMID: 12006713 DOI: 10.1159/000057940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The insulin-like growth factor (IGF) system is important for pituitary development and control, with each member of this axis having a specific temporal and spatial expression. Because IGF-binding protein-5 (IGFBP-5) is one of the most highly expressed binding proteins in the anterior pituitary (AP), it might be of special importance in this gland. OBJECTIVE The purpose of this study was to examine the temporal relationship between the expression of the IGFs and IGFBP-5 in the AP during postnatal development. DESIGN AND METHODS Quantitative reverse transcription polymerase chain reaction was used to study the mRNA levels of these proteins in the AP of male and female rats at 10, 20, 30, 40 and 60 days of age. RESULTS The highest mRNA levels of IGF-I and II occurred at 10 and 20 days of age with a dramatic decrease at 30 days (p < 0.0001). IGF-I, but not IGF-II, mRNA levels increased again during adulthood (60 days). The pattern of IGFBP-5 mRNA was inversely expressed, with maximum values occurring at 40 days. IGF-I mRNA levels were higher in males at 10 days, but higher in females at 20 days. The expression of IGF-II was higher in males both at 10 and 20 days. IGFBP-5 gene expression was higher in females at 40 days. CONCLUSION The dramatic changes in the expression of IGF-I, IGF-II and IGFBP-5 throughout postnatal development suggest that these factors play important roles in the development of this gland and that their actions are highly interrelated.
Collapse
Affiliation(s)
- Silvia González-Parra
- Department of Pediatrics, Subdivision of Molecular Endocrinology, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Kiepe D, Andress DL, Mohan S, Ständker L, Ulinski T, Himmele R, Mehls O, Tönshoff B. Intact IGF-binding protein-4 and -5 and their respective fragments isolated from chronic renal failure serum differentially modulate IGF-I actions in cultured growth plate chondrocytes. J Am Soc Nephrol 2001; 12:2400-2410. [PMID: 11675416 DOI: 10.1681/asn.v12112400] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Impairment of longitudinal growth among children with chronic renal failure (CRF) may be partly attributable to the inhibition of insulin-like growth factor (IGF) activity by an excess amount of high-affinity IGF-binding proteins (IGFBP). Elevated levels of immunoreactive IGFBP-4 in CRF serum are inversely correlated with the standardized heights of these children, whereas levels of IGFBP-5, which circulates mainly as proteolyzed fragments, are positively correlated with growth parameters. To delineate the respective effects of these IGFBP on growth cartilage, the biologic effects of intact and fragmented forms of IGFBP-4 and IGFBP-5 on rat growth plate chondrocytes in primary cultures were characterized. Intact IGFBP-4 and IGFBP-5 and the amino-terminal fragment IGFBP-5(1-169) were recombinant proteins; the carboxy-terminal fragments IGFBP-5(144-252) and IGFBP-4(136-237) and the amino-terminal fragment IGFBP-4(1-122) were purified to homogeneity from CRF hemofiltrates. Intact IGFBP-4 and, to a lesser extent, IGFBP-4(1-122) inhibited IGF-I-induced cell proliferation. In contrast, intact IGFBP-5 was stimulatory in the absence or presence of exogenous IGF-I, whereas the amino-terminal fragment IGFBP-5(1-169) was inhibitory. Studies on the mechanism by which IGFBP-4 and IGFBP-5 exert opposite effects on chondrocyte proliferation demonstrated that intact IGFBP-4 prevented the binding of (125)I-IGF-I to chondrocytes, whereas intact IGFBP-5 enhanced ligand binding and was able to bind specifically to the cell membrane. These data suggest that intact IGFBP-4 and, to a lesser extent, IGFBP-4(1-122) act exclusively as growth-inhibitory binding proteins in the growth cartilage. IGFBP-5, however, can either stimulate (if it remains intact) or inhibit (if amino-terminal forms predominate) IGF-I-stimulated chondrocyte proliferation.
Collapse
Affiliation(s)
- Daniela Kiepe
- Division of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Dennis L Andress
- Department of Medicine, Veterans Affairs Medical Center and University of Washington, Seattle, Washington
| | - Subburaman Mohan
- J. L. Pettis Veterans Administration Medical Center and Loma Linda University, Loma Linda, California
| | - Ludger Ständker
- Lower Saxony Institute for Peptide Research, Hannover, Germany
| | - Tim Ulinski
- Division of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Rainer Himmele
- Division of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Otto Mehls
- Division of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Burkhard Tönshoff
- Division of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|