1
|
Masters LE, Tomaszewska P, Schwarzacher T, Hackel J, Zuntini AR, Heslop-Harrison P, Vorontsova MS. Phylogenomic analysis reveals five independently evolved African forage grass clades in the genus Urochloa. ANNALS OF BOTANY 2024; 133:725-742. [PMID: 38365451 PMCID: PMC11082517 DOI: 10.1093/aob/mcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS The grass genus Urochloa (Brachiaria) sensu lato includes forage crops that are important for beef and dairy industries in tropical and sub-tropical Africa, South America and Oceania/Australia. Economically important species include U. brizantha, U. decumbens, U. humidicola, U. mutica, U. arrecta, U. trichopus, U. mosambicensis and Megathyrsus maximus, all native to the African continent. Perennial growth habits, large, fast growing palatable leaves, intra- and interspecific morphological variability, apomictic reproductive systems and frequent polyploidy are widely shared within the genus. The combination of these traits probably favoured the selection for forage domestication and weediness, but trait emergence across Urochloa cannot be modelled, as a robust phylogenetic assessment of the genus has not been conducted. We aim to produce a phylogeny for Urochloa that includes all important forage species, and identify their closest wild relatives (crop wild relatives). Finally, we will use our phylogeny and available trait data to infer the ancestral states of important forage traits across Urochloa s.l. and model the evolution of forage syndromes across the genus. METHODS Using a target enrichment sequencing approach (Angiosperm 353), we inferred a species-level phylogeny for Urochloa s.l., encompassing 54 species (~40 % of the genus) and outgroups. Phylogenies were inferred using a multispecies coalescent model and maximum likelihood method. We determined the phylogenetic placement of agriculturally important species and identified their closest wild relatives, or crop wild relatives, based on well-supported monophyly. Further, we mapped key traits associated with Urochloa forage crops to the species tree and estimated ancestral states for forage traits along branch lengths for continuous traits and at ancestral nodes in discrete traits. KEY RESULTS Agricultural species belong to five independent clades, including U. brizantha and U. decumbens lying in a previously defined species complex. Crop wild relatives were identified for these clades supporting previous sub-generic groupings in Urochloa based on morphology. Using ancestral trait estimation models, we find that five morphological traits that correlate with forage potential (perennial growth habits, culm height, leaf size, a winged rachis and large seeds) independently evolved in forage clades. CONCLUSIONS Urochloa s.l. is a highly diverse genus that contains numerous species with agricultural potential, including crop wild relatives that are currently underexploited. All forage species and their crop wild relatives naturally occur on the African continent and their conservation across their native distributions is essential. Genomic and phenotypic diversity in forage clade species and their wild relatives need to be better assessed both to develop conservation strategies and to exploit the diversity in the genus for improved sustainability in Urochloa cultivar production.
Collapse
Affiliation(s)
- Lizo E Masters
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Paulina Tomaszewska
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Department of Genetics and Cell Physiology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jan Hackel
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
- Department of Biology, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexandre R Zuntini
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Pat Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Maria S Vorontsova
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| |
Collapse
|
2
|
Koehler AD, Rossi ML, Carneiro VTC, Cabral GB, Martinelli AP, Dusi DMA. Anther development in Brachiaria brizantha (syn. Urochloa brizantha) and perspective for microspore in vitro culture. PROTOPLASMA 2023; 260:571-587. [PMID: 35947212 DOI: 10.1007/s00709-022-01802-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Brachiaria, a genus from the Poaceae family, is largely cultivated as forage in Brazil. Among the most cultivated varieties of Brachiaria spp., B. brizantha cv. Marandu (syn. Urochloa brizantha) is of great agronomical importance due to the large areas cultivated with this species. This cultivar is apomictic and tetraploid. Sexual diploid genotype is available for this species. The difference in levels of ploidy among sexual and apomictic plants contributes to hindering Brachiaria breeding programs. The induction of haploids and double haploids is of great interest for the generation of new genotypes with potential use in intraspecific crosses. A key factor for the success of this technique is identifying adequate microspore developmental stages for efficient embryogenesis induction. Knowledge of the morphological changes during microsporogenesis and microgametogenesis and sporophytic tissues composing the anther is critical for identifying the stages in which microspores present a higher potential for embryogenic callus and somatic embryo through in vitro culture. In this work, morphological markers were associated with anther and pollen grain developmental stages, through histological analysis. Anther development was divided into 11 stages using morphological and cytological characteristics, from anther with archesporial cells to anther dehiscence. The morphological characteristics of each stage are presented. In addition, the response of stage 8 anthers to in vitro culture indicates microspores initiating somatic embryogenic pathway.
Collapse
Affiliation(s)
- Andréa D Koehler
- University of Sao Paulo, CENA, Av. Centenario 303, Piracicaba, SP, 13416-903, Brazil
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasilia, DF, 70.770-917, Brazil
| | - Mônica L Rossi
- University of Sao Paulo, CENA, Av. Centenario 303, Piracicaba, SP, 13416-903, Brazil
| | - Vera T C Carneiro
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasilia, DF, 70.770-917, Brazil
| | - Glaucia B Cabral
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasilia, DF, 70.770-917, Brazil
| | - Adriana P Martinelli
- University of Sao Paulo, CENA, Av. Centenario 303, Piracicaba, SP, 13416-903, Brazil
| | - Diva M A Dusi
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasilia, DF, 70.770-917, Brazil.
| |
Collapse
|
3
|
Martins FB, Moraes ACL, Aono AH, Ferreira RCU, Chiari L, Simeão RM, Barrios SCL, Santos MF, Jank L, do Valle CB, Vigna BBZ, de Souza AP. A Semi-Automated SNP-Based Approach for Contaminant Identification in Biparental Polyploid Populations of Tropical Forage Grasses. FRONTIERS IN PLANT SCIENCE 2021; 12:737919. [PMID: 34745171 PMCID: PMC8569613 DOI: 10.3389/fpls.2021.737919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.
Collapse
Affiliation(s)
- Felipe Bitencourt Martins
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Aline Costa Lima Moraes
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
| | | | - Lucimara Chiari
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - Liana Jank
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
4
|
Koehler AD, Irsigler AST, Carneiro VTC, Cabral GB, Rodrigues JCM, Gomes ACMM, Togawa RC, Costa MMC, Martinelli AP, Dusi DMDA. SERK genes identification and expression analysis during somatic embryogenesis and sporogenesis of sexual and apomictic Brachiaria brizantha (Syn. Urochloa brizantha). PLANTA 2020; 252:39. [PMID: 32797317 DOI: 10.1007/s00425-020-03443-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
In Brachiaria brizantha BbrizSERK1, BbrizSERK2 and BbrizSERK3 were identified. SERK expression marks somatic embryogenesis, sexual MMC, and sexual and apomictic PMC. BbrizSERK3 might have a regulatory role in reproductive development. Somatic embryogenesis receptor-like kinase (SERK) consists of plasma membrane receptor genes that have been characterized in various species, associated with several aspects of plant development, including reproduction. SERK genes are involved in anther development and in early embryo development in sexual and asexual seed formation. To comprehend the complexity of the SERK genes and their function in Brachiaria reproduction, we performed a homology-based search in a genomic database of a sexual B. brizantha and identified sequences of three SERK genes, BbrizSERK1, BbrizSERK2, and BbrizSERK3. RNASeq data showed equivalent abundance of BbrizSERK1 and BbrizSERK2 transcripts in ovaries at early megasporogenesis of sexuals and apomicts, while BbrizSERK3 transcripts were more abundant in ovaries of sexuals than in apomicts. BbrizSERK3 results in three coding sequences due to alternative splicing, among them Variant 1 results in a protein with all the predicted domains of a SERK. BbrizSERK transcripts were detected in male reproductive tissues of both sexual and apomictic plants, suggesting a role in controlling anther development. BbrizSERK transcripts were detected early in ovule development, in the integuments, and in the megaspore mother cell of the sexual plant, but not in the cells that give rise to apomictic embryo sacs, suggesting a role in female reproductive development of sexuals. This paper provides evidences that SERK genes plays a role in the onset and establishment of somatic embryogenesis and in the reproductive development of B. brizantha and suggests a distinct role of BbrizSERK in apomixis initiation.
Collapse
Affiliation(s)
- Andréa D Koehler
- University of Sao Paulo, CENA, Av. Centenario 303, Piracicaba, SP, 13416-903, Brazil
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
- , Linhares, Brazil
| | - André S T Irsigler
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Vera T C Carneiro
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Glaucia B Cabral
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Júlio C M Rodrigues
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Ana Cristina M M Gomes
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Roberto C Togawa
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Marcos M C Costa
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil
| | | | - Diva Maria de Alencar Dusi
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasília, DF, 70770-917, Brazil.
| |
Collapse
|