1
|
Jan N, Rather AMUD, John R, Chaturvedi P, Ghatak A, Weckwerth W, Zargar SM, Mir RA, Khan MA, Mir RR. Proteomics for abiotic stresses in legumes: present status and future directions. Crit Rev Biotechnol 2023; 43:171-190. [PMID: 35109728 DOI: 10.1080/07388551.2021.2025033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Legumes are the most important crop plants in agriculture, contributing 27% of the world's primary food production. However, productivity and production of Legumes is reduced due to increasing environmental stress. Hence, there is a pressing need to understand the molecular mechanism involved in stress response and legumes adaptation. Proteomics provides an important molecular approach to investigate proteins involved in stress response. Both the gel-based and gel-free-based techniques have significantly contributed to understanding the proteome regulatory network in leguminous plants. In the present review, we have discussed the role of different proteomic approaches (2-DE, 2 D-DIGE, ICAT, iTRAQ, etc.) in the identification of various stress-responsive proteins in important leguminous crops, including soybean, chickpea, cowpea, pigeon pea, groundnut, and common bean under variable abiotic stresses including heat, drought, salinity, waterlogging, frost, chilling and metal toxicity. The proteomic analysis has revealed that most of the identified differentially expressed proteins in legumes are involved in photosynthesis, carbohydrate metabolism, signal transduction, protein metabolism, defense, and stress adaptation. The proteomic approaches provide insights in understanding the molecular mechanism of stress tolerance in legumes and have resulted in the identification of candidate genes used for the genetic improvement of plants against various environmental stresses. Identifying novel proteins and determining their expression under different stress conditions provide the basis for effective engineering strategies to improve stress tolerance in crop plants through marker-assisted breeding.
Collapse
Affiliation(s)
- Nelofer Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | | | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Faculty of Horticulture, SKUAST-Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Jammu, India
| | - Mohd Anwar Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| |
Collapse
|
2
|
Kumar R, Ghatak A, Goyal I, Sarkar NK, Weckwerth W, Grover A, Chaturvedi P. Heat-induced proteomic changes in anthers of contrasting rice genotypes under variable stress regimes. FRONTIERS IN PLANT SCIENCE 2023; 13:1083971. [PMID: 36756226 PMCID: PMC9901367 DOI: 10.3389/fpls.2022.1083971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Heat stress drastically affects anther tissues resulting in poor plant fertility, necessitating an urgent need to determine the key proteome regulation associated with mature anther in response to heat stress. We identified several genotype - specific protein alterations in rice anthers of Moroberekan (Japonica, heat sensitive), IR64 (Indica, moderately heat tolerant), and Nagina22 (Aus, heat tolerant) in the short-term (ST_HS; one cycle of 42°C, 4 hours before anthesis) and long-term (LT_HS; 6 cycles of 38°C, 6 hours before anthesis) heat stress. The proteins upregulated in long-term heat stress in Nagina22 were enriched in biological processes related to unfolded protein binding and carboxylic acid metabolism, including amino acid metabolism. In short-term heat stress, Nagina22 anthers were enriched in proteins associated with vitamin E biosynthesis and GTPase activator activity. In contrast, downregulated proteins were related to ribosomal proteins. The expression of different Hsp20 and DnaJ was genotype specific. Overall, the heat response in Nagina22 was associated with its capacity for adequate metabolic control and cellular homeostasis, which may be critical for its higher reproductive thermotolerance. This study improves our understanding of thermotolerance mechanisms in rice anthers during anthesis and lays a foundation for breeding thermotolerant varieties via molecular breeding.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Isha Goyal
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Neelam K. Sarkar
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Klodová B, Potěšil D, Steinbachová L, Michailidis C, Lindner AC, Hackenberg D, Becker JD, Zdráhal Z, Twell D, Honys D. Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis. PLANT REPRODUCTION 2022:10.1007/s00497-022-00452-5. [PMID: 36282332 PMCID: PMC10363097 DOI: 10.1007/s00497-022-00452-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.
Collapse
Affiliation(s)
- Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Praha 2, 128 00, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ann-Cathrin Lindner
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- KWS SAAT SE & Co. KGaA, Grimsehlstraße 31, 37574, Einbeck, Germany
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
4
|
Dai HF, Jiang B, Zhao JS, Li JC, Sun QM. Metabolomics and Transcriptomics Analysis of Pollen Germination Response to Low-Temperature in Pitaya ( Hylocereus polyrhizus). FRONTIERS IN PLANT SCIENCE 2022; 13:866588. [PMID: 35646022 PMCID: PMC9134753 DOI: 10.3389/fpls.2022.866588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Cross-pollination can improve the percentage of fruit set and fruit weight for most red flesh varieties in pitaya. The technology of pollen storage was very important for successful cross-pollination. However, till present, the technology of pollen storage is unsatisfactory in pitaya production. In this study, pitaya pollen stored at low temperature was taken as the research object, and its physicochemical indexes, metabolomics, and transcriptomics were studied. The results showed that in vitro pollen germination rate decreased significantly with the increase in storage time. Soluble sugar and soluble protein content of pollen peaked on the first day of storage, whereas its relative conductivity, and manlondialdehyde (MDA) and proline contents increased gradually during storage. At the same time, the antioxidant enzyme system of pollen was also affected. Superoxide dismutase (SOD) activity decreased, while the activities of catalase (CAT) and peroxidase (POD) increased and superoxide anion generation rate increased gradually during storage. According to the metabolomics results, amino acid, peptide, nucleotide, plant hormone, terpene, alcohol, phenol, flavonoid, sterol, vitamin, ester, sphingolipid, and ketone contents increased significantly during storage, whereas flavonoid and pigment contents declined gradually. During pollen storage, the gene expressions related to carbohydrate metabolism, protein metabolism, acid and lipid metabolism, sterol metabolism, plant hormone metabolism, and signal transductions were significantly downregulated. With KEGG pathway analysis, isoquinoline alkaloid biosynthesis, tyrosine metabolism, alanine, aspartate, and glutamate metabolism of pollen were affected significantly during low-temperature storage. Correlation analysis showed that the gene expression patterns of HuRP2, HuUPL1, and HuAAT2 had significant effects on pollen germination. D-arabinose 5-phosphate and myricetin were positively correlated with pollen germination rate, which was valuable for studying preservation agents. In this study, the changes in pollen during low-temperature storage were described from the level of metabolites and genes, which could provide theoretical support for the research and development of pollen long-term storage technology in pitaya.
Collapse
Affiliation(s)
- Hong-fen Dai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jun-sheng Zhao
- Center of Agricultural Science and Technology Promotion, Maoming, China
| | - Jun-cheng Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qing-ming Sun
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
5
|
Raza A. Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. PLANT CELL REPORTS 2022; 41:741-763. [PMID: 33251564 DOI: 10.1007/s00299-020-02635-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 05/22/2023]
Abstract
Comprehensive metabolomic investigations provide a large set of stress-related metabolites and metabolic pathways, advancing crops under heat stress conditions. Metabolomics-assisted breeding, including mQTL and mGWAS boosted our understanding of improving numerous quantitative traits under heat stress. During the past decade, metabolomics has emerged as a fascinating scientific field that includes documentation, evaluation of metabolites, and chemical methods for cell monitoring programs in numerous plant species. A comprehensive metabolome profiling allowed the investigator to handle the comprehensive data groups of metabolites and the equivalent metabolic pathways in an extraordinary manner. Metabolomics, together with transcriptomics, plays an influential role in discovering connections between stress and genes/metabolite, phenotyping, and biomarkers documentation. Further, it helps to decode several metabolic systems connected with heat stress (HS) tolerance in plants. Heat stress is a critical environmental factor that is globally affecting the growth and productivity of plants. Thus, there is an urgent need to exploit modern breeding and biotechnological tools like metabolomics to develop cultivars with improved HS tolerance. Several studies have reported that amino acids, carbohydrates, nitrogen metabolisms, etc. and metabolites involved in the biosynthesis and catalyzing actions play a game-changing role in HS response and help plants to cope with the HS. The use of metabolomics-assisted breeding (MAB) allows a well-organized transmission of higher yield and HS tolerance at the metabolome level with specific properties. Progressive metabolomics systematic techniques have accelerated metabolic profiling. Nonetheless, continuous developments in bioinformatics, statistical tools, and databases are allowing us to produce ever-progressing, comprehensive insights into the biochemical configuration of plants and by what means this is inclined by genetic and environmental cues. Currently, assimilating metabolomics with post-genomic platforms has allowed a significant division of genetic-phenotypic connotation in several plant species. This review highlights the potential of a state-of-the-art plant metabolomics approach for the improvement of crops under HS. The development of plants with specific properties using integrated omics (metabolomics and transcriptomics) and MAB can provide new directions for future research to enhance HS tolerance in plants to achieve a goal of "zero hunger".
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| |
Collapse
|
6
|
Wang J, Chen J, Huang S, Han D, Li J, Guo D. Investigating the Mechanism of Unilateral Cross Incompatibility in Longan ( Dimocarpus longan Lour.) Cultivars (Yiduo × Shixia). FRONTIERS IN PLANT SCIENCE 2022; 12:821147. [PMID: 35222456 PMCID: PMC8874016 DOI: 10.3389/fpls.2021.821147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Longan (Dimocarpus longan Lour.) is an important subtropical fruit tree in China. Nearly 90% of longan fruit imports from Thailand are from the cultivar Yiduo. However, we have observed that there exists a unilateral cross incompatibility (UCI) when Yiduo is used as a female parent and Shixia (a famous Chinese cultivar) as a male parent. Here, we performed a comparative transcriptome analysis coupled with microscopy of pistils from two reciprocal pollination combinations [Shixia♂ × Yiduo♀(SY) and Yiduo♀ × Shixia♂(YS)] 4, 8, 12, and 24 h after pollination. We also explored endogenous jasmonic acid (JA) and jasmonyl isoleucine (JA-Ile) levels in pistils of the crosses. The microscopic observations showed that the UCI was sporophytic. The endogenous JA and JA-Ile levels were higher in YS than in SY at the studied time points. We found 7,251 differentially expressed genes from the transcriptome analysis. Our results highlighted that genes associated with JA biosynthesis and signaling, pollen tube growth, cell wall modification, starch and sucrose biosynthesis, and protein processing in endoplasmic reticulum pathways were differentially regulated between SY and YS. We discussed transcriptomic changes in the above-mentioned pathways regarding the observed microscopic and/or endogenous hormone levels. This is the first report on the elaboration of transcriptomic changes in longan reciprocal pollination combination showing UCI. The results presented here will enable the longan breeding community to better understand the mechanisms of UCI.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ji Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shilian Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianguang Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongliang Guo
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
7
|
Kaashyap M, Ford R, Mann A, Varshney RK, Siddique KHM, Mantri N. Comparative Flower Transcriptome Network Analysis Reveals DEGs Involved in Chickpea Reproductive Success during Salinity. PLANTS (BASEL, SWITZERLAND) 2022; 11:434. [PMID: 35161414 PMCID: PMC8838858 DOI: 10.3390/plants11030434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 05/27/2023]
Abstract
Salinity is increasingly becoming a significant problem for the most important yet intrinsically salt-sensitive grain legume chickpea. Chickpea is extremely sensitive to salinity during the reproductive phase. Therefore, it is essential to understand the molecular mechanisms by comparing the transcriptomic dynamics between the two contrasting genotypes in response to salt stress. Chickpea exhibits considerable genetic variation amongst improved cultivars, which show better yields in saline conditions but still need to be enhanced for sustainable crop production. Based on previous extensive multi-location physiological screening, two identified genotypes, JG11 (salt-tolerant) and ICCV2 (salt-sensitive), were subjected to salt stress to evaluate their phenological and transcriptional responses. RNA-Sequencing is a revolutionary tool that allows for comprehensive transcriptome profiling to identify genes and alleles associated with stress tolerance and sensitivity. After the first flowering, the whole flower from stress-tolerant and sensitive genotypes was collected. A total of ~300 million RNA-Seq reads were sequenced, resulting in 2022 differentially expressed genes (DEGs) in response to salt stress. Genes involved in flowering time such as FLOWERING LOCUS T (FT) and pollen development such as ABORTED MICROSPORES (AMS), rho-GTPase, and pollen-receptor kinase were significantly differentially regulated, suggesting their role in salt tolerance. In addition to this, we identify a suite of essential genes such as MYB proteins, MADS-box, and chloride ion channel genes, which are crucial regulators of transcriptional responses to salinity tolerance. The gene set enrichment analysis and functional annotation of these genes in flower development suggest that they can be potential candidates for chickpea crop improvement for salt tolerance.
Collapse
Affiliation(s)
- Mayank Kaashyap
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
| | - Rebecca Ford
- School of Environment and Science, Griffith University, Nathan 4111, Australia;
| | - Anita Mann
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute (CSSRI), Zarifa Farm, Karnal 132001, India;
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India; or
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia;
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia;
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia;
| |
Collapse
|
8
|
Perturbations in plant energy homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling. Proc Natl Acad Sci U S A 2021; 118:2106961118. [PMID: 34504003 DOI: 10.1073/pnas.2106961118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Plants adjust their energy metabolism to continuous environmental fluctuations, resulting in a tremendous plasticity in their architecture. The regulatory circuits involved, however, remain largely unresolved. In Arabidopsis, moderate perturbations in photosynthetic activity, administered by short-term low light exposure or unexpected darkness, lead to increased lateral root (LR) initiation. Consistent with expression of low-energy markers, these treatments alter energy homeostasis and reduce sugar availability in roots. Here, we demonstrate that the LR response requires the metabolic stress sensor kinase Snf1-RELATED-KINASE1 (SnRK1), which phosphorylates the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63) that directly binds and activates the promoter of AUXIN RESPONSE FACTOR19 (ARF19), a key regulator of LR initiation. Consistently, starvation-induced ARF19 transcription is impaired in bzip63 mutants. This study highlights a positive developmental function of SnRK1. During energy limitation, LRs are initiated and primed for outgrowth upon recovery. Hence, this study provides mechanistic insights into how energy shapes the agronomically important root system.
Collapse
|
9
|
Mareri L, Faleri C, Aloisi I, Parrotta L, Del Duca S, Cai G. Insights into the Mechanisms of Heat Priming and Thermotolerance in Tobacco Pollen. Int J Mol Sci 2021; 22:8535. [PMID: 34445241 PMCID: PMC8395212 DOI: 10.3390/ijms22168535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Global warming leads to a progressive rise in environmental temperature. Plants, as sessile organisms, are threatened by these changes; the male gametophyte is extremely sensitive to high temperature and its ability to preserve its physiological status under heat stress is known as acquired thermotolerance. This latter can be achieved by exposing plant to a sub-lethal temperature (priming) or to a progressive increase in temperature. The present research aims to investigate the effects of heat priming on the functioning of tobacco pollen grains. In addition to evaluating basic physiological parameters (e.g., pollen viability, germination and pollen tube length), several aspects related to a correct pollen functioning were considered. Calcium (Ca2+) level, reactive oxygen species (ROS) and related antioxidant systems were investigated, also to the organization of actin filaments and cytoskeletal protein such as tubulin (including tyrosinated and acetylated isoforms) and actin. We also focused on sucrose synthase (Sus), a key metabolic enzyme and on the content of main soluble sugars, including UDP-glucose. Results here obtained showed that a pre-exposure to sub-lethal temperatures can positively enhance pollen performance by altering its metabolism. This can have a considerable impact, especially from the point of view of breeding strategies aimed at improving crop species.
Collapse
Affiliation(s)
- Lavinia Mareri
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (L.M.); (C.F.); (G.C.)
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (L.M.); (C.F.); (G.C.)
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.A.); (S.D.D.)
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.A.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.A.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (L.M.); (C.F.); (G.C.)
| |
Collapse
|
10
|
Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. THE NEW PHYTOLOGIST 2021; 231:571-585. [PMID: 33818773 PMCID: PMC9292940 DOI: 10.1111/nph.17380] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/03/2023]
Abstract
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Anna J. Wiese
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Lenka Záveská Drábková
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14Vienna1090Austria
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| |
Collapse
|
11
|
Breygina M, Klimenko E, Schekaleva O. Pollen Germination and Pollen Tube Growth in Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2021; 10:1301. [PMID: 34206892 PMCID: PMC8309077 DOI: 10.3390/plants10071301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
Pollen germination and pollen tube growth are common to all seed plants, but these processes first developed in gymnosperms and still serve for their successful sexual reproduction. The main body of data on the reproductive physiology, however, was obtained on flowering plants, and one should be careful to extrapolate the discovered patterns to gymnosperms. In recent years, physiological studies of coniferous pollen have been increasing, and both the features of this group and the similarities with flowering plants have already been identified. The main part of the review is devoted to physiological studies carried out on conifer pollen. The main properties and diversity of pollen grains and pollination strategies in gymnosperms are described.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.K.); (O.S.)
| | | | | |
Collapse
|
12
|
You C, Zhang Y, Yang S, Wang X, Yao W, Jin W, Wang W, Hu X, Yang H. Proteomic Analysis of Generative and Vegetative Nuclei Reveals Molecular Characteristics of Pollen Cell Differentiation in Lily. FRONTIERS IN PLANT SCIENCE 2021; 12:641517. [PMID: 34163497 PMCID: PMC8215658 DOI: 10.3389/fpls.2021.641517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/01/2021] [Indexed: 06/13/2023]
Abstract
In plants, the cell fates of a vegetative cell (VC) and generative cell (GC) are determined after the asymmetric division of the haploid microspore. The VC exits the cell cycle and grows a pollen tube, while the GC undergoes further mitosis to produce two sperm cells for double fertilization. However, our understanding of the mechanisms underlying their fate differentiation remains limited. One major advantage of the nuclear proteome analysis is that it is the only method currently able to uncover the systemic differences between VC and GC due to GC being engulfed within the cytoplasm of VC, limiting the use of transcriptome. Here, we obtained pure preparations of the vegetative cell nuclei (VNs) and generative cell nuclei (GNs) from germinating lily pollens. Utilizing these high-purity VNs and GNs, we compared the differential nucleoproteins between them using state-of-the-art quantitative proteomic techniques. We identified 720 different amount proteins (DAPs) and grouped the results in 11 fate differentiation categories. Among them, we identified 29 transcription factors (TFs) and 10 cell fate determinants. Significant differences were found in the molecular activities of vegetative and reproductive nuclei. The TFs in VN mainly participate in pollen tube development. In comparison, the TFs in GN are mainly involved in cell differentiation and male gametogenesis. The identified novel TFs may play an important role in cell fate differentiation. Our data also indicate differences in nuclear pore complexes and epigenetic modifications: more nucleoporins synthesized in VN; more histone variants and chaperones; and structural maintenance of chromosome (SMC) proteins, chromatin remodelers, and DNA methylation-related proteins expressed in GN. The VC has active macromolecular metabolism and mRNA processing, while GC has active nucleic acid metabolism and translation. Moreover, the members of unfolded protein response (UPR) and programmed cell death accumulate in VN, and DNA damage repair is active in GN. Differences in the stress response of DAPs in VN vs. GN were also found. This study provides a further understanding of pollen cell differentiation mechanisms and also a sound basis for future studies of the molecular mechanisms behind cell fate differentiation.
Collapse
Affiliation(s)
- Chen You
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - YuPing Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - ShaoYu Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xu Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wen Yao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - WeiHuan Jin
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - XiuLi Hu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hao Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Scali M, Moscatelli A, Bini L, Onelli E, Vignani R, Wang W. Protein Analysis of Pollen Tubes after the Treatments of Membrane Trafficking Inhibitors Gains Insights on Molecular Mechanism Underlying Pollen Tube Polar Growth. Protein J 2021; 40:205-222. [PMID: 33751342 PMCID: PMC8019430 DOI: 10.1007/s10930-021-09972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/03/2022]
Abstract
Pollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identify Nicotiana tabacum Differentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC-ESI-MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.
Collapse
Affiliation(s)
- Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy.
| | | | - Luca Bini
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Rita Vignani
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Wei Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
14
|
Erban T, Shcherbachenko E, Talacko P, Harant K. A single honey proteome dataset for identifying adulteration by foreign amylases and mining various protein markers natural to honey. J Proteomics 2021; 239:104157. [PMID: 33631366 DOI: 10.1016/j.jprot.2021.104157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/18/2022]
Abstract
Honey adulteration is a common practice that deceives consumers and devalues the unique curative and food properties of honey. For marketing, each honey must satisfy an internationally valid Codex standard. One of the quality parameters is diastase/amylase activity, which, if lowered, may be compensated for by the addition of foreign amylases. However, the estimation of enzyme activity does not enable identification of artificially added amylases. 45 honey samples were analyzed using label-free nanoLC-MS/MS proteomics. Four honeys were found to contain the foreign amylases from Aspergillus niger, Bacillus amyloliquefaciens and/or Bacillus licheniformis. This result was confirmed via proof of specificity at multiple levels. Furthermore, we identified a series of plant-related protein groups. Despite plant-related proteins constituting a significant portion of honey proteins, they were minor components compared to the major honey bee-derived proteins. Bioinformatic analysis also provided evidence for aphid and catalase proteins in honey, but the limited specificity of the MS/MS identified peptides must be considered. Overall, we demonstrate a proteomics approach employing LC-MS/MS that is useful for proving adulteration and assessing honey quality. As an resource useful for reference, we provide curated sequence databases. In addition, we provide many markers that are naturally found in honey for future studies. SIGNIFICANCE: Honey is unique natural product used since ancient times as a food and natural medicine. Humans strive to understand honey components because they can characterize different types of honey and be used for authentication and origin assessment. One of the important honey components are proteins. The proteins present in honey can naturally occur in honey, but some of them can be used to mask deficiencies in some honey quality properties. Diastases/amylases are such proteins, and their activity, a measure of honey freshness, can decrease in time or due to processing. To our knowledge, we for the first time specifically identify foreign amylases in honey. However, this study provided new information on other non-honey bee proteins in honey. Thus, this study is also of importance due to its identification of plant and aphid proteins and catalase-related proteins. This study provides a clue explaining the controversial presence of catalase in honey, since catalases can be identified and their origin determined via proteomics.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague, CZ-16106, Czechia.
| | - Elena Shcherbachenko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague, CZ-16106, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia
| |
Collapse
|
15
|
Paupière MJ, Tikunov Y, Schleiff E, Bovy A, Fragkostefanakis S. Reprogramming of Tomato Leaf Metabolome by the Activity of Heat Stress Transcription Factor HsfB1. FRONTIERS IN PLANT SCIENCE 2020; 11:610599. [PMID: 33424907 PMCID: PMC7785825 DOI: 10.3389/fpls.2020.610599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/30/2020] [Indexed: 05/29/2023]
Abstract
Plants respond to high temperatures with global changes of the transcriptome, proteome, and metabolome. Heat stress transcription factors (Hsfs) are the core regulators of transcriptome responses as they control the reprogramming of expression of hundreds of genes. The thermotolerance-related function of Hsfs is mainly based on the regulation of many heat shock proteins (HSPs). Instead, the Hsf-dependent reprogramming of metabolic pathways and their contribution to thermotolerance are not well described. In tomato (Solanum lycopersicum), manipulation of HsfB1, either by suppression or overexpression (OE) leads to enhanced thermotolerance and coincides with distinct profile of metabolic routes based on a metabolome profiling of wild-type (WT) and HsfB1 transgenic plants. Leaves of HsfB1 knock-down plants show an accumulation of metabolites with a positive effect on thermotolerance such as the sugars sucrose and glucose and the polyamine putrescine. OE of HsfB1 leads to the accumulation of products of the phenylpropanoid and flavonoid pathways, including several caffeoyl quinic acid isomers. The latter is due to the enhanced transcription of genes coding key enzymes in both pathways, in some cases in both non-stressed and stressed plants. Our results show that beyond the control of the expression of Hsfs and HSPs, HsfB1 has a wider activity range by regulating important metabolic pathways providing an important link between stress response and physiological tomato development.
Collapse
Affiliation(s)
| | - Yury Tikunov
- Plant Breeding, Wageningen University, Wageningen, Netherlands
| | - Enrico Schleiff
- Faculty of Biological Sciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt, Germany
- Frankfurt Institute of Advanced Studies (FIAS), Frankfurt, Germany
| | - Arnaud Bovy
- Plant Breeding, Wageningen University, Wageningen, Netherlands
| | - Sotirios Fragkostefanakis
- Faculty of Biological Sciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| |
Collapse
|
16
|
Keller M, Schleiff E, Simm S. miRNAs involved in transcriptome remodeling during pollen development and heat stress response in Solanum lycopersicum. Sci Rep 2020; 10:10694. [PMID: 32612181 PMCID: PMC7329895 DOI: 10.1038/s41598-020-67833-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/10/2020] [Indexed: 01/11/2023] Open
Abstract
Cellular transitions during development and stress response depend on coordinated transcriptomic and proteomic alterations. Pollen is particular because its development is a complex process that includes meiotic and mitotic divisions which causes a high heat sensitivity of these cells. Development and stress response are accompanied by a reprogramming of the transcriptome, e.g. by post-transcriptional regulation via miRNAs. We identified known and potentially novel miRNAs in the transcriptome of developing and heat-stressed pollen of Solanum lycopersicum (tomato). The prediction of target mRNAs yielded an equal number of predicted target-sites in CDS and 3'UTR regions of target mRNAs. The result enabled the postulation of a possible link between miRNAs and a fine-tuning of transcription factor abundance during pollen development. miRNAs seem to play a role in the pollen heat stress response as well. We identified several heat stress transcription factors and heat shock proteins as putative targets of miRNAs in response to heat stress, thereby placing these miRNAs as important elements of thermotolerance. Moreover, for members of the AP2, SBP and ARF family members we could predict a miRNA-mediated regulation during development via the miR172, mir156 and mir160-family strengthening the current concept of a cross-connection between development and stress response in plants.
Collapse
Affiliation(s)
- Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany.
- Frankfurt Institute of Advanced Studies, 60438, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438, Frankfurt am Main, Germany.
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute of Bioinformatics, University Medicine Greifswald, 17475, Greifswald, Germany
| |
Collapse
|
17
|
Weckwerth W, Ghatak A, Bellaire A, Chaturvedi P, Varshney RK. PANOMICS meets germplasm. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1507-1525. [PMID: 32163658 PMCID: PMC7292548 DOI: 10.1111/pbi.13372] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
Genotyping-by-sequencing has enabled approaches for genomic selection to improve yield, stress resistance and nutritional value. More and more resource studies are emerging providing 1000 and more genotypes and millions of SNPs for one species covering a hitherto inaccessible intraspecific genetic variation. The larger the databases are growing, the better statistical approaches for genomic selection will be available. However, there are clear limitations on the statistical but also on the biological part. Intraspecific genetic variation is able to explain a high proportion of the phenotypes, but a large part of phenotypic plasticity also stems from environmentally driven transcriptional, post-transcriptional, translational, post-translational, epigenetic and metabolic regulation. Moreover, regulation of the same gene can have different phenotypic outputs in different environments. Consequently, to explain and understand environment-dependent phenotypic plasticity based on the available genotype variation we have to integrate the analysis of further molecular levels reflecting the complete information flow from the gene to metabolism to phenotype. Interestingly, metabolomics platforms are already more cost-effective than NGS platforms and are decisive for the prediction of nutritional value or stress resistance. Here, we propose three fundamental pillars for future breeding strategies in the framework of Green Systems Biology: (i) combining genome selection with environment-dependent PANOMICS analysis and deep learning to improve prediction accuracy for marker-dependent trait performance; (ii) PANOMICS resolution at subtissue, cellular and subcellular level provides information about fundamental functions of selected markers; (iii) combining PANOMICS with genome editing and speed breeding tools to accelerate and enhance large-scale functional validation of trait-specific precision breeding.
Collapse
Affiliation(s)
- Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Anke Bellaire
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadTelanganaIndia
| |
Collapse
|
18
|
Weckwerth W, Ghatak A, Bellaire A, Chaturvedi P, Varshney RK. PANOMICS meets germplasm. PLANT BIOTECHNOLOGY JOURNAL 2020; 18. [PMID: 32163658 PMCID: PMC7292548 DOI: 10.1111/pbi.13372,10.13140/rg.2.1.1233.5760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Genotyping-by-sequencing has enabled approaches for genomic selection to improve yield, stress resistance and nutritional value. More and more resource studies are emerging providing 1000 and more genotypes and millions of SNPs for one species covering a hitherto inaccessible intraspecific genetic variation. The larger the databases are growing, the better statistical approaches for genomic selection will be available. However, there are clear limitations on the statistical but also on the biological part. Intraspecific genetic variation is able to explain a high proportion of the phenotypes, but a large part of phenotypic plasticity also stems from environmentally driven transcriptional, post-transcriptional, translational, post-translational, epigenetic and metabolic regulation. Moreover, regulation of the same gene can have different phenotypic outputs in different environments. Consequently, to explain and understand environment-dependent phenotypic plasticity based on the available genotype variation we have to integrate the analysis of further molecular levels reflecting the complete information flow from the gene to metabolism to phenotype. Interestingly, metabolomics platforms are already more cost-effective than NGS platforms and are decisive for the prediction of nutritional value or stress resistance. Here, we propose three fundamental pillars for future breeding strategies in the framework of Green Systems Biology: (i) combining genome selection with environment-dependent PANOMICS analysis and deep learning to improve prediction accuracy for marker-dependent trait performance; (ii) PANOMICS resolution at subtissue, cellular and subcellular level provides information about fundamental functions of selected markers; (iii) combining PANOMICS with genome editing and speed breeding tools to accelerate and enhance large-scale functional validation of trait-specific precision breeding.
Collapse
Affiliation(s)
- Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Anke Bellaire
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadTelanganaIndia
| |
Collapse
|
19
|
San Segundo-Acosta P, Oeo-Santos C, Benedé S, de Los Ríos V, Navas A, Ruiz-Leon B, Moreno C, Pastor-Vargas C, Jurado A, Villalba M, Barderas R. Delineation of the Olive Pollen Proteome and Its Allergenome Unmasks Cyclophilin as a Relevant Cross-Reactive Allergen. J Proteome Res 2019; 18:3052-3066. [PMID: 31192604 DOI: 10.1021/acs.jproteome.9b00167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Olive pollen is a major allergenic source worldwide due to its extensive cultivation. We have combined available genomics data with a comprehensive proteomics approach to get the annotated olive tree (Olea europaea L.) pollen proteome and define its complex allergenome. A total of 1907 proteins were identified by LC-MS/MS using predicted protein sequences from its genome. Most proteins (60%) were predicted to possess catalytic activity and be involved in metabolic processes. In total, 203 proteins belonging to 47 allergen families were found in olive pollen. A peptidyl-prolyl cis-trans isomerase, cyclophilin, produced in Escherichia coli, was found as a new olive pollen allergen (Ole e 15). Most Ole e 15-sensitized patients were children (63%) and showed strong IgE recognition to the allergen. Ole e 15 shared high sequence identity with other plant, animal, and fungal cyclophilins and presented high IgE cross-reactivity with pollen, plant food, and animal extracts.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Carmen Oeo-Santos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Sara Benedé
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | | | - Ana Navas
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Berta Ruiz-Leon
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Carmen Moreno
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Carlos Pastor-Vargas
- Department of Immunology , Instituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez Díaz (IIS-FJD, UAM) , E-28040 Madrid , Spain
| | - Aurora Jurado
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Mayte Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC) , Instituto de Salud Carlos III , Majadahonda, E-28220 Madrid , Spain
| |
Collapse
|
20
|
Ghatak A, Chaturvedi P, Weckwerth W. Metabolomics in Plant Stress Physiology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 164:187-236. [PMID: 29470599 DOI: 10.1007/10_2017_55] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metabolomics is an essential technology for functional genomics and systems biology. It plays a key role in functional annotation of genes and understanding towards cellular and molecular, biotic and abiotic stress responses. Different analytical techniques are used to extend the coverage of a full metabolome. The commonly used techniques are NMR, CE-MS, LC-MS, and GC-MS. The choice of a suitable technique depends on the speed, sensitivity, and accuracy. This chapter provides insight into plant metabolomic techniques, databases used in the analysis, data mining and processing, compound identification, and limitations in metabolomics. It also describes the workflow of measuring metabolites in plants. Metabolomic studies in plant responses to stress are a key research topic in many laboratories worldwide. We summarize different approaches and provide a generic overview of stress responsive metabolite markers and processes compiled from a broad range of different studies. Graphical Abstract.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria. .,Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
21
|
Cytological and Proteomic Analysis of Wheat Pollen Abortion Induced by Chemical Hybridization Agent. Int J Mol Sci 2019; 20:ijms20071615. [PMID: 30939734 PMCID: PMC6480110 DOI: 10.3390/ijms20071615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
In plants, pollen grain transfers the haploid male genetic material from anther to stigma, both between flowers (cross-pollination) and within the same flower (self-pollination). In order to better understand chemical hybridizing agent (CHA) SQ-1-induced pollen abortion in wheat, comparative cytological and proteomic analyses were conducted. Results indicated that pollen grains underwent serious structural injury, including cell division abnormality, nutritional deficiencies, pollen wall defect and pollen grain malformations in the CHA-SQ-1-treated plants, resulting in pollen abortion and male sterility. A total of 61 proteins showed statistically significant differences in abundance, among which 18 proteins were highly abundant and 43 proteins were less abundant in CHA-SQ-1 treated plants. 60 proteins were successfully identified using MALDI-TOF/TOF mass spectrometry. These proteins were found to be involved in pollen maturation and showed a change in the abundance of a battery of proteins involved in multiple biological processes, including pollen development, carbohydrate and energy metabolism, stress response, protein metabolism. Interactions between these proteins were predicted using bioinformatics analysis. Gene ontology and pathway analyses revealed that the majority of the identified proteins were involved in carbohydrate and energy metabolism. Accordingly, a protein-protein interaction network involving in pollen abortion was proposed. These results provide information for the molecular events underlying CHA-SQ-1-induced pollen abortion and may serve as an additional guide for practical hybrid breeding.
Collapse
|
22
|
Vannini C, Marsoni M, Scoccianti V, Ceccarini C, Domingo G, Bracale M, Crinelli R. Proteasome-mediated remodeling of the proteome and phosphoproteome during kiwifruit pollen germination. J Proteomics 2019; 192:334-345. [DOI: 10.1016/j.jprot.2018.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 01/19/2023]
|
23
|
Teixeira FM, Shah M, Domont GB, Nogueira FCS, Campos FAP. In-Depth Proteome Analysis of Ricinus communis Pollens. Proteomics 2018; 19:e1800347. [PMID: 30474183 DOI: 10.1002/pmic.201800347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/10/2018] [Indexed: 11/07/2022]
Abstract
Pollen grains are tiny structures vital for sexual reproduction and consequently seed and fruit production in angiosperms, and a source of many allergenic components responsible for deleterious implications for health worldwide. Current pollen research is mainly focused on unraveling the molecular mechanisms underlying the pollen germination and tube formation passing from the quiescent stage. In this context, an in-depth proteome analysis of the pollens from Ricinus communis at three different stages-that is, mature, hydrated, and in vitro germinated-is performed. This analysis results in the identification of 1950 proteins, including 1773, 1313, and 858, from mature, hydrated, and germinated pollens, respectively. Based on label-free quantification, 164 proteins are found to be significantly differentially abundant from mature to hydrated pollens, 40 proteins from hydrated to germinated, and 57 proteins from mature to germinated pollens, respectively. Most of the differentially abundant proteins are related to protein, carbohydrate, and energy metabolism and signaling. Besides other functional classes, a reasonable number of the proteins are predicted to be allergenic proteins, previously undiscovered. This is the first in-deep proteome analysis of the R. communis pollens and, to the best of our knowledge, one of the most complete proteome dataset identified from the pollens of any plant species, thus providing a reference proteome for researchers interested in pollen biology.
Collapse
Affiliation(s)
- Fabiano M Teixeira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, 60455-900, Brazil
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Gilberto B Domont
- Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Fábio C S Nogueira
- Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Francisco A P Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, 60455-900, Brazil
| |
Collapse
|
24
|
Jegadeesan S, Chaturvedi P, Ghatak A, Pressman E, Meir S, Faigenboim A, Rutley N, Beery A, Harel A, Weckwerth W, Firon N. Proteomics of Heat-Stress and Ethylene-Mediated Thermotolerance Mechanisms in Tomato Pollen Grains. FRONTIERS IN PLANT SCIENCE 2018; 9:1558. [PMID: 30483278 PMCID: PMC6240657 DOI: 10.3389/fpls.2018.01558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/04/2018] [Indexed: 05/19/2023]
Abstract
Heat stress is a major cause for yield loss in many crops, including vegetable crops. Even short waves of high temperature, becoming more frequent during recent years, can be detrimental. Pollen development is most heat-sensitive, being the main cause for reduced productivity under heat-stress across a wide range of crops. The molecular mechanisms involved in pollen heat-stress response and thermotolerance are however, not fully understood. Recently, we have demonstrated that ethylene, a gaseous plant hormone, plays a role in tomato (Solanum lycopersicum) pollen thermotolerance. These results were substantiated in the current work showing that increasing ethylene levels by using an ethylene-releasing substance, ethephon, prior to heat-stress exposure, increased pollen quality. A proteomic approach was undertaken, to unravel the mechanisms underlying pollen heat-stress response and ethylene-mediated pollen thermotolerance in developing pollen grains. Proteins were extracted and analyzed by means of a gel LC-MS fractionation protocol, and a total of 1,355 proteins were identified. A dataset of 721 proteins, detected in three biological replicates of at least one of the applied treatments, was used for all analyses. Quantitative analysis was performed based on peptide count. The analysis revealed that heat-stress affected the developmental program of pollen, including protein homeostasis (components of the translational and degradation machinery), carbohydrate, and energy metabolism. Ethephon-pre-treatment shifted the heat-stressed pollen proteome closer to the proteome under non-stressful conditions, namely, by showing higher abundance of proteins involved in protein synthesis, degradation, tricarboxylic acid cycle, and RNA regulation. Furthermore, up-regulation of protective mechanisms against oxidative stress was observed following ethephon-treatment (including higher abundance of glutathione-disulfide reductase, glutaredoxin, and protein disulfide isomerase). Taken together, the findings identified systemic and fundamental components of pollen thermotolerance, and serve as a valuable quantitative protein database for further research.
Collapse
Affiliation(s)
- Sridharan Jegadeesan
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture of The Hebrew University of Jerusalem, Rehovot, Israel
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Etan Pressman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shimon Meir
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Nicholas Rutley
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Avital Beery
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Arye Harel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Nurit Firon
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
25
|
Response mechanisms induced by exposure to high temperature in anthers from thermo-tolerant and thermo-sensitive tomato plants: A proteomic perspective. PLoS One 2018; 13:e0201027. [PMID: 30024987 PMCID: PMC6053223 DOI: 10.1371/journal.pone.0201027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/07/2018] [Indexed: 11/19/2022] Open
Abstract
Constant global warming is one of the most detrimental environmental factors for agriculture causing significant losses in productivity as heat stress (HS) conditions damage plant growth and reproduction. In flowering plants such as tomato, HS has drastic repercussions on development and functionality of male reproductive organs and pollen. Response mechanisms to HS in tomato anthers and pollen have been widely investigated by transcriptomics; on the contrary, exhaustive proteomic evidences are still lacking. In this context, a differential proteomic study was performed on tomato anthers collected from two genotypes (thermo-tolerant and thermo-sensitive) to explore stress response mechanisms and identify proteins possibly associated to thermo-tolerance. Results showed that HS mainly affected energy and amino acid metabolism and nitrogen assimilation and modulated the expression of proteins involved in assuring protein quality and ROS detoxification. Moreover, proteins potentially associated to thermo-tolerant features, such as glutamine synthetase, S-adenosylmethionine synthase and polyphenol oxidase, were identified.
Collapse
|
26
|
Rosbakh S, Pacini E, Nepi M, Poschlod P. An Unexplored Side of Regeneration Niche: Seed Quantity and Quality Are Determined by the Effect of Temperature on Pollen Performance. FRONTIERS IN PLANT SCIENCE 2018; 9:1036. [PMID: 30073009 PMCID: PMC6058057 DOI: 10.3389/fpls.2018.01036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/26/2018] [Indexed: 05/21/2023]
Abstract
In 1977, Peter Grubb introduced the regeneration niche concept, which assumes that a plant species cannot persist if the environmental conditions are only suitable for adult plant growth and survival, but not for seed production, dispersal, germination, and seedling establishment. During the last decade, this concept has received considerable research attention as it helps to better understand community assembly, population dynamics, and plant responses to environmental changes. Yet, in its present form, it focuses too much on the post-fertilization stages of plant sexual reproduction, neglecting the fact that the environment can operate as a constraint at many points in the chain of processes necessary for successful regeneration. In this review, we draw the attention of the plant ecology research community to the pre-fertilization stages of plant sexual reproduction, an almost ignored but important aspect of the regeneration niche, and their potential consequences for successful seed production. Particularly, we focus on how temperature affects pollen performance and determines plant reproduction success by playing an important role in the temporal and spatial variations in seed quality and quantity. We also review the pollen adaptations to temperature stresses at different levels of plant organization and discuss the plasticity of the performance of pollen under changing temperature conditions. The reviewed literature demonstrates that pre-fertilization stages of seed production, particularly the extreme sensitivity of male gametophyte performance to temperature, are the key determinants of a species' regeneration niche. Thus, we suggest that previous views stating that the regeneration niche begins with the production of seeds should be modified to include the preceding stages. Lastly, we identify several gaps in pollen-related studies revealing a framework of opportunities for future research, particularly how these findings could be used in the field of plant biology and ecology.
Collapse
Affiliation(s)
- Sergey Rosbakh
- Chair of Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | - Ettore Pacini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Peter Poschlod
- Chair of Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Zhang Z, Hu M, Feng X, Gong A, Cheng L, Yuan H. Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress. Proteomics 2018; 17. [PMID: 28665021 DOI: 10.1002/pmic.201600458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/02/2017] [Indexed: 12/24/2022]
Abstract
In flowering plants, anther development plays crucial role in sexual reproduction. Within the anther, microspore mother cells meiosis produces microspores, which further develop into pollen grains that play decisive role in plant reproduction. Previous studies on anther biology mainly focused on single gene functions relying on genetic and molecular methods. Recently, anther development has been expanded from multiple OMICS approaches like transcriptomics, proteomics/phosphoproteomics, and metabolomics. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins which can characterize proteomes and their modulation during normal development, biotic and abiotic stresses in anther development. In this review, we summarize the achievements of proteomics and phosphoproteomics with anther and pollen organs from model plant and crop species (i.e. Arabidopsis, rice, tobacco). The increased proteomic information facilitated translation of information from the models to crops and thus aid in agricultural improvement.
Collapse
Affiliation(s)
- Zaibao Zhang
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Menghui Hu
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Xiaobing Feng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Andong Gong
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Lin Cheng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Hongyu Yuan
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| |
Collapse
|
28
|
Libault M, Pingault L, Zogli P, Schiefelbein J. Plant Systems Biology at the Single-Cell Level. TRENDS IN PLANT SCIENCE 2017; 22:949-960. [PMID: 28970001 DOI: 10.1016/j.tplants.2017.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system.
Collapse
Affiliation(s)
- Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| | - Lise Pingault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Prince Zogli
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Ghatak A, Chaturvedi P, Paul P, Agrawal GK, Rakwal R, Kim ST, Weckwerth W, Gupta R. Proteomics survey of Solanaceae family: Current status and challenges ahead. J Proteomics 2017; 169:41-57. [PMID: 28528990 DOI: 10.1016/j.jprot.2017.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/19/2017] [Accepted: 05/16/2017] [Indexed: 10/25/2022]
Abstract
Solanaceae is one of the major economically important families of higher plants and has played a central role in human nutrition since the dawn of human civilization. Therefore, researchers have always been interested in understanding the complex behavior of Solanaceae members to identify key transcripts, proteins or metabolites, which are potentially associated with major traits. Proteomics studies have contributed significantly to understanding the physiology of Solanaceae members. A compilation of all the published reports showed that both gel-based (75%) and gel-free (25%) proteomic technologies have been utilized to establish the proteomes of different tissues, organs, and organelles under normal and adverse environmental conditions. Among the Solanaceae members, most of the research has been focused on tomato (42%) followed by potato (28%) and tobacco (20%), owing to their economic importance. This review comprehensively covers the progress made so far in the field of Solanaceae proteomics including novel methods developed to isolate the proteins from different tissues. Moreover, key proteins presented in this review can serve as a resource to select potential targets for crop improvement. We envisage that information presented in this review would enable us to design the stress tolerant plants with enhanced yields.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 68583-0915, USA
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal; Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea.
| |
Collapse
|
30
|
Paul P, Chaturvedi P, Mesihovic A, Ghatak A, Weckwerth W, Schleiff E. Protocol for Enrichment of the Membrane Proteome of Mature Tomato Pollen. Bio Protoc 2017; 7:e2315. [PMID: 34541080 DOI: 10.21769/bioprotoc.2315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/01/2017] [Accepted: 05/02/2017] [Indexed: 11/02/2022] Open
Abstract
We established and elaborated on a method to enrich the membrane proteome of mature pollen from economically relevant crop using the example of Solanum lycopersicum (tomato). To isolate the pollen protein fraction enriched in membrane proteins, a high salt concentration (750 mM of sodium chloride) was used. The membrane protein-enriched fraction was then subjected to shotgun proteomics for identification of proteins, followed by in silico analysis to annotate and classify the detected proteins.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany.,Current address: Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany.,Cluster of Excellence, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany, Germany
| |
Collapse
|
31
|
Ghatak A, Chaturvedi P, Weckwerth W. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:757. [PMID: 28626463 PMCID: PMC5454074 DOI: 10.3389/fpls.2017.00757] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Vienna Metabolomics Center, University of ViennaVienna, Austria
- *Correspondence: Wolfram Weckwerth
| |
Collapse
|
32
|
Grover A, Twell D, Schleiff E. Pollen as a target of environmental changes. PLANT REPRODUCTION 2016; 29:1-2. [PMID: 27282498 DOI: 10.1007/s00497-016-0285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| | - David Twell
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK.
| | - Enrico Schleiff
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt am Main, Germany.
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany.
| |
Collapse
|