1
|
Niccolò T, Anderson AW, Emidio A. Apomixis: oh, what a tangled web we have! PLANTA 2023; 257:92. [PMID: 37000270 PMCID: PMC10066125 DOI: 10.1007/s00425-023-04124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Apomixis is a complex evolutionary trait with many possible origins. Here we discuss various clues and causes, ultimately proposing a model harmonizing the three working hypotheses on the topic. Asexual reproduction through seeds, i.e., apomixis, is the holy grail of plant biology. Its implementation in modern breeding could be a game-changer for agriculture. It has the potential to generate clonal crops and maintain valuable complex genotypes and their associated heterotic traits without inbreeding depression. The genetic basis and origins of apomixis are still unclear. There are three central hypothesis for the development of apomixis that could be: i) a deviation from the sexual developmental program caused by an asynchronous development, ii) environmentally triggered through epigenetic regulations (a polyphenism of sex), iii) relying on one or more genes/alleles. Because of the ever-increasing complexity of the topic, the path toward a detailed understanding of the mechanisms underlying apomixis remains unclear. Here, we discuss the most recent advances in the evolution perspective of this multifaceted trait. We incorporated our understanding of the effect of endogenous effectors, such as small RNAs, epigenetic regulation, hormonal pathways, protein turnover, and cell wall modification in response to an upside stress. This can be either endogenous (hybridization or polyploidization) or exogenous environmental stress, mainly due to oxidative stress and the corresponding ROS (Reacting Oxygen Species) effectors. Finally, we graphically represented this tangled web.
Collapse
Affiliation(s)
- Terzaroli Niccolò
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Aaron W Anderson
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Fulbright Scholar From Department of Plant Sciences, University of California, Davis, USA
| | - Albertini Emidio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Consorzio Interuniversitario per le Biotecnologie (CIB), Trieste, Italy
| |
Collapse
|
2
|
Li HJ, Yang WC. Central Cell in Flowering Plants: Specification, Signaling, and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:590307. [PMID: 33193544 PMCID: PMC7609669 DOI: 10.3389/fpls.2020.590307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 05/05/2023]
Abstract
During the reproduction of animals and lower plants, one sperm cell usually outcompetes the rivals to fertilize a single egg cell. But in flowering plants, two sperm cells fertilize the two adjacent dimorphic female gametes, the egg and central cell, respectively, to initiate the embryo and endosperm within a seed. The endosperm nourishes the embryo development and is also the major source of nutrition in cereals for humankind. Central cell as one of the key innovations of flowering plants is the biggest cell in the multicellular haploid female gametophyte (embryo sac). The embryo sac differentiates from the meiotic products through successive events of nuclear divisions, cellularization, and cell specification. Nowadays, accumulating lines of evidence are raveling multiple roles of the central cell rather than only the endosperm precursor. In this review, we summarize the current understanding on its cell fate specification, intercellular communication, and evolution. We also highlight some key unsolved questions for the further studies in this field.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ortiz JPA, Leblanc O, Rohr C, Grisolia M, Siena LA, Podio M, Colono C, Azzaro C, Pessino SC. Small RNA-seq reveals novel regulatory components for apomixis in Paspalum notatum. BMC Genomics 2019; 20:487. [PMID: 31195966 PMCID: PMC6567921 DOI: 10.1186/s12864-019-5881-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Apomixis is considered an evolutionary deviation of the sexual reproductive pathway leading to the generation of clonal maternal progenies by seeds. Recent evidence from model and non-model species suggested that this trait could be modulated by epigenetic mechanisms involving small RNAs (sRNAs). Here we profiled floral sRNAs originated from apomictic and sexual Paspalum notatum genotypes in order to identify molecular pathways under epigenetic control that might be involved in the transition from sexuality to agamospermy. Results The mining of genes participating in sRNA-directed pathways from floral Paspalum transcriptomic resources showed these routes are functional during reproductive development, with several members differentially expressed in apomictic and sexual plants. Triplicate floral sRNA libraries derived from apomictic and a sexual genotypes were characterized by using high-throughput sequencing technology. EdgeR was apply to compare the number of sRNA reads between sexual and apomictic libraries that map over all Paspalum floral transcripts. A total of 1525 transcripts showed differential sRNA representation, including genes related to meiosis, plant hormone signaling, biomolecules transport, transcription control and cell cycle. Survey for miRNA precursors on transcriptome and genome references allowed the discovery of 124 entities, including 40 conserved and 8 novel ones. Fifty-six clusters were differentially represented in apomictic and sexual plants. All differentially expressed miRNAs were up-regulated in apomictic libraries but miR2275, which showed different family members with opposed representation. Examination of predicted miRNAs targets detected 374 potential candidates. Considering sRNA, miRNAs and target surveys together, 14 genes previously described as related with auxin metabolism, transport and signaling were detected, including AMINO ACID/AUXIN PERMEASE 15, IAA-AMIDO SYNTHETASE GH3–8, IAA30, miR160, miR167, miR164, miR319, ARF2, ARF8, ARF10, ARF12, AFB2, PROLIFERATING CELL FACTOR 6 and NITRATE TRANSPORTER 1.1. Conclusions This work provides a comprehensive survey of the sRNA differential representation in flowers of sexual and apomictic Paspalum notatum plants. An integration of the small RNA profiling data presented here and previous transcriptomic information suggests that sRNA-mediated regulation of auxin pathways is pivotal in promoting apomixis. These results will underlie future functional characterization of the molecular components mediating the switch from sexuality to apomixis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5881-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Olivier Leblanc
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Cristian Rohr
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Argentina
| | - Mauricio Grisolia
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Argentina
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carolina Colono
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Celeste Azzaro
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina.
| |
Collapse
|
4
|
Basso A, Barcaccia G, Galla G. Annotation and Expression of IDN2-like and FDM-like Genes in Sexual and Aposporous Hypericum perforatum L. accessions. PLANTS (BASEL, SWITZERLAND) 2019; 8:E158. [PMID: 31181659 PMCID: PMC6631971 DOI: 10.3390/plants8060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
The protein IDN2, together with the highly similar interactors FDM1 and FDM2, is required for RNA-directed DNA methylation (RdDM) and siRNA production. Epigenetic regulation of gene expression is required to restrict cell fate determination in A. thaliana ovules. Recently, three transcripts sharing high similarity with the A. thaliana IDN2 and FDM1-2 were found to be differentially expressed in ovules of apomictic Hypericum perforatum L. accessions. To gain further insight into the expression and regulation of these genes in the context of apomixis, we investigated genomic, transcriptional and functional aspects of the gene family in this species. The H. perforatum genome encodes for two IDN2-like and 7 FDM-like genes. Differential and heterochronic expression of FDM4-like genes was found in H. perforatum pistils. The involvement of these genes in reproduction and seed development is consistent with the observed reduction of the seed set and high variability in seed size in A. thaliana IDN2 and FDM-like knockout lines. Differential expression of IDN2-like and FDM-like genes in H. perforatum was predicted to affect the network of potential interactions between these proteins. Furthermore, pistil transcript levels are modulated by cytokinin and auxin but the effect operated by the two hormones depends on the reproductive phenotype.
Collapse
Affiliation(s)
- Andrea Basso
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| | - Gianni Barcaccia
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| | - Giulio Galla
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| |
Collapse
|
5
|
Lora J, Yang X, Tucker MR. Establishing a framework for female germline initiation in the plant ovule. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2937-2949. [PMID: 31063548 DOI: 10.1093/jxb/erz212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/02/2019] [Indexed: 05/21/2023]
Abstract
Female gametogenesis in flowering plants initiates in the ovule, where a single germline progenitor differentiates from a pool of somatic cells. Germline initiation is a fundamental prerequisite for seed development but is poorly understood at the molecular level due to the location of the cells deep within the flower. Studies in Arabidopsis have shown that regulators of germline development include transcription factors such as NOZZLE/SPOROCYTELESS and WUSCHEL, components of the RNA-dependent DNA methylation pathway such as ARGONAUTE9 and RNA-DEPENDENT RNA POLYMERASE 6, and phytohormones such as auxin and cytokinin. These factors accumulate in a range of cell types from where they establish an environment to support germline differentiation. Recent studies provide fresh insight into the transition from somatic to germline identity, linking chromatin regulators, cell cycle genes, and novel mobile signals, capitalizing on cell type-specific methodologies in both dicot and monocot models. These findings are providing unique molecular and compositional insight into the mechanistic basis and evolutionary conservation of female germline development in plants.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruits, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Mathew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
6
|
Soliman M, Espinoza F, Ortiz JPA, Delgado L. Heterochronic reproductive developmental processes between diploid and tetraploid cytotypes of Paspalum rufum. ANNALS OF BOTANY 2019; 123:901-915. [PMID: 30576402 PMCID: PMC6526369 DOI: 10.1093/aob/mcy228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/28/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Apomixis is an asexual reproductive mode via seeds that generate maternal clonal progenies. Although apomixis in grasses is mainly expressed at the polyploid level, some natural diploid genotypes of Paspalum rufum produce aposporous embryo sacs in relatively high proportions and are even able to complete apomixis under specific conditions. However, despite the potential for apomixis, sexuality prevails in diploids, and apomixis expression is repressed for an as yet undetermind reason. Apomixis is thought to derive from a deregulation of one or a few components of the sexual pathway that could be triggered by polyploidy and/or hybridization. The objectives of this work were to characterize and compare the reproductive development and the timing of apospory initial (AI) emergence between diploid genotypes with potential for apomixis and facultative apomictic tetraploid cytotypes of P. rufum. METHODS Reproductive characterization was performed by cytoembryological observations of cleared ovaries and anthers during all reproductive development steps and by quantitative evaluation of the ovule growth parameters. KEY RESULTS Cytoembryological observations showed that in diploids, both female and male reproductive development is equally synchronized, but in tetraploids, megasporogenesis and early megagametogenesis are delayed with respect to microsporogenesis and early microgametogenesis. This delay was also seen when ovary growth was taken as a reference parameter. The analysis of the onset of AIs revealed that they emerge during different developmental periods depending on the ploidy level. In diploids, the AIs appeared along with the tetrad (or triad) of female meiocytes, but in tetraploids they appeared earlier, at the time of the megaspore mother cell. In both cytotypes, AIs can be seen even during megagametogenesis. CONCLUSIONS Overall observations reveal that female sexual reproductive development is delayed in tetraploids as compared with diploid genotypes, mainly at meiosis. In tetraploids, AIs appear at earlier sexual developmental stages than in diploids, and they accumulate up to the end of megasporogenesis. The longer extension of megasporogenesis in tetraploids could favour AI emergence and also apomixis success.
Collapse
Affiliation(s)
- Mariano Soliman
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| | - Francisco Espinoza
- Instituto de Botánica del Nordeste (IBONE), CONICET-UNNE, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Casilla de Correo, Corrientes, Argentina
| | - Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| |
Collapse
|
7
|
León-Martínez G, Vielle-Calzada JP. Apomixis in flowering plants: Developmental and evolutionary considerations. Curr Top Dev Biol 2019; 131:565-604. [DOI: 10.1016/bs.ctdb.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Galla G, Basso A, Grisan S, Bellucci M, Pupilli F, Barcaccia G. Ovule Gene Expression Analysis in Sexual and Aposporous Apomictic Hypericum perforatum L. (Hypericaceae) Accessions. FRONTIERS IN PLANT SCIENCE 2019; 10:654. [PMID: 31178879 PMCID: PMC6543059 DOI: 10.3389/fpls.2019.00654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/01/2019] [Indexed: 05/09/2023]
Abstract
Hypericum perforatum L. (2n = 4x = 32) is an attractive model system for the study of aposporous apomixis. The earliest phenotypic features of aposporous apomixis in this species are the mitotic formation of unreduced embryo sacs from a somatic cell of the ovule nucellus and the avoidance of meiosis. In this research we addressed gene expression variation in sexual and apomictic plants, by focusing on the ovule nucellus, which is the cellular domain primarily involved into the differentiation of meiocyte precursors and aposporous embryo sacs, at a pre-meiotic developmental stage. Gene expression analyses performed by RNAseq identified 396 differentially expressed genes and 1834 transcripts displaying phenotype-specific expression. Furthermore, the sequencing and assembly of the genome from a diploid sexual accession allowed the annotation of a 50 kb sequence portion located upstream the HAPPY locus and to address the extent to which single transcripts were assembled in multiple variants and their co-expression levels. About one third of identified DEGs and phenotype-specific transcripts were associated to transcript variants with alternative expression patterns. Additionally, considering DEGs and phenotype-specific transcript, the co-expression level was estimated in about two transcripts per locus. Our gene expression study shows massive differences in the expression of several genes encoding for transposable elements. Transcriptional differences in the ovule nucellus and pistil terminal developmental stages were also found for subset of genes encoding for potentially interacting proteins involved in pre-mRNA splicing. Furthermore, the sexual and aposporous ovule transcriptomes were characterized by differential expression in genes operating in RNA silencing, RNA-mediated DNA methylation (RdDM) and histone and chromatin modifications. These findings are consistent with a role of these processes in regulating cell fate determination in the ovule, as indicated by forward genetic studies in sexual model species. The association between aposporous apomixis, pre-mRNA splicing and DNA methylation mediated by sRNAs, which is supported by expression data and by the enrichment in GO terms related to these processes, is consistent with the massive differential expression of multiple transposon-related sequences observed in ovules collected from both sexual and aposporous apomictic accessions. Overall, our data suggest that phenotypic expression of aposporous apomixis is concomitant with the modulation of key genes involved in the two interconnected processes: RNA splicing and RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Giulio Galla
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
- *Correspondence: Giulio Galla,
| | - Andrea Basso
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
| | - Simone Grisan
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
| |
Collapse
|
9
|
Musiał K, Kościńska-Pająk M. Pattern of callose deposition during the course of meiotic diplospory in Chondrilla juncea (Asteraceae, Cichorioideae). PROTOPLASMA 2017; 254:1499-1505. [PMID: 27817005 PMCID: PMC5487826 DOI: 10.1007/s00709-016-1039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 05/04/2023]
Abstract
Total absence of callose in the ovules of diplosporous species has been previously suggested. This paper is the first description of callose events in the ovules of Chondrilla juncea, which exhibits meiotic diplospory of the Taraxacum type. We found the presence of callose in the megasporocyte wall and stated that the pattern of callose deposition is dynamically changing during megasporogenesis. At the premeiotic stage, no callose was observed in the ovules. Callose appeared at the micropylar pole of the cell entering prophase of the first meioticdivision restitution but did not surround the megasporocyte. After the formation of a restitution nucleus, a conspicuous callose micropylar cap and dispersed deposits of callose were detected in the megasporocyte wall. During the formation of a diplodyad, the micropylar callose cap decreased and the walls of a newly formed megaspores showed scattered distribution of callose. Within the older diplodyad, callose was mainly accumulated in the wall between megaspores, as well as in the wall of the micropylar cell; however, a dotted fluorescence of callose was also visible in the wall of the chalazal megaspore. Gradual degradation of callose in the wall of the chalazal cell and intense callose accumulation in the wall of the micropylar cell were related to the selection of the functional megaspore. Thus, our findings may suggest that callose fulfills a similar role both during megasporogenesis in sexual angiosperms and in the course of meiotic diplospory in apomicts and seems to form a regulatory interface between reproductive and somatic cells.
Collapse
Affiliation(s)
- Krystyna Musiał
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland.
| | - Maria Kościńska-Pająk
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland
| |
Collapse
|
10
|
Galla G, Zenoni S, Avesani L, Altschmied L, Rizzo P, Sharbel TF, Barcaccia G. Pistil Transcriptome Analysis to Disclose Genes and Gene Products Related to Aposporous Apomixis in Hypericum perforatum L. FRONTIERS IN PLANT SCIENCE 2017; 8:79. [PMID: 28203244 PMCID: PMC5285387 DOI: 10.3389/fpls.2017.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/13/2017] [Indexed: 05/19/2023]
Abstract
Unlike sexual reproduction, apomixis encompasses a number of reproductive strategies, which permit maternal genome inheritance without genetic recombination and syngamy. The key biological features of apomixis are the circumvention of meiosis (i.e., apomeiosis), the differentiation of unreduced embryo sacs and egg cells, and their autonomous development in functional embryos through parthenogenesis, and the formation of viable endosperm either via fertilization-independent means or following fertilization with a sperm cell. Despite the importance of apomixis for breeding of crop plants and although much research has been conducted to study this process, the genetic control of apomixis is still not well understood. Hypericum perforatum is becoming an attractive model system for the study of aposporous apomixis. Here we report results from a global gene expression analysis of H. perforatum pistils collected from sexual and aposporous plant accessions for the purpose of identifying genes, biological processes and molecular functions associated with the aposporous apomixis pathway. Across two developmental stages corresponding to the expression of aposporous apomeiosis and parthenogenesis in ovules, a total of 224 and 973 unigenes were found to be significantly up- and down-regulated with a fold change ≥ 2 in at least one comparison, respectively. Differentially expressed genes were enriched for multiple gene ontology (GO) terms, including cell cycle, DNA metabolic process, and single-organism cellular process. For molecular functions, the highest scores were recorded for GO terms associated with DNA binding, DNA (cytosine-5-)-methyltransferase activity and heterocyclic compound binding. As deregulation of single components of the sexual developmental pathway is believed to be a trigger of the apomictic reproductive program, all genes involved in sporogenesis, gametogenesis and response to hormonal stimuli were analyzed in great detail. Overall, our data suggest that phenotypic expression of apospory is concomitant with the modulation of key genes involved in the sexual reproductive pathway. Furthermore, based on gene annotation and co-expression, we underline a putative role of hormones and key actors playing in the RNA-directed DNA methylation pathway in regulating the developmental changes occurring during aposporous apomixis in H. perforatum.
Collapse
Affiliation(s)
- Giulio Galla
- Laboratory of Genomics, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
- *Correspondence: Giulio Galla
| | - Sara Zenoni
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Lothar Altschmied
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Paride Rizzo
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Timothy F. Sharbel
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Gianni Barcaccia
- Laboratory of Genomics, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| |
Collapse
|
11
|
Rodríguez-Leal D, León-Martínez G, Abad-Vivero U, Vielle-Calzada JP. Natural variation in epigenetic pathways affects the specification of female gamete precursors in Arabidopsis. THE PLANT CELL 2015; 27:1034-45. [PMID: 25829442 PMCID: PMC4558685 DOI: 10.1105/tpc.114.133009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/23/2015] [Accepted: 03/01/2015] [Indexed: 05/03/2023]
Abstract
In angiosperms, the transition to the female gametophytic phase relies on the specification of premeiotic gamete precursors from sporophytic cells in the ovule. In Arabidopsis thaliana, a single diploid cell is specified as the premeiotic female gamete precursor. Here, we show that ecotypes of Arabidopsis exhibit differences in megasporogenesis leading to phenotypes reminiscent of defects in dominant mutations that epigenetically affect the specification of female gamete precursors. Intraspecific hybridization and polyploidy exacerbate these defects, which segregate quantitatively in F2 populations derived from ecotypic hybrids, suggesting that multiple loci control cell specification at the onset of female meiosis. This variation in cell differentiation is influenced by the activity of ARGONAUTE9 (AGO9) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6), two genes involved in epigenetic silencing that control the specification of female gamete precursors. The pattern of transcriptional regulation and localization of AGO9 varies among ecotypes, and abnormal gamete precursors in ovules defective for RDR6 share identity with ectopic gamete precursors found in selected ecotypes. Our results indicate that differences in the epigenetic control of cell specification lead to natural phenotypic variation during megasporogenesis. We propose that this mechanism could be implicated in the emergence and evolution of the reproductive alternatives that prevail in flowering plants.
Collapse
Affiliation(s)
- Daniel Rodríguez-Leal
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato CP36821 Guanajuato, Mexico
| | - Gloria León-Martínez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional del Instituto Politécnico Nacional, Unidad Michoacán, CP 59510 Jiquilpan, Mexico
| | - Ursula Abad-Vivero
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato CP36821 Guanajuato, Mexico
| | - Jean-Philippe Vielle-Calzada
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato CP36821 Guanajuato, Mexico
| |
Collapse
|
12
|
De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato. BMC Genomics 2015; 16:254. [PMID: 25887758 PMCID: PMC4451943 DOI: 10.1186/s12864-015-1439-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 02/07/2023] Open
Abstract
Background St. John’s wort (Hypericum perforatum L.) is a medicinal plant that produces important metabolites with antidepressant and anticancer activities. Recently gained biological information has shown that this species is also an attractive model system for the study of a naturally occurring form of asexual reproduction called apomixis, which allows cloning plants through seeds. In aposporic gametogenesis, one or multiple somatic cells belonging to the ovule nucellus change their fate by dividing mitotically and developing functionally unreduced embryo sacs by mimicking sexual gametogenesis. Although the introduction of apomixis into agronomically important crops could have revolutionary implications for plant breeding, the genetic control of this mechanism of seed formation is still not well understood for most of the model species investigated so far. We used Roche 454 technology to sequence the entire H. perforatum flower transcriptome of whole flower buds and single flower verticils collected from obligately sexual and unrelated highly or facultatively apomictic genotypes, which enabled us to identify RNAs that are likely exclusive to flower organs (i.e., sepals, petals, stamens and carpels) or reproductive strategies (i.e., sexual vs. apomictic). Results Here we sequenced and annotated the flower transcriptome of H. perforatum with particular reference to reproductive organs and processes. In particular, in our study we characterized approximately 37,000 transcripts found expressed in male and/or female reproductive organs, including tissues or cells of sexual and apomictic flower buds. Ontological annotation was applied to identify major biological processes and molecular functions involved in flower development and plant reproduction. Starting from this dataset, we were able to recover and annotate a large number of transcripts related to meiosis, gametophyte/gamete formation, and embryogenesis, as well as genes that are exclusively or preferentially expressed in sexual or apomictic libraries. Real-Time RT-qPCR assays on pistils and anthers collected at different developmental stages from accessions showing alternative modes of reproduction were used to identify potential genes that are related to plant reproduction sensu lato in H. perforatum. Conclusions Our approach of sequencing flowers from two fully obligate sexual genotypes and two unrelated highly apomictic genotypes, in addition to different flower parts dissected from a facultatively apomictic accession, enabled us to analyze the complexity of the flower transcriptome according to its main reproductive organs as well as for alternative reproductive behaviors. Both annotation and expression data provided original results supporting the hypothesis that apomixis in H. perforatum relies upon spatial or temporal mis-expression of genes acting during female sexual reproduction. The present analyses aim to pave the way toward a better understanding of the molecular basis of flower development and plant reproduction, by identifying genes or RNAs that may differentiate or regulate the sexual and apomictic reproductive pathways in H. perforatum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1439-y) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Jung CH, O'Brien M, Singh MB, Bhalla PL. Epigenetic landscape of germline specific genes in the sporophyte cells of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:328. [PMID: 26029228 PMCID: PMC4429549 DOI: 10.3389/fpls.2015.00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/27/2015] [Indexed: 05/15/2023]
Abstract
In plants, the germline lineages arise in later stages of life cycle as opposed to animals where both male and female germlines are set aside early in development. This developmental divergence is associated with germline specific or preferential expression of a subset of genes that are normally repressed for the rest of plant life cycle. The gene regulatory mechanisms involved in such long-term suppression and short-term activation in plant germline remain vague. Thus, we explored the nature of epigenetic marks that are likely associated with long-term gene repression in the non-germline cells. We accessed available Arabidopsis genome-wide DNA methylation and histone modification data and queried it for epigenetic marks associated with germline genes: genes preferentially expressed in sperm cells, egg cells, synergid cells, central cells, antipodal cells or embryo sac or genes that are with enriched expression in two or more of female germline tissues. The vast majority of germline genes are associated with repression-related epigenetic histone modifications in one or more non-germline tissues, among which H3K9me2 and H3K27me3 are the most widespread repression-related marks. Interestingly, we show here that the repressive epigenetic mechanisms differ between male and female germline genes. We also highlight the diverse states of epigenetic marks in different non-germline tissues. Some germline genes also have activation-related marks in non-germline tissues, and the proportion of such genes is higher for female germline genes. Germline genes include 30 transposable element (TE) loci, to which a large number of 24-nt long small interfering RNAs were mapped, suggesting that these small RNAs take a role in suppressing them in non-germline tissues. The data presented here suggest that the majority of Arabidopsis gamete-preferentially/-enriched genes bear repressive epigenetic modifications or regulated by small RNAs.
Collapse
Affiliation(s)
- Chol Hee Jung
- Plant Molecular Biology and Biotechnology Laboratory, Melbourne School of Land and Environment, The University of MelbourneParkville, VIC, Australia
- VLSCI Life Sciences Computation Centre, The University of MelbourneParkville, VIC, Australia
| | - Martin O'Brien
- Plant Molecular Biology and Biotechnology Laboratory, Melbourne School of Land and Environment, The University of MelbourneParkville, VIC, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Melbourne School of Land and Environment, The University of MelbourneParkville, VIC, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Melbourne School of Land and Environment, The University of MelbourneParkville, VIC, Australia
- *Correspondence: Prem L. Bhalla, Melbourne School of Land and Environment, The University of Melbourne, Building 142, Royal Parade, Parkville, VIC 3010, Australia
| |
Collapse
|
14
|
Okada T, Hu Y, Tucker MR, Taylor JM, Johnson SD, Spriggs A, Tsuchiya T, Oelkers K, Rodrigues JC, Koltunow AM. Enlarging cells initiating apomixis in Hieracium praealtum transition to an embryo sac program prior to entering mitosis. PLANT PHYSIOLOGY 2013; 163:216-31. [PMID: 23864557 PMCID: PMC3762643 DOI: 10.1104/pp.113.219485] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/08/2013] [Indexed: 05/19/2023]
Abstract
Hieracium praealtum forms seeds asexually by apomixis. During ovule development, sexual reproduction initiates with megaspore mother cell entry into meiosis and formation of a tetrad of haploid megaspores. The sexual pathway ceases when a diploid aposporous initial (AI) cell differentiates, enlarges, and undergoes mitosis, forming an aposporous embryo sac that displaces sexual structures. Embryo and endosperm development in aposporous embryo sacs is fertilization independent. Transcriptional data relating to apomixis initiation in Hieracium spp. ovules is scarce and the functional identity of the AI cell relative to other ovule cell types is unclear. Enlarging AI cells with undivided nuclei, early aposporous embryo sacs containing two to four nuclei, and random groups of sporophytic ovule cells not undergoing these events were collected by laser capture microdissection. Isolated amplified messenger RNA samples were sequenced using the 454 pyrosequencing platform and comparatively analyzed to establish indicative roles of the captured cell types. Transcriptome and protein motif analyses showed that approximately one-half of the assembled contigs identified homologous sequences in Arabidopsis (Arabidopsis thaliana), of which the vast majority were expressed during early Arabidopsis ovule development. The sporophytic ovule cells were enriched in signaling functions. Gene expression indicative of meiosis was notably absent in enlarging AI cells, consistent with subsequent aposporous embryo sac formation without meiosis. The AI cell transcriptome was most similar to the early aposporous embryo sac transcriptome when comparing known functional annotations and both shared expressed genes involved in gametophyte development, suggesting that the enlarging AI cell is already transitioning to an embryo sac program prior to mitotic division.
Collapse
|
15
|
Lacerda ALM, Dusi DMDA, Alves ER, Rodrigues JCM, Gomes ACMM, Carneiro VTDC. Expression analyses of Brachiaria brizantha genes encoding ribosomal proteins BbrizRPS8, BbrizRPS15a, and BbrizRPL41 during development of ovaries and anthers. PROTOPLASMA 2013; 250:505-514. [PMID: 22833119 DOI: 10.1007/s00709-012-0433-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
Brachiaria brizantha is a forage grass of the Poaceae family. Introduced from Africa, it is largely used for beef cattle production in Brazil. Brachiaria reproduces sexually or asexually by apomixis, and development of biotechnological tools for gene transfer is being researched to support the breeding programs. The molecular bases of reproduction have not yet been fully elucidated; it is known that gametophyte formation and main reproductive events occur inside the anthers and ovaries. There is therefore much interest in identifying genes expressed in these organs and their corresponding upstream regulatory sequences. In this work we characterized three cDNA from ovaries of B. brizantha plants (CL 09, CL10, and CL21) which show similarity in databases with genes encoding ribosomal proteins S8, S15a, and L41 and were named BbrizRPS8, BbrizRPS15a, and BbrizRPL41, respectively. These clones show higher expression in ovaries, anthers and roots, mitotically active tissues, when compared to leaves of B. brizantha. Localization of transcripts of BbrizRPS8, BbrizRPS15a, and BbrizRPL41 was investigated in the reproductive organs, ovaries, and anthers, from the beginning of development up to maturity. Their activity was higher in early stages of anther development, while expression was detected in all developmental stages in the ovaries, except for BbrizS15a, which was detected only in synergids of apomictic plants.
Collapse
Affiliation(s)
- Ana Luiza Machado Lacerda
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, Brasília, Federal District, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Rodriguez-Leal D, Vielle-Calzada JP. Regulation of apomixis: learning from sexual experience. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:549-55. [PMID: 23000434 DOI: 10.1016/j.pbi.2012.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/17/2012] [Accepted: 09/05/2012] [Indexed: 05/10/2023]
Abstract
Apomixis is a natural form of asexual reproduction through seeds that leads to viable offspring genetically identical to the mother plant. New evidence from sexual model species indicates that the regulation of female gametogenesis and seed formation is also directed by epigenetic mechanisms that are crucial to control events that distinguish sexuality from apomixis, with important implications for our understanding of the evolutionary forces that shape structural variation and diversity in plant reproduction.
Collapse
Affiliation(s)
- Daniel Rodriguez-Leal
- Group of Reproductive Development and Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| | | |
Collapse
|
17
|
Migicovsky Z, Kovalchuk I. Epigenetic Modifications during Angiosperm Gametogenesis. FRONTIERS IN PLANT SCIENCE 2012; 3:20. [PMID: 22645573 PMCID: PMC3355800 DOI: 10.3389/fpls.2012.00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 01/19/2012] [Indexed: 06/01/2023]
Abstract
Angiosperms do not contain a distinct germline, but rather develop gametes from gametophyte initials that undergo cell division. These gametes contain cells that give rise to an endosperm and the embryo. DNA methylation is decreased in the vegetative nucleus (VN) and central cell nuclei (CCN) resulting in expression of transposable elements (TEs). It is thought that the siRNAs produced in response to TE expression are able to travel to the sperm cells and egg cells (EC) from VN and CCN, respectively, in order to enforce silencing there. Demethylation during gametogenesis helps ensure that even newly integrated TEs are expressed and therefore silenced by the resulting siRNA production. A final form of epigenetic control is modification of histones, which includes accumulation of the H3 variant HTR10 in mature sperm that is then completely replaced following fertilization. In females, the histone isoforms present in the EC and CCN differ, potentially helping to differentiate the two components during gametogenesis.
Collapse
Affiliation(s)
- Zoë Migicovsky
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| |
Collapse
|
18
|
Mutation in SUMO E3 ligase, SIZ1, disrupts the mature female gametophyte in Arabidopsis. PLoS One 2012; 7:e29470. [PMID: 22253727 PMCID: PMC3253799 DOI: 10.1371/journal.pone.0029470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 11/29/2011] [Indexed: 01/22/2023] Open
Abstract
Female gametophyte is the multicellular haploid structure that can produce embryo and endosperm after fertilization, which has become an attractive model system for investigating molecular mechanisms in nuclei migration, cell specification, cell-to-cell communication and many other processes. Previous reports found that the small ubiquitin-like modifier (SUMO) E3 ligase, SIZ1, participated in many processes depending on particular target substrates and suppression of salicylic acid (SA) accumulation. Here, we report that SIZ1 mediates the reproductive process. SIZ1 showed enhanced expression in female organs, but was not detected in the anther or pollen. A defect in the siz1-2 maternal source resulted in reduced seed-set regardless of high SA concentration within the plant. Moreover, aniline blue staining and scanning electron microscopy revealed that funicular and micropylar pollen tube guidance was arrested in siz1-2 plants. Some of the embryo sacs of ovules in siz1-2 were also disrupted quickly after stage FG7. There was no significant affects of the siz1-2 mutation on expression of genes involved in female gametophyte development- or pollen tube guidance in ovaries. Together, our results suggest that SIZ1 sustains the stability and normal function of the mature female gametophyte which is necessary for pollen tube guidance.
Collapse
|
19
|
Plant germline development: a tale of cross-talk, signaling, and cellular interactions. ACTA ACUST UNITED AC 2011; 24:91-5. [PMID: 21590362 DOI: 10.1007/s00497-011-0170-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
The asymmetric division of the Arabidopsis zygote: from cell polarity to an embryo axis. ACTA ACUST UNITED AC 2011; 24:161-9. [PMID: 21225434 DOI: 10.1007/s00497-010-0160-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/22/2010] [Indexed: 12/29/2022]
Abstract
During plant embryogenesis, a simple body plan consisting of shoot and root meristem that are connected by the embryo axis is set up by the first few rounds of cell divisions after fertilization. Postembryonically, the elaborate architecture of plants is created from stem cell populations of both meristems. Here, we address how the main axis (apical-basal) of the plant embryo is established from the single-celled zygote and the role that the asymmetric division of the zygote plays in this process. We will mainly draw on examples from the model plant Arabidopsis, for which several key regulators have been identified during the last years.
Collapse
|
21
|
Abstract
The angiosperm female gametophyte is critical for plant reproduction. It contains the egg cell and central cell that become fertilized and give rise to the embryo and endosperm of the seed, respectively. Female gametophyte development begins early in ovule development with the formation of a diploid megaspore mother cell that undergoes meiosis. One resulting haploid megaspore then develops into the female gametophyte. Genetic and epigenetic processes mediate specification of megaspore mother cell identity and limit megaspore mother cell formation to a single cell per ovule. Auxin gradients influence female gametophyte polarity and a battery of transcription factors mediate female gametophyte cell specification and differentiation. The mature female gametophyte secretes peptides that guide the pollen tube to the embryo sac and contains protein complexes that prevent seed development before fertilization. Post-fertilization, the female gametophyte influences seed development through maternal-effect genes and by regulating parental contributions. Female gametophytes can form by an asexual process called gametophytic apomixis, which involves formation of a diploid female gametophyte and fertilization-independent development of the egg into the embryo. These functions collectively underscore the important role of the female gametophyte in seed and food production.
Collapse
Affiliation(s)
- Gary N. Drews
- Department of Biology, University of Utah, Salt Lake City, UT 84112
- Address correspondence to
| | - Anna M.G Koltunow
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Waite Campus, South Australia 5064, Australia
| |
Collapse
|