1
|
Benjamin M, Rwegasira GM. Abundance and diversity of cotton insect pests under repeatedly cultivated cotton fields of Tanzania. FRONTIERS IN INSECT SCIENCE 2024; 4:1385653. [PMID: 39359692 PMCID: PMC11445183 DOI: 10.3389/finsc.2024.1385653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Introduction Cotton production in Tanzania is facing significant challenges due to insect pests that cause extensive damages to the crop. The most notable pests include the African bollworm (Heliothis armigera Hubner), Spiny bollworm (Earias biplaga Walker), Cotton stainers (Dysdercus sidae (Herrich-Schaeffer), Cotton Aphids (Aphis gossypii Glover), Thrips (Thrips tabaci Lindeman), Jassids (Amrasca biguttula, Bigutula), Leafhoppers (Cicadellidae jassidae), and Whiteflies (Bemisia tabaci Genn). If left uncontrolled, these pests can cause up to 60% damage to the crop. Despite the importance of cotton and the fact that most of these pests are endemic, there are scanty knowledge on the dynamics and distribution of cotton pests across the seasons of the year and crop's phenological growth stages (germination, vegetative growth, flowering and boll formation) in areas under repeated cultivation of the crop in Tanzania. Here we report on the influence of seasons and cotton's phenological stages on the abundance, diversity, distribution and richness of cotton insect pests. Methods The study was conducted in the Misungwi district for two cotton-growing seasons, using the UKM08 cotton variety. Stick traps and handpicking methods were deployed in catching the cotton insect pests. Results On average, a total of 8,500 insect specimen of diverse families and species were collected every season. The four dominant species among the collected were Aphis gossypii (17.37%), Amrasca biguttula (11.42%), Nezara viridura (10.7%), and Bemisia tabacci (10.68%). Both cotton phenological growth stages and seasons significantly (p<0.05) influenced the abundance, diversity, distribution and richness of cotton insect pests. In particular, the phenological growth stage 3 exhibited greater diversity of insect pests. The pests' distribution patterns remained relatively uniform across the crop growth stages. Discussion Findings from the present study could contribute to developing sustainable pest management strategies in areas under repeated cotton production in Tanzania and elsewhere.
Collapse
Affiliation(s)
- Madama Benjamin
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Chuo Kikuu, Morogoro, Tanzania
| | - Gration M Rwegasira
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
2
|
Cains MG, Desrousseaux AOS, Boxall ABA, Molander S, Molina-Navarro E, Sussams J, Critto A, Stahl RG, Rother HA. Environmental management cycles for chemicals and climate change, EMC 4 : A new conceptual framework contextualizing climate and chemical risk assessment and management. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:433-453. [PMID: 38044542 DOI: 10.1002/ieam.4872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
The environmental management cycles for chemicals and climate change (EMC4 ) is a suggested conceptual framework for integrating climate change aspects into chemical risk management. The interaction of climate change and chemical risk brings together complex systems that are imperfectly understood by science. Making management decisions in this context is therefore difficult and often exacerbated by a lack of data. The consequences of poor decision-making can be significant for both environmental and human health. This article reflects on the ways in which existing chemicals management systems consider climate change and proposes the EMC4 conceptual framework, which is a tool for decision-makers operating at different spatial scales. Also presented are key questions raised by the tool to help the decision-maker identify chemical risks from climate change, management options, and, importantly, the different types of actors that are instrumental in managing that risk. Case studies showing decision-making at different spatial scales are also presented highlighting the conceptual framework's applicability to multiple scales. The United Nations Environment Programme's development of an intergovernmental Science Policy Panel on Chemicals and Waste has presented an opportunity to promote and generate research highlighting the impacts of chemicals and climate change interlinkages. Integr Environ Assess Manag 2024;20:433-453. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Mariana G Cains
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | | | | | - Sverker Molander
- Environmental Systems Analysis, Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, Sweden
| | - Eugenio Molina-Navarro
- Department of Geology, Geography and Environment, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | - Andrea Critto
- Department of Environmental Sciences Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| | | | | |
Collapse
|
3
|
Srinivasa Rao M, Rama Rao CA, Raju BMK, Subba Rao AVM, Gayatri DLA, Islam A, Prasad TV, Navya M, Srinivas K, Pratibha G, Srinivas I, Prabhakar M, Yadav SK, Bhaskar S, Singh VK, Chaudhari SK. Pest scenario of Helicoverpa armigera (Hub.) on pigeonpea during future climate change periods under RCP based projections in India. Sci Rep 2023; 13:6788. [PMID: 37100788 PMCID: PMC10133267 DOI: 10.1038/s41598-023-32188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
Gram pod borer, Helicoverpa armigera (Hub.) is the major insect pest of pigeonpea and prediction of number of generations (no. of gen.) and generation time (gen. time) using growing degree days (GDD) approach during three future climate change periods viz., Near (NP), Distant (DP) and Far Distant (FDP) periods at eleven major pigeonpea growing locations of India was attempted. Multi-model ensemble of Maximum (Tmax) and Minimum (Tmin) temperature data of four Representative Concentration Pathways viz., RCP 2.6, 4.5, 6.0 and 8.5 of Coupled Model Inter comparison Project 5 (CMIP5) models was adopted here. The increase in projected Tmax and Tmin are significant during 3 climate change periods (CCPs) viz., the NP, DP and FDP over base line (BL) period under four RCP scenarios at all locations and would be higher (4.7-5.1 °C) in RCP 8.5 and in FDP. More number of annual (10-17) and seasonal (5-8) gens. are expected to occur with greater percent increase in FDP (8 to 38%) over base line followed by DP (7 to 22%) and NP (5to 10%) periods with shortened annual gen. time (4 to 27%) across 4 RCPs. The reduction of crop duration was substantial in short, medium and long duration pigeonpeas at all locations across 4 RCPs and 3 CCPs. The seasonal no.of gen. is expected to increase (5 to 35%) with shortened gen. time (4 to 26%) even with reduced crop duration across DP and FDP climate periods of 6.0 and 8.5 RCPs in LD pigeonpea. More no. of gen. of H. armigera with reduced gen. time are expected to occur at Ludhiana, Coimbatore, Mohanpur, Warangal and Akola locations over BL period in 4 RCPs when normal duration of pigeonpeas is considered. Geographical location (66 to 72%), climate period (11 to 19%), RCPs (5-7%) and their interaction (0.04-1%) is vital and together explained more than 90% of the total variation in future pest scenario. The findings indicate that the incidence of H. armigera would be higher on pigeonpea during ensuing CCPs in India under global warming context.
Collapse
Affiliation(s)
- M Srinivasa Rao
- Principal Scientist (Entomology), ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, Telangana, 500059, India.
| | - C A Rama Rao
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - B M K Raju
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - A V M Subba Rao
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - D L A Gayatri
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - Adlul Islam
- ICAR-Natural Resources Management (NRM), Krishi Anusandhan Bhavan, Pusa, New Delhi, India
| | - T V Prasad
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - M Navya
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - K Srinivas
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - G Pratibha
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - I Srinivas
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - M Prabhakar
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - S K Yadav
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - S Bhaskar
- ICAR-Natural Resources Management (NRM), Krishi Anusandhan Bhavan, Pusa, New Delhi, India
| | - V K Singh
- ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500 059, India
| | - S K Chaudhari
- ICAR-Natural Resources Management (NRM), Krishi Anusandhan Bhavan, Pusa, New Delhi, India
| |
Collapse
|
4
|
Impact of climate change on Helicoverpa armigera voltinism in different Agro-Climatic Zones of India. J Therm Biol 2022; 106:103229. [DOI: 10.1016/j.jtherbio.2022.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/08/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022]
|
5
|
Huang J. Effects of climate change on different geographical populations of the cotton bollworm Helicoverpa armigera (Lepidoptera, Noctuidae). Ecol Evol 2021; 11:18357-18368. [PMID: 35003678 PMCID: PMC8717297 DOI: 10.1002/ece3.8426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
The effects of climate change on pest phenology and population size are highly variable. Understanding the impacts of localized climate change on pest distribution and phenology is helpful for improving integrated pest management strategies. Here, the population dynamics of cotton bollworms (Helicoverpa armigera) from Maigaiti County, south Xinjiang, and Shawan County, north Xinjiang, China, were analyzed using a 29-year dataset at lower latitudes and a 23-year dataset at higher latitudes to determine the effects of climate change on the population dynamics of H. armigera. The results showed that all generations of H. armigera at both sites showed increasing trends in population size with climate warming. Abrupt changes in phenology and population number occurred after abrupt temperature changes. Climate change had a greater effect on the phenology of H. armigera at higher latitudes than at lower latitudes and led to a greater increase in population size at lower latitudes than at higher latitudes; the temperature increase at higher latitudes will cause a greater increase in the adult moth population size in the future compared to that at lower latitudes; and abrupt changes in the phenology, temperature increase, and population size at lower latitudes occurred earlier than those at higher latitudes. Thus, it is necessary to develop sustainable management strategies for Helicoverpa armigera at an early stage.
Collapse
Affiliation(s)
- Jian Huang
- Institute of Desert MeteorologyChina Meteorological AdministrationUrumqiChina
- Central Asian Research Center for Atmospheric SciencesUrumqiChina
| |
Collapse
|
6
|
Su W, Qin Y, Meng G, Wu J, Yang S, Cui L, Li W, Liu Z, Guo X. Intelligent response release of imidacloprid from a tailored star‐shaped polymer targeting the temperature‐dependent reproduction of cotton aphids. J Appl Polym Sci 2021. [DOI: 10.1002/app.51895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Weihua Su
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Yan Qin
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Guihua Meng
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Jianning Wu
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Lin Cui
- School of Medicine Shihezi University Shihezi China
| | - Wenjuan Li
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
7
|
Love NLR, Mazer SJ. Region-specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species' range. AMERICAN JOURNAL OF BOTANY 2021; 108:1873-1888. [PMID: 34642935 DOI: 10.1002/ajb2.1748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Forecasting how species will respond phenologically to future changes in climate is a major challenge. Many studies have focused on estimating species- and community-wide phenological sensitivities to climate to make such predictions, but sensitivities may vary within species, which could result in divergent phenological responses to climate change. METHODS We used 743 herbarium specimens of the mountain jewelflower (Streptanthus tortuosus, Brassicaceae) collected over 112 years to investigate whether individuals sampled from relatively warm vs. cool regions differ in their sensitivity to climate and whether this difference has resulted in divergent phenological shifts in response to climate warming. RESULTS During the past century, individuals sampled from warm regions exhibited a 20-day advancement in flowering date; individuals in cool regions showed no evidence of a shift. We evaluated two potential drivers of these divergent responses: differences between regions in (1) the degree of phenological sensitivity to climate and (2) the magnitude of climate change experienced by plants, or (3) both. Plants sampled from warm regions were more sensitive to temperature-related variables and were subjected to a greater degree of climate warming than those from cool regions; thus our results suggest that the greater temporal shift in flowering date in warm regions is driven by both of these factors. CONCLUSIONS Our results are among the first to demonstrate that species exhibited intraspecific variation in sensitivity to climate and that this variation can contribute to divergent responses to climate change. Future studies attempting to forecast temporal shifts in phenology should consider intraspecific variation.
Collapse
Affiliation(s)
- Natalie L R Love
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Biological Sciences Department, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA
| | - Susan J Mazer
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
8
|
Huang J, Hao H. Effects of climate change and crop planting structure on the abundance of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Ecol Evol 2020; 10:1324-1338. [PMID: 32076517 PMCID: PMC7029056 DOI: 10.1002/ece3.5986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
The interactions between plants and insects play an important role in ecosystems. Climate change and cropping patterns can affect herbivorous pest insect dynamics. Understanding the reasons for population fluctuations can help improve integrated pest management strategies. Here, a 25-year dataset on climate, cropping planting structure, and the population dynamics of cotton bollworms (Helicoverpa armigera) from Bachu County, south Xinjiang, China, was analyzed to assess the effects of changes in climate and crop planting structure on the population dynamics of H. armigera. The three generations of H. armigera showed increasing trends in population size with climate warming, especially in the third generation. The relative abundances of the first and second generations decreased, but that of the third generation increased. Rising temperature and precipitation produced different impacts on the development of different generations. The population numbers of H. armigera increased with the increase in the non-Bacillus thuringiensis (Bt) cotton-planted area. Asynchrony of abrupt changes existed among climate change, crop flowering dates, and the phenology of H. armigera moths. The asynchronous responses in crop flowering dates and phenology of H. armigera to climate warming would expand in the future. The primary factors affecting the first, second, and third generations of moths were T mean in June, the last appearance date of the second generation of moths, and the duration of the third generation of moths, respectively. To reduce the harm to crops caused by H. armigera, Bt cotton should be widely planted.
Collapse
Affiliation(s)
- Jian Huang
- Institute of Desert MeteorologyChina Meteorological AdministrationUrumqiChina
- Central Asian Research Center for Atmospheric SciencesUrumqiChina
| | - HongFei Hao
- Bachu Meteorological AdministrationBachuChina
| |
Collapse
|
9
|
Zhang X, Zhang Z, Zhou R, Wang Q, Wang L. Ratooning Annual Cotton ( Gossypium spp.) for Perennial Utilization of Heterosis. FRONTIERS IN PLANT SCIENCE 2020; 11:554970. [PMID: 33343589 PMCID: PMC7744415 DOI: 10.3389/fpls.2020.554970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
This paper reviews an important topic within the broader framework of the use of ratoon cotton for the development of a cost-saving and efficient method for the perennial production of hybrid cotton seeds. Cotton has a botanically indeterminate perennial growth habit and originated in the tropics. However, cotton has been domesticated as an annual crop in temperate areas worldwide. Ratoon cultivation has an important application value and is important for cotton production, breeding, and basic research. In particular, ratooned male-sterile lines have four advantages: an established root system, an indeterminate flowering habit, ratooning ability, and perennial maintenance of sterility in the absence of a matched maintainer. These advantages can help reduce the costs of producing F1 hybrid cotton seeds and can help breed high-yielding hybrid combinations because ratooning is a type of asexual reproduction that allows genotypes to remain unchanged. However, ratooning of cotton is highly complex and leads to problems, such as the accumulation of pests and diseases, decreased boll size, stand loss during severe winters, and harmful regrowth during mild winters, which need to be resolved. In summary, ratoon cotton has advantages and disadvantages for the production of hybrid cotton seeds, and future prospects of ratooning annual cotton for the perennial utilization of heterosis are promising if the mechanization of seed production can be widely applied in practice.
Collapse
Affiliation(s)
- Xin Zhang
- Biological Postdoctoral Research Station, Henan Normal University, Xinxiang, China
- Postdoctoral Research Base, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Zhang
- Postdoctoral Research Base, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Zhiyong Zhang,
| | - Ruiyang Zhou
- College of Agronomy, Guangxi University, Nanning, China
| | - Qinglian Wang
- Postdoctoral Research Base, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Linsong Wang
- Biological Postdoctoral Research Station, Henan Normal University, Xinxiang, China
- Linsong Wang,
| |
Collapse
|
10
|
Damien M, Tougeron K. Prey-predator phenological mismatch under climate change. CURRENT OPINION IN INSECT SCIENCE 2019; 35:60-68. [PMID: 31401300 DOI: 10.1016/j.cois.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 05/21/2023]
Abstract
Insect phenology is affected by climate change and main responses are driven by phenotypic plasticity and evolutionary changes. Any modification in seasonal activity in one species can have consequences on interacting species, within and among trophic levels. In this overview, we focus on synchronisation mismatches that can occur between tightly interacting species such as hosts and parasitoids or preys and predators. Asynchronies happen because species from different trophic levels can have different response rates to climate change. We show that insect species alter their seasonal activities by modifying their life-cycle through change in voltinism or by altering their development rate. We expect strong bottom-up effects for phenology adjustments rather than top-down effects within food-webs. Extremely complex outcomes arise from such trophic mismatches, which make consequences at the community or ecosystem levels tricky to predict in a climate change context. We explore a set of potential consequences on population dynamics, conservation of species interactions, with a particular focus on the provision of ecosystem services by predators and parasitoids, such as biological pest control.
Collapse
Affiliation(s)
- Maxime Damien
- Crop Research Institute (Výzkumný ústav rostlinné výroby), Drnovská 507, 161 06 Praha 6, Ruzyně, Czech Republic.
| | - Kévin Tougeron
- The University of Wisconsin - La Crosse, Department of Biology, La Crosse 54601, WI, USA; UMR 7058, CNRS-UPJV, EDYSAN "Ecologie et Dynamique des Systèmes Anthropisés", Amiens 80000, France
| |
Collapse
|
11
|
Park IW, Mazer SJ. Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net. GLOBAL CHANGE BIOLOGY 2018; 24:5972-5984. [PMID: 30218548 DOI: 10.1111/gcb.14447] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Determining the manner in which plant species shift their flowering times in response to climatic conditions is essential to understanding and forecasting the impacts of climate change on the world's flora. The limited taxonomic diversity and duration of most phenological datasets, however, have impeded a comprehensive, systematic determination of the best predictors of flowering phenology. Additionally, many studies of the relationship between climate conditions and plant phenology have included only a limited set of climate parameters that are often chosen a priori and may therefore overlook those parameters to which plants are most phenologically sensitive. This study harnesses 894,392 digital herbarium records and 1,959 in situ observations to produce the first assessment of the effects of a large number (25) of climate parameters on the flowering time of a very large number (2,468) of angiosperm taxa throughout North America. In addition, we compare the predictive capacity of phenological models constructed from the collection dates of herbarium specimens vs. repeated in situ observations of individual plants using a regression approach-elastic net regularization-that has not previously been used in phenological modeling, but exhibits several advantages over ordinary least squares and stepwise regression. When herbarium-derived data and in situ phenological observations were used to predict flowering onset, the multivariate models based on each of these data sources had similar predictive capacity (R2 = 0.27). Further, apart from mean maximum temperature (TMAX), the two best predictors of flowering time have not commonly been included in phenological models: the number of frost-free days (NFFD) and the quantity of precipitation as snow (PAS) in the seasons preceding flowering. By vetting these models across an unprecedented number of taxa, this work demonstrates a new approach to phenological modeling.
Collapse
Affiliation(s)
- Isaac W Park
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California
| | - Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California
| |
Collapse
|