1
|
Hirayama R, Toyohara K, Watanabe K, Otsuki T, Araoka T, Mae SI, Horinouchi T, Yamamura T, Okita K, Hotta A, Iijima K, Nozu K, Osafune K. iPSC-derived type IV collagen α5-expressing kidney organoids model Alport syndrome. Commun Biol 2023; 6:854. [PMID: 37770589 PMCID: PMC10539496 DOI: 10.1038/s42003-023-05203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/02/2023] [Indexed: 09/30/2023] Open
Abstract
Alport syndrome (AS) is a hereditary glomerulonephritis caused by COL4A3, COL4A4 or COL4A5 gene mutations and characterized by abnormalities of glomerular basement membranes (GBMs). Due to a lack of curative treatments, the condition proceeds to end-stage renal disease even in adolescents. Hampering drug discovery is the absence of effective in vitro methods for testing the restoration of normal GBMs. Here, we aimed to develop kidney organoid models from AS patient iPSCs for this purpose. We established iPSC-derived collagen α5(IV)-expressing kidney organoids and confirmed that kidney organoids from COL4A5 mutation-corrected iPSCs restore collagen α5(IV) protein expression. Importantly, our model recapitulates the differences in collagen composition between iPSC-derived kidney organoids from mild and severe AS cases. Furthermore, we demonstrate that a chemical chaperone, 4-phenyl butyric acid, has the potential to correct GBM abnormalities in kidney organoids showing mild AS phenotypes. This iPSC-derived kidney organoid model will contribute to drug discovery for AS.
Collapse
Affiliation(s)
- Ryuichiro Hirayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Taisho Pharmaceutical Co., Ltd., Saitama, 331-9530, Japan
| | - Kosuke Toyohara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kei Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Takeya Otsuki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
- Hyogo Prefectural Kobe Children's Hospital, Hyogo, 650-0047, Japan
- Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Tarnick J, Elhendawi M, Holland I, Chang Z, Davies JA. Innervation of the developing kidney in vivo and in vitro. Biol Open 2023; 12:bio060001. [PMID: 37439314 PMCID: PMC10411870 DOI: 10.1242/bio.060001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
Within the adult kidney, renal neurites can be observed alongside the arteries where they play a role in regulating blood flow. However, their role and localization during development has so far not been described in detail. In other tissues, such as the skin of developing limb buds, neurons play an important role during arterial differentiation. Here, we aim to investigate whether renal nerves could potentially carry out a similar role during arterial development in the mouse kidney. In order to do so, we used whole-mount immunofluorescence staining to identify whether the timing of neuronal innervation correlates with the recruitment of arterial smooth muscle cells. Our results show that neurites innervate the kidney between day 13.5 and 14.5 of development, arriving after the recruitment of smooth muscle actin-positive cells to the renal arteries.
Collapse
Affiliation(s)
- Julia Tarnick
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Mona Elhendawi
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Ian Holland
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Ziyuan Chang
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Jamie A. Davies
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
3
|
LeBleu VS, Dai J, Tsutakawa S, MacDonald BA, Alge JL, Sund M, Xie L, Sugimoto H, Tainer J, Zon LI, Kalluri R. Identification of unique α4 chain structure and conserved antiangiogenic activity of α3NC1 type IV collagen in zebrafish. Dev Dyn 2023; 252:1046-1060. [PMID: 37002899 PMCID: PMC10524752 DOI: 10.1002/dvdy.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Type IV collagen is an abundant component of basement membranes in all multicellular species and is essential for the extracellular scaffold supporting tissue architecture and function. Lower organisms typically have two type IV collagen genes, encoding α1 and α2 chains, in contrast with the six genes in humans, encoding α1-α6 chains. The α chains assemble into trimeric protomers, the building blocks of the type IV collagen network. The detailed evolutionary conservation of type IV collagen network remains to be studied. RESULTS We report on the molecular evolution of type IV collagen genes. The zebrafish α4 non-collagenous (NC1) domain, in contrast with its human ortholog, contains an additional cysteine residue and lacks the M93 and K211 residues involved in sulfilimine bond formation between adjacent protomers. This may alter α4 chain interactions with other α chains, as supported by temporal and anatomic expression patterns of collagen IV chains during the zebrafish development. Despite the divergence between zebrafish and human α3 NC1 domain (endogenous angiogenesis inhibitor, Tumstatin), the zebrafish α3 NC1 domain exhibits conserved antiangiogenic activity in human endothelial cells. CONCLUSIONS Our work supports type IV collagen is largely conserved between zebrafish and humans, with a possible difference involving the α4 chain.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Feinberg School of Medicine and Kellogg School of Management, Northwestern University, Chicago, Illinois, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jianli Dai
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan Tsutakawa
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA
| | - Brian A MacDonald
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Joseph L Alge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Sund
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Liang Xie
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - John Tainer
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leonard I Zon
- Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Iampietro C, Bellucci L, Arcolino FO, Arigoni M, Alessandri L, Gomez Y, Papadimitriou E, Calogero RA, Cocchi E, Van Den Heuvel L, Levtchenko E, Bussolati B. Molecular and functional characterization of urine-derived podocytes from patients with Alport syndrome. J Pathol 2021; 252:88-100. [PMID: 32652570 PMCID: PMC7589231 DOI: 10.1002/path.5496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Alport syndrome (AS) is a genetic disorder involving mutations in the genes encoding collagen IV α3, α4 or α5 chains, resulting in the impairment of glomerular basement membrane. Podocytes are responsible for production and correct assembly of collagen IV isoforms; however, data on the phenotypic characteristics of human AS podocytes and their functional alterations are currently limited. The evident loss of viable podocytes into the urine of patients with active glomerular disease enables their isolation in a non‐invasive way. Here we isolated, immortalized, and subcloned podocytes from the urine of three different AS patients for molecular and functional characterization. AS podocytes expressed a typical podocyte signature and showed a collagen IV profile reflecting each patient's mutation. Furthermore, RNA‐sequencing analysis revealed 348 genes differentially expressed in AS podocytes compared with control podocytes. Gene Ontology analysis underlined the enrichment in genes involved in cell motility, adhesion, survival, and angiogenesis. In parallel, AS podocytes displayed reduced motility. Finally, a functional permeability assay, using a podocyte–glomerular endothelial cell co‐culture system, was established and AS podocyte co‐cultures showed a significantly higher permeability of albumin compared to control podocyte co‐cultures, in both static and dynamic conditions under continuous perfusion. In conclusion, our data provide a molecular characterization of immortalized AS podocytes, highlighting alterations in several biological processes related to extracellular matrix remodelling. Moreover, we have established an in vitro model to reproduce the altered podocyte permeability observed in patients with AS. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland..
Collapse
Affiliation(s)
- Corinne Iampietro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Linda Bellucci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Fanny O Arcolino
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luca Alessandri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Yonathan Gomez
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Cocchi
- Department of Pediatric Nephrology, University of Torino, Torino, Italy.,Division of Nephrology and Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Lambertus Van Den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
5
|
Daga S, Baldassarri M, Lo Rizzo C, Fallerini C, Imperatore V, Longo I, Frullanti E, Landucci E, Massella L, Pecoraro C, Garosi G, Ariani F, Mencarelli MA, Mari F, Renieri A, Pinto AM. Urine-derived podocytes-lineage cells: A promising tool for precision medicine in Alport Syndrome. Hum Mutat 2017; 39:302-314. [PMID: 29098738 DOI: 10.1002/humu.23364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 11/11/2022]
Abstract
Alport Syndrome (ATS) is a rare genetic disorder caused by collagen IV genes mutations, leading to glomerular basement membrane damage up to end-stage renal disease. Podocytes, the main component of the glomerular structure, are the only cells able to produce all the three collagens IV alpha chains associated with ATS and thus, they are key players in ATS pathogenesis. However, podocytes-targeted therapeutic strategies have been hampered by the difficulty of non-invasively isolating them and transcripts-based diagnostic approaches are complicated by the inaccessibility of other COL4 chains-expressing cells. We firstly isolated podocyte-lineage cells from ATS patients' urine samples, in a non-invasive way. RT-PCR analysis revealed COL4A3, COL4A4, and COL4A5 expression. Transcripts analysis on RNA extracted from patient's urine derived podocyte-lineage cells allowed defining the pathogenic role of intronic variants, namely one mutation in COL4A3 (c.3882+5G>A), three mutations in COL4A4 (c.1623+2T>A, c.3699_3706+1del, c.2545+143T>A), and one mutation in COL4A5 (c.3454+2T>C). Therefore, our cellular model represents a novel tool, essential to unequivocally prove the effect of spliceogenic intronic variants on transcripts expressed exclusively at a glomerular level. This process is a key step for providing the patient with a definite molecular diagnosis and with a proper recurrence risk. The established system also opens up the possibility of testing personalized therapeutic approaches on disease-relevant cells.
Collapse
Affiliation(s)
- Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Caterina Lo Rizzo
- Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | | | - Ilaria Longo
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | | | - Laura Massella
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carmine Pecoraro
- Pediatric Nephrology Unit, Santobono-Pausilipon Hospital, Naples, Italy
| | - Guido Garosi
- Nephrology, Dialysis and Transplantation Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Ariani
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Anna Maria Pinto
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
6
|
Cyclosporin A may cause injury to undifferentiated glomeruli persisting in patients with Alport syndrome. Clin Exp Nephrol 2013; 18:492-8. [PMID: 23828692 DOI: 10.1007/s10157-013-0836-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND/AIMS Alport syndrome (AS) is a renal disorder caused by a genetic abnormality of type IV collagen α3 and α4, or α5 genes and shows a poor prognosis. Since the defect of type IV collagen synthesis disturbs the maturation process of the glomerular capillary loop, residual immature glomeruli persist after birth. The therapeutic efficacy of cyclosporin A (CyA) for AS patients seems to be controversial. We recently noted that renal specimens obtained from a child with AS who was treated with CyA and then developed CyA nephropathy included an increased number of undifferentiated embryonic-type glomeruli. METHODS We analyzed renal histologic and immunohistologic findings in children with AS who did (n = 3) or did not (n = 2) develop CyA-induced nephropathy despite appropriately low serum CyA concentrations (<100 ng/mL) being maintained over a period of 2 years. To discriminate embryonic-type from mature glomeruli, staining for type IV collagen α1, laminin β1, and laminin β2 accompanied by light microscopic observation were employed. Staining patterns were used to semiquantitatively assess glomerular immaturity (glomerular immaturity index, or GII). RESULTS In initial biopsy specimens, residual embryonic-type glomeruli were observed in each patient. Patients with early-onset CyA nephropathy had a high GII (median value 2.91 vs 1.23 ± 0.62 normal kidney tissues). In the follow-up biopsy after CyA treatment, surviving embryonic-type, collapsing embryonic-type, and sclerotic glomeruli that had failed to differentiate were observed. Taken together, the number of these glomeruli essentially equaled the total number of embryonic-type glomeruli in specimens obtained before CyA treatment. CONCLUSIONS Our findings indicate a need for caution in CyA therapy for patients with AS, even for a relatively short course of administration, because some patients may have an unexpected number of embryonic-type glomeruli that predispose to CyA nephropathy.
Collapse
|
7
|
Lees GE, Kashtan CE, Michael AF, Helman RG, Naito I, Ninomiya Y, Sado Y, Kim Y. Expression of the alpha6 chain of type IV collagen in glomerular basement membranes of healthy adult dogs. Am J Vet Res 2000; 61:38-41. [PMID: 10630775 DOI: 10.2460/ajvr.2000.61.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate expression of the alpha6 chain of type IV collagen in the glomerular basement membranes (GBM) of healthy dogs. SAMPLE POPULATION Kidney specimens from 12 healthy dogs. For comparison, kidney specimens from 8 human subjects between 25 and 83 years old also were evaluated. PROCEDURE Sections were immunolabeled with a monospecific antibody that cross-reacts with human and canine alpha6(IV) chains and examined by means of fluorescence microscopy. RESULTS Immunolabeling of the alpha6(IV) chain was not observed in GBM of 6 dogs < or = 30 months old but was observed in GBM of the remaining 6 dogs, all of which were > or = 45 months old. Expression of the alpha6(IV) chain was not observed in GBM of the human subjects, regardless of the age of the subject. CONCLUSIONS AND CLINICAL RELEVANCE Results indicate that the alpha6(IV) chain is expressed in GBM of healthy dogs, but the expression is age-dependent. Composition and structural organization of type IV collagen in the GBM of healthy adult dogs is different from that described for other species.
Collapse
Affiliation(s)
- G E Lees
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, Texas A&M University, College Station 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Renal basement membrane components. Basement membranes are specialized extracellular matrices found throughout the body. They surround all epithelia, endothelia, peripheral nerves, muscle cells, and fat cells. They play particularly important roles in the kidney, as demonstrated by the fact that defects in renal basement membranes are associated with kidney malfunction. The major components of all basement membranes are laminin, collagen IV, entactin/nidogen, and sulfated proteoglycans. Each of these describes a family of related proteins that assemble with each other in the extracellular space to form the basement membrane. Over the last few years, new basement membrane components that are expressed in the kidney have been discovered. Here, the major components and their localization in mature and developing renal basement membranes are described. In addition, the phenotypes of basement membrane component gene mutations, both naturally occurring and experimental, are discussed, as is the aberrant deposition of basement membrane proteins in the extracellular matrix in several renal diseases.
Collapse
Affiliation(s)
- J H Miner
- Department of Medicine, Renal Division, Washington University School of Medicine, St.Louis, MO 63110, USA.
| |
Collapse
|