1
|
Xia S, Zhao Y, Deng Q, Han X, Wang X. VvRF2b interacts with VvTOR and influences VvTOR-regulated sugar metabolism in grape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112276. [PMID: 39362500 DOI: 10.1016/j.plantsci.2024.112276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The production of top-quality wines is closely related to the quality of the wine grapes. In wine grapes (Vitis vinifera L., Vv), sugar is a crucial determinant of berry quality, regulated by an interplay of various transcription factors and key kinases. Many transcription factors involved in sugar metabolism remain unexplored. Target of Rapamycin (TOR) is an important protein kinase in plants, recently found to regulate sugar metabolism in grapes. However, transcription factors or other factors involved in this process are rarely reported. Here, we utilized transgenic callus tissues from 'Cabernet Sauvignon' grape fruit engineered via gene overexpression (oe) and CRISPR/Cas9-based gene knockout (ko), and discovered a bZIP transcription factor, VvRF2b, whose knockout resulted in increased accumulation of fructose and sucrose, indicating that VvRF2b is a negative regulator of sugar accumulation. Subcellular localization and transcriptional activation tests showed that VvRF2b is an activator of transcription located both in the nucleus and cell membrane. Analysis of VvRF2b and VvTOR gene levels and sugar contents (glucose, fructose, and sucrose) in 'Cabernet Sauvignon' grape fruits at 30, 70, and 90 days after bloom (DAB) revealed that VvRF2b is expressed more highly during fruit development, while VvTOR is expressed more during the sugar accumulation phase, furthermore, VvTOR gene levels in koVvRF2b transgenic calli increased significantly, suggesting a strong relationship between the knockout of VvRF2b and the overexpression of VvTOR. Additionally, bimolecular fluorescence complementation and luciferase complementation assays demonstrated the interaction between VvRF2b and VvTOR proteins. After knocking out the VvRF2b gene in oeVvTOR calli, it was found that the knockout of VvRF2b promotes VvTOR-regulated sucrose accumulation and enhances the expression of sugar metabolism-related genes regulated by VvTOR. In summary, our results suggest that VvRF2b interacts with VvTOR protein and influences VvTOR-regulated sugar metabolism.
Collapse
Affiliation(s)
- Shuang Xia
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ying Zhao
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Qiaoyun Deng
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaoyu Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiuqin Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Gai S, Du B, Xiao Y, Zhang X, Turupu M, Yao Q, Wang X, Yan Y, Li T. bZIP Transcription Factor PavbZIP6 Regulates Anthocyanin Accumulation by Increasing Abscisic Acid in Sweet Cherry. Int J Mol Sci 2024; 25:10207. [PMID: 39337692 PMCID: PMC11432629 DOI: 10.3390/ijms251810207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Basic leucine zipper (bZIP) transcription factors (TFs) play a crucial role in anthocyanin accumulation in plants. In addition to bZIP TFs, abscisic acid (ABA) increases anthocyanin biosynthesis. Therefore, this study aimed to investigate whether bZIP TFs are involved in ABA-induced anthocyanin accumulation in sweet cherry and elucidate the underlying molecular mechanisms. Specifically, the BLAST method was used to identify bZIP genes in sweet cherry. Additionally, we examined the expression of ABA- and anthocyanin-related genes in sweet cherry following the overexpression or knockdown of a bZIP candidate gene. In total, we identified 54 bZIP-encoding genes in the sweet cherry genome. Basic leucine zipper 6 (bZIP6) showed significantly increased expression, along with increased anthocyanin accumulation in sweet cherry. Additionally, yeast one-hybrid and dual-luciferase assays indicated that PavbZIP6 enhanced the expression of anthocyanin biosynthetic genes (PavDFR, PavANS, and PavUFGT), thereby increasing anthocyanin accumulation. Moreover, PavbZIP6 interacted directly with the PavBBX6 promoter, thereby regulating PavNCED1 to promote abscisic acid (ABA) synthesis and enhance anthocyanin accumulation in sweet cherry fruit. Conclusively, this study reveals a novel mechanism by which PavbZIP6 mediates anthocyanin biosynthesis in response to ABA and contributes to our understanding of the mechanism of bZIP genes in the regulation of anthocyanin biosynthesis in sweet cherry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianhong Li
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China; (S.G.); (B.D.); (Y.X.); (X.Z.); (M.T.); (Q.Y.); (X.W.); (Y.Y.)
| |
Collapse
|
3
|
Coomey JH, MacKinnon KJM, McCahill IW, Khahani B, Handakumbura PP, Trabucco GM, Mazzola J, Leblanc NA, Kheam R, Hernandez-Romero M, Barry K, Liu L, Lee JE, Vogel JP, O’Malley RC, Chambers JJ, Hazen SP. Mechanically induced localisation of SECONDARY WALL INTERACTING bZIP is associated with thigmomorphogenic and secondary cell wall gene expression. QUANTITATIVE PLANT BIOLOGY 2024; 5:e5. [PMID: 38774130 PMCID: PMC11106548 DOI: 10.1017/qpb.2024.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Plant growth requires the integration of internal and external cues, perceived and transduced into a developmental programme of cell division, elongation and wall thickening. Mechanical forces contribute to this regulation, and thigmomorphogenesis typically includes reducing stem height, increasing stem diameter, and a canonical transcriptomic response. We present data on a bZIP transcription factor involved in this process in grasses. Brachypodium distachyon SECONDARY WALL INTERACTING bZIP (SWIZ) protein translocated into the nucleus following mechanostimulation. Classical touch-responsive genes were upregulated in B. distachyon roots following touch, including significant induction of the glycoside hydrolase 17 family, which may be unique to grass thigmomorphogenesis. SWIZ protein binding to an E-box variant in exons and introns was associated with immediate activation followed by repression of gene expression. SWIZ overexpression resulted in plants with reduced stem and root elongation. These data further define plant touch-responsive transcriptomics and physiology, offering insights into grass mechanotranduction dynamics.
Collapse
Affiliation(s)
- Joshua H. Coomey
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Kirk J.-M. MacKinnon
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Ian W. McCahill
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Bahman Khahani
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Pubudu P. Handakumbura
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Gina M. Trabucco
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Jessica Mazzola
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | | | - Rithany Kheam
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | - Miriam Hernandez-Romero
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lifeng Liu
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ji E. Lee
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John P. Vogel
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan C. O’Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James J. Chambers
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, USA
| | - Samuel P. Hazen
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
4
|
Cao X, Guo Z, Wang P, Lu S, Li W, Ma Z, Mao J, Chen B. MdbZIP44-MdCPRF2-like- Mdα-GP2 regulate starch and sugar metabolism in apple under nitrogen supply. HORTICULTURE RESEARCH 2024; 11:uhae072. [PMID: 38725457 PMCID: PMC11079487 DOI: 10.1093/hr/uhae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 05/12/2024]
Abstract
Nitrogen (N) is regarded as an essential macronutrient and is tightly associated with carbon (C) metabolism in plants. The transcriptome data obtained from this study showed that the expression level of the apple basic leucine zipper (bZIP) transcription factor (TF) MdbZIP44 was up-regulated in 'Oregon Spur Delicious' (Malus domestica Borkh.) apple fruits under nitrogen supply. MdbZIP44 bound to the promoter of Mdα-GP2 gene and inhibited its expression, thereby promoting starch accumulation and decreasing glucose content in apple and tomato fruits. Besides, overexpression of MdbZIP44 promoted sucrose accumulation by regulating the activities of sucrose metabolism-related enzymes and the expression of sugar metabolism-related genes in apple callus and tomato fruits. Furthermore, biochemical assays indicated that MdbZIP44 directly interacted with MdCPRF2-like, another bZIP gene in apple. Meanwhile, this study found that MdCPRF2-like, along with the MdbZIP44 and MdCPRF2-like complex, could activate the expression of Mdα-GP2, respectively. In conclusion, this study provides a new reference for potential mechanisms underlying that MdbZIP44-MdCPRF2-like-Mdα-GP2 regulates starch and sugar metabolism under nitrogen supply.
Collapse
Affiliation(s)
- Xuejing Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhigang Guo
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741000, China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Wiese AJ, Torutaeva E, Honys D. The transcription factors and pathways underpinning male reproductive development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1354418. [PMID: 38390292 PMCID: PMC10882072 DOI: 10.3389/fpls.2024.1354418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
As Arabidopsis flowers mature, specialized cells within the anthers undergo meiosis, leading to the production of haploid microspores that differentiate into mature pollen grains, each containing two sperm cells for double fertilization. During pollination, the pollen grains are dispersed from the anthers to the stigma for subsequent fertilization. Transcriptomic studies have identified a large number of genes expressed over the course of male reproductive development and subsequent functional characterization of some have revealed their involvement in floral meristem establishment, floral organ growth, sporogenesis, meiosis, microsporogenesis, and pollen maturation. These genes encode a plethora of proteins, ranging from transcriptional regulators to enzymes. This review will focus on the regulatory networks that control male reproductive development, starting from flower development and ending with anther dehiscence, with a focus on transcription factors and some of their notable target genes.
Collapse
Affiliation(s)
- Anna Johanna Wiese
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Elnura Torutaeva
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - David Honys
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Lai H, Wang M, Yan L, Feng C, Tian Y, Tian X, Peng D, Lan S, Zhang Y, Ai Y. Genome-Wide Identification of bZIP Transcription Factors in Cymbidium ensifolium and Analysis of Their Expression under Low-Temperature Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:219. [PMID: 38256772 PMCID: PMC10818551 DOI: 10.3390/plants13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors constitute the most widely distributed and conserved eukaryotic family. They play crucial roles in plant growth, development, and responses to both biotic and abiotic stresses, exerting strong regulatory control over the expression of downstream genes. In this study, a genome-wide characterization of the CebZIP transcription factor family was conducted using bioinformatic analysis. Various aspects, including physicochemical properties, phylogenetics, conserved structural domains, gene structures, chromosomal distribution, gene covariance relationships, promoter cis-acting elements, and gene expression patterns, were thoroughly analyzed. A total of 70 CebZIP genes were identified from the C. ensifolium genome, and they were randomly distributed across 18 chromosomes. The phylogenetic tree clustered them into 11 subfamilies, each exhibiting complex gene structures and conserved motifs arranged in a specific order. Nineteen pairs of duplicated genes were identified among the 70 CebZIP genes, with sixteen pairs affected by purifying selection. Cis-acting elements analysis revealed a plethora of regulatory elements associated with stress response, plant hormones, and plant growth and development. Transcriptome and qRT-PCR results demonstrated that the expression of CebZIP genes was universally up-regulated under low temperature conditions. However, the expression patterns varied among different members. This study provides theoretical references for identifying key bZIP genes in C. ensifolium that confer resistance to low-temperature stress, and lays the groundwork for further research into their broader biological functions.
Collapse
Affiliation(s)
- Huiping Lai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Mengyao Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Lu Yan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Caiyun Feng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Yang Tian
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Xinyue Tian
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Yanping Zhang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Ye Ai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| |
Collapse
|
7
|
Wang S, Zhao Y, Chen Y, Gao M, Wang Y. The Association between BZIP Transcription Factors and Flower Development in Litsea cubeba. Int J Mol Sci 2023; 24:16646. [PMID: 38068969 PMCID: PMC10705912 DOI: 10.3390/ijms242316646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The basic leucine zipper (bZIP) family is one of the largest families of transcription factors among eukaryotic organisms. Members of the bZIP family play various roles in regulating the intricate process of flower development in plants. Litsea cubeba (Lour.) (family: Lauraceae) is an aromatic, dioecious plant used in China for a wide range of applications. However, no study to date has undertaken a comprehensive analysis of the bZIP gene family in L. cubeba. In this work, we identified 68 members of the bZIP gene family in L. cubeba and classified them into 12 subfamilies based on previous studies on Arabidopsis thaliana. Transcriptome data analysis revealed that multiple LcbZIP genes exhibit significantly high expression levels in the flowers of L. cubeba, while some also demonstrate distinct temporal specificity during L. cubeba flower development. In particular, some LcbZIP genes displayed specific and high expression levels during the stamen and pistil degradation process. Using differential gene expression analysis, weighted gene co-expression network analysis, and Gene Ontology enrichment analysis, we identified six candidate LcbZIP genes that potentially regulate stamen or pistil degradation during flower development. In summary, our findings provide a framework for future functional analysis of the LcbZIP gene family in L. cubeba and offer novel insights for investigating the mechanism underlying pistil and stamen degeneration in this plant.
Collapse
Affiliation(s)
- Siqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100000, China; (S.W.); (Y.Z.); (Y.C.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 310000, China
| |
Collapse
|
8
|
Xia Z, Wen B, Shao J, Zhang T, Hu M, Lin L, Zheng Y, Shi Z, Dong X, Song J, Li Y, Wu Y, Yuan Y, Wu J, Chen Q, Chen J. The transcription factor PbrbZIP52 positively affects pear pollen tube longevity by promoting callose synthesis. PLANT PHYSIOLOGY 2023; 191:1734-1750. [PMID: 36617219 PMCID: PMC10022607 DOI: 10.1093/plphys/kiad002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
In pear (Pyrus bretschneideri), pollen tube growth is critical for the double fertilization associated with seed setting, which in turn affects fruit yield. The normal deposition of callose mediates the polar growth of pollen tubes. However, the mechanism regulating callose synthesis in pollen tubes remains relatively uncharacterized. In this study, we revealed that the typical pear pollen tube lifecycle has a semi-growth duration (GD50) of 16.16 h under in vitro culture conditions. Moreover, callose plugs were deposited throughout the pollen tube lifecycle. The formation of callose plugs was inhibited by 2-deoxy-D-glucose, which also accelerated the senescence of pear pollen tubes. Additionally, PbrCalS1B.1, which encodes a plasma membrane-localized callose synthase, was expressed specifically in pollen tubes and restored the fertility of the Arabidopsis (Arabidopsis thaliana) cals5 mutant, in which callose synthesis is inhibited. However, this restoration of fertility was impaired by the transient silencing of PbrCalS1B.1, which restricts callose plug formation and shortens the pear pollen tube lifecycle. More specifically, PbrbZIP52 regulated PbrCalS1B.1 transcription by binding to promoter A-box elements to maintain the periodic formation of callose plugs and normal pollen tube growth, ultimately leading to double fertilization. This study confirmed that PbrbZIP52 positively affects pear pollen tube longevity by promoting callose synthesis. This finding may be useful for breeding high-yielding pear cultivars and stabilizing fruit setting in commercial orchards.
Collapse
Affiliation(s)
- Zhongheng Xia
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binxu Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Shao
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Tianci Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengmeng Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Anxi 362406, China
| | - Yiping Zheng
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China
| | - Zhixin Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinlin Dong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juanjuan Song
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanshan Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongjie Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yafang Yuan
- Department of Horticulture and Landscape Architecture, Fujian Vocational College of Agriculture, Fuzhou 350119, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianqing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Cai Y, Tang C, Lv S, Chen Q, Zhu X, Li X, Qi K, Xie Z, Zhang S, Wang P, Wu J. Elucidation of the GAUT gene family in eight Rosaceae species and function analysis of PbrGAUT22 in pear pollen tube growth. PLANTA 2023; 257:68. [PMID: 36853424 DOI: 10.1007/s00425-023-04103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The phylogenetic relationship and evolutionary history of the GAUT gene family were identified in 8 Rosaseae species. PbrGAUT22 was involved in controlling pollen tube growth by regulating the content of pectins. In plants, galacturonosyltransferases (GAUTs) were involved in homogalacturonan biosynthesis and functioned in maintaining pollen tube cell wall integrity. However, the feature and evolutionary history of the GAUT gene family in Rosaceae species and candidates in pear pollen tube growth remain unclear. Here, we identified 190 GAUT genes in 8 Rosaceae species, including Chinese white pear (Pyrus bretschneideri), European pear (Pyrus communis), apple (Malus × domestica), peach (Prunus persica), Japanese apricot (Prunus mume), sweet cherry (Prunus avium), woodland strawberry (Fragaria vesca) and black raspberry (Rubus occidentalis). Members in GAUT gene family were divided into 4 subfamilies according to the phylogenetic and structural analysis. Whole-genome duplication events and dispersed duplicates drove the expansion of the GAUT gene family. Among 23 pollen-expressed PbrGAUT genes in pear, PbrGAUT22 showed increased expression level during 1-6 h post-cultured pollen tubes. PbrGAUT22 was localized to the cytoplasm and plasma membrane. Knockdown of PbrGAUT22 expression in pollen tubes caused the decrease of pectin content and inhibited pear pollen tubes growth. Taken together, we investigated the identification and evolution of the GAUT gene family in Rosaceae species, and found that PbrGAUT22 played an essential role in the synthesis of pectin and the growth of pear pollen tubes.
Collapse
Affiliation(s)
- Yiling Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
| | - Shouzheng Lv
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxuan Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China.
| |
Collapse
|
10
|
RNAseq-Based Working Model for Transcriptional Regulation of Crosstalk between Simultaneous Abiotic UV-B and Biotic Stresses in Plants. Genes (Basel) 2023; 14:genes14020240. [PMID: 36833168 PMCID: PMC9957429 DOI: 10.3390/genes14020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Plants adjust their secondary metabolism by altering the expression of corresponding genes to cope with both abiotic and biotic stresses. In the case of UV-B radiation, plants produce protective flavonoids; however, this reaction is impeded during pattern-triggered immunity (PTI) induced by pathogens. Pathogen attack can be mimicked by the application of microbial associated molecular patterns (e.g., flg22) to study crosstalk between PTI and UV-B-induced signaling pathways. Switching from Arabidopsis cell cultures to in planta studies, we analyzed whole transcriptome changes to gain a deeper insight into crosstalk regulation. We performed a comparative transcriptomic analysis by RNAseq with four distinct mRNA libraries and identified 10778, 13620, and 11294 genes, which were differentially expressed after flg22, UV-B, and stress co-treatment, respectively. Focusing on genes being either co-regulated with the UV-B inducible marker gene chalcone synthase CHS or the flg22 inducible marker gene FRK1 identified a large set of transcription factors from diverse families, such as MYB, WRKY, or NAC. These data provide a global view of transcriptomic reprogramming during this crosstalk and constitute a valuable dataset for further deciphering the underlying regulatory mechanism(s), which appear to be much more complex than previously anticipated. The possible involvement of MBW complexes in this context is discussed.
Collapse
|
11
|
Yue L, Pei X, Kong F, Zhao L, Lin X. Divergence of functions and expression patterns of soybean bZIP transcription factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1150363. [PMID: 37123868 PMCID: PMC10146240 DOI: 10.3389/fpls.2023.1150363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) is a major protein and oil crop. Soybean basic region/leucine zipper (bZIP) transcription factors are involved in many regulatory pathways, including yield, stress responses, environmental signaling, and carbon-nitrogen balance. Here, we discuss the members of the soybean bZIP family and their classification: 161 members have been identified and clustered into 13 groups. Our review of the transcriptional regulation and functions of soybean bZIP members provides important information for future study of bZIP transcription factors and genetic resources for soybean breeding.
Collapse
Affiliation(s)
- Lin Yue
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xinxin Pei
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| |
Collapse
|
12
|
Zhang P, Liu J, Jia N, Wang M, Lu Y, Wang D, Zhang J, Zhang H, Wang X. Genome-wide identification and characterization of the bZIP gene family and their function in starch accumulation in Chinese chestnut ( Castanea mollissima Blume). FRONTIERS IN PLANT SCIENCE 2023; 14:1166717. [PMID: 37077628 PMCID: PMC10106562 DOI: 10.3389/fpls.2023.1166717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The transcription factors of basic leucine zipper (bZIP) family genes play significant roles in stress response as well as growth and development in plants. However, little is known about the bZIP gene family in Chinese chestnut (Castanea mollissima Blume). To better understand the characteristics of bZIPs in chestnut and their function in starch accumulation, a series of analyses were performed including phylogenetic, synteny, co-expression and yeast one-hybrid analyses. Totally, we identified 59 bZIP genes that were unevenly distributed in the chestnut genome and named them CmbZIP01 to CmbZIP59. These CmbZIPs were clustered into 13 clades with clade-specific motifs and structures. A synteny analysis revealed that segmental duplication was the major driving force of expansion of the CmbZIP gene family. A total of 41 CmbZIP genes had syntenic relationships with four other species. The results from the co-expression analyses indicated that seven CmbZIPs in three key modules may be important in regulating starch accumulation in chestnut seeds. Yeast one-hybrid assays showed that transcription factors CmbZIP13 and CmbZIP35 might participate in starch accumulation in the chestnut seed by binding to the promoters of CmISA2 and CmSBE1_2, respectively. Our study provided basic information on CmbZIP genes, which can be utilized in future functional analysis and breeding studies.
Collapse
Affiliation(s)
- Penglong Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Jing Liu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Nan Jia
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Science, Changli, Hebei, China
| | - Meng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
| | - Yi Lu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
| | - Dongsheng Wang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Jingzheng Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Haie Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Xuan Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
- *Correspondence: Xuan Wang,
| |
Collapse
|
13
|
Transcriptome Analysis and Screening of Genes Associated with Flower Size in Tomato ( Solanum lycopersicum). Int J Mol Sci 2022; 23:ijms232415624. [PMID: 36555271 PMCID: PMC9778759 DOI: 10.3390/ijms232415624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Flower development is not only an important way for tomato reproduction but also an important guarantee for tomato fruit production. Although more and more attention has been paid to the study of flower development, there are few studies on the molecular mechanism and gene expression level of tomato flower development. In this study, RNA-seq analysis was performed on two stages of tomato flower development using the Illumina sequencing platform. A total of 8536 DEGs were obtained by sequencing, including 3873 upregulated DEGs and 4663 down-regulated DEGs. These differentially expressed genes are related to plant hormone signaling, starch and sucrose metabolism. The pathways such as pentose, glucuronate interconversion, and Phenylpropanoid biosynthesis are closely related and mainly involved in plant cellular and metabolic processes. According to the enrichment analysis results of DEGs, active energy metabolism can be inferred during flower development, indicating that flower development requires a large amount of energy and material supply. In addition, some plant hormones, such as GA, may also have effects on flower development. Combined with previous studies, the expression levels of Solyc02g087860 and three of bZIPs were significantly increased in the full flowering stage compared with the flower bud stage, indicating that these genes may be closely related to flower development. These genes were previously reported in Arabidopsis but not in tomatoes. Our next work will conduct a detailed functional analysis of the identified bZIP family genes to characterize their association with tomato flower size. This study will provide new genetic resources for flower formation and provide a basis for tomato yield breeding.
Collapse
|
14
|
Hussain S, Cheng Y, Li Y, Wang W, Tian H, Zhang N, Wang Y, Yuan Y, Hussain H, Lin R, Wang C, Wang T, Wang S. AtbZIP62 Acts as a Transcription Repressor to Positively Regulate ABA Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3037. [PMID: 36432766 PMCID: PMC9699195 DOI: 10.3390/plants11223037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The basic region/leucine zipper (bZIP) transcription factor AtbZIP62 is involved in the regulation of plant responses to abiotic stresses, including drought and salinity stresses, NO3 transport, and basal defense in Arabidopsis. It is unclear if it plays a role in regulating plant responses to abscisic acid (ABA), a phytohormone that can regulate plant abiotic stress responses via regulating downstream ABA-responsive genes. Using RT-PCR analysis, we found that the expression level of AtbZIP62 was increased in response to exogenously applied ABA. Protoplast transfection assays show that AtbZIP62 is predominantly localized in the nucleus and functions as a transcription repressor. To examine the roles of AtbZIP62 in regulating ABA responses, we generated transgenic Arabidopsis plants overexpressing AtbZIP62 and created gene-edited atbzip62 mutants using CRISPR/Cas9. We found that in both ABA-regulated seed germination and cotyledon greening assays, the 35S:AtbZIP62 transgenic plants were hypersensitive, whereas atbzip62 mutants were hyposensitive to ABA. To examine the functional mechanisms of AtbZIP62 in regulating ABA responses, we generated Arabidopsis transgenic plants overexpressing 35S:AtbZIP62-GR, and performed transcriptome analysis to identify differentially expressed genes (DEGs) in the presence and absence of DEX, and found that DEGs are highly enriched in processes including response to abiotic stresses and response to ABA. Quantitative RT-PCR results further show that AtbZIP62 may regulate the expression of several ABA-responsive genes, including USP, ABF2, and SnRK2.7. In summary, our results show that AtbZIP62 is an ABA-responsive gene, and AtbZIP62 acts as a transcription repressor to positively regulate ABA responses in Arabidopsis.
Collapse
Affiliation(s)
- Saddam Hussain
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
15
|
Wang S, Zhang X, Li B, Zhao X, Shen Y, Yuan Z. Genome-wide identification and characterization of bZIP gene family and cloning of candidate genes for anthocyanin biosynthesis in pomegranate (Punica granatum). BMC PLANT BIOLOGY 2022; 22:170. [PMID: 35379169 PMCID: PMC8978422 DOI: 10.1186/s12870-022-03560-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factor is one of the most abundant and conserved gene families in eukaryotes. In addition to participating in plant development and growth, bZIP transcription factors play crucial roles in various abiotic stress responses and anthocyanin accumulation. Up to now, analysis of bZIP gene family members in pomegranate (Punica granatum) has not been reported. Three published pomegranate genome sequences provide valuable resources for further gene function analysis. RESULTS Using bioinformatics analysis, 65 PgbZIPs were identified and analyzed from the 'Taishanhong' pomegranate genome. We divided them into 13 groups (A, B, C, D, E, F, G, H, I, J, K, M, and S) according to the phylogenetic relationship with those of Arabidopsis, each containing a different number of genes. The regularity of exon/intron number and distribution was consistent with the classification of groups in the evolutionary tree. Transcriptome analysis of different tissues showed that members of the PgbZIP gene family were differentially expressed in different developmental stages and tissues of pomegranate. Among them, we selected PgbZIP16 and PgbZIP34 as candidate genes which affect anthocyanin accumulation. The full-length CDS region of PgbZIP16 and PgbZIP34 were cloned from pomegranate petals by homologous cloning technique, encoding 170 and 174 amino acids, which were 510 bp and 522 bp, respectively. Subcellular localization assays suggested that both PgbZIP16 and PgbZIP34 were nucleus-localized. Real-time quantitative PCR (qPCR) was used to explore the expression of PgbZIP16 and PgbZIP34 in the petals of three kinds of ornamental pomegranates at the full flowering stage. The results demonstrated that the expression of PgbZIP16 in red petals was 5.83 times of that in white petals, while PgbZIP34 was 3.9 times. The results of transient expression in tobacco showed that consistent trends were observed in anthocyanin concentration and expression levels of related genes, which both increased and then decreased. Both PgbZIP16 and PgbZIP34 could promote anthocyanin accumulation in tobacco leaves. We obtained transgenic strains overexpressing PgbZIP16, and the histochemical staining for GUS activity showed that overexpressed PgbZIP16 seedlings were expressed in the stem. Transgenic experiments indicated that overexpression of PgbZIP16 significantly upregulated UF3GT, ANS and DFR genes in Arabidopsis and enhanced anthocyanin accumulation. CONCLUSIONS The whole genome identification, gene structure, phylogeny, gene cloning, subcellular location and functional verification of the pomegranate bZIP gene family provide a theoretical foundation for the functional study of the PgbZIP gene family and candidate genes for anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Sha Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Bianbian Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
16
|
Interactome of Arabidopsis Thaliana. PLANTS 2022; 11:plants11030350. [PMID: 35161331 PMCID: PMC8838453 DOI: 10.3390/plants11030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/24/2023]
Abstract
More than 95,000 protein–protein interactions of Arabidopsis thaliana have been published and deposited in databases. This dataset was supplemented by approximately 900 additional interactions, which were identified in the literature from the years 2002–2021. These protein–protein interactions were used as the basis for a Cytoscape network and were supplemented with data on subcellular localization, gene ontologies, biochemical properties and co-expression. The resulting network has been exemplarily applied in unraveling the PPI-network of the plant vacuolar proton-translocating ATPase (V-ATPase), which was selected due to its central importance for the plant cell. In particular, it is involved in cellular pH homeostasis, providing proton motive force necessary for transport processes, trafficking of proteins and, thereby, cell wall synthesis. The data points to regulation taking place on multiple levels: (a) a phosphorylation-dependent regulation by 14-3-3 proteins and by kinases such as WNK8 and NDPK1a, (b) an energy-dependent regulation via HXK1 and the glucose receptor RGS1 and (c) a Ca2+-dependent regulation by SOS2 and IDQ6. The known importance of V-ATPase for cell wall synthesis is supported by its interactions with several proteins involved in cell wall synthesis. The resulting network was further analyzed for (experimental) biases and was found to be enriched in nuclear, cytosolic and plasma membrane proteins but depleted in extracellular and mitochondrial proteins, in comparison to the entity of protein-coding genes. Among the processes and functions, proteins involved in transcription were highly abundant in the network. Subnetworks were extracted for organelles, processes and protein families. The degree of representation of organelles and processes reveals limitations and advantages in the current knowledge of protein–protein interactions, which have been mainly caused by a high number of database entries being contributed by only a few publications with highly specific motivations and methodologies that favor, for instance, interactions in the cytosol and the nucleus.
Collapse
|
17
|
Han X, Wei X, Lu W, Wu Q, Mao L, Luo Z. Transcriptional regulation of KCS gene by bZIP29 and MYB70 transcription factors during ABA-stimulated wound suberization of kiwifruit (Actinidia deliciosa). BMC PLANT BIOLOGY 2022; 22:23. [PMID: 34998386 PMCID: PMC8742354 DOI: 10.1186/s12870-021-03407-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.
Collapse
Affiliation(s)
- Xueyuan Han
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Xiaopeng Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Wenjing Lu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiong Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
18
|
Zhao L, Liu L, Liu Y, Dou X, Cai H, Aslam M, Hou Z, Jin X, Li Y, Wang L, Zhao H, Wang X, Sicard A, Qin Y. Characterization of germline development and identification of genes associated with germline specification in pineapple. HORTICULTURE RESEARCH 2021; 8:239. [PMID: 34719672 PMCID: PMC8558326 DOI: 10.1038/s41438-021-00669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 05/04/2023]
Abstract
Understanding germline specification in plants could be advantageous for agricultural applications. In recent decades, substantial efforts have been made to understand germline specification in several plant species, including Arabidopsis, rice, and maize. However, our knowledge of germline specification in many agronomically important plant species remains obscure. Here, we characterized the female germline specification and subsequent female gametophyte development in pineapple using callose staining, cytological, and whole-mount immunolocalization analyses. We also determined the male germline specification and gametophyte developmental timeline and observed male meiotic behavior using chromosome spreading assays. Furthermore, we identified 229 genes that are preferentially expressed at the megaspore mother cell (MMC) stage during ovule development and 478 genes that are preferentially expressed at the pollen mother cell (PMC) stage of anther development using comparative transcriptomic analysis. The biological functions, associated regulatory pathways and expression patterns of these genes were also analyzed. Our study provides a convenient cytological reference for exploring pineapple germline development and a molecular basis for the future functional analysis of germline specification in related plant species.
Collapse
Affiliation(s)
- Lihua Zhao
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Liping Liu
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Liu
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianying Dou
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyang Cai
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Zhimin Hou
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingyue Jin
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Li
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Heming Zhao
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Yuan Qin
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
19
|
You C, Zhang Y, Yang S, Wang X, Yao W, Jin W, Wang W, Hu X, Yang H. Proteomic Analysis of Generative and Vegetative Nuclei Reveals Molecular Characteristics of Pollen Cell Differentiation in Lily. FRONTIERS IN PLANT SCIENCE 2021; 12:641517. [PMID: 34163497 PMCID: PMC8215658 DOI: 10.3389/fpls.2021.641517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/01/2021] [Indexed: 06/13/2023]
Abstract
In plants, the cell fates of a vegetative cell (VC) and generative cell (GC) are determined after the asymmetric division of the haploid microspore. The VC exits the cell cycle and grows a pollen tube, while the GC undergoes further mitosis to produce two sperm cells for double fertilization. However, our understanding of the mechanisms underlying their fate differentiation remains limited. One major advantage of the nuclear proteome analysis is that it is the only method currently able to uncover the systemic differences between VC and GC due to GC being engulfed within the cytoplasm of VC, limiting the use of transcriptome. Here, we obtained pure preparations of the vegetative cell nuclei (VNs) and generative cell nuclei (GNs) from germinating lily pollens. Utilizing these high-purity VNs and GNs, we compared the differential nucleoproteins between them using state-of-the-art quantitative proteomic techniques. We identified 720 different amount proteins (DAPs) and grouped the results in 11 fate differentiation categories. Among them, we identified 29 transcription factors (TFs) and 10 cell fate determinants. Significant differences were found in the molecular activities of vegetative and reproductive nuclei. The TFs in VN mainly participate in pollen tube development. In comparison, the TFs in GN are mainly involved in cell differentiation and male gametogenesis. The identified novel TFs may play an important role in cell fate differentiation. Our data also indicate differences in nuclear pore complexes and epigenetic modifications: more nucleoporins synthesized in VN; more histone variants and chaperones; and structural maintenance of chromosome (SMC) proteins, chromatin remodelers, and DNA methylation-related proteins expressed in GN. The VC has active macromolecular metabolism and mRNA processing, while GC has active nucleic acid metabolism and translation. Moreover, the members of unfolded protein response (UPR) and programmed cell death accumulate in VN, and DNA damage repair is active in GN. Differences in the stress response of DAPs in VN vs. GN were also found. This study provides a further understanding of pollen cell differentiation mechanisms and also a sound basis for future studies of the molecular mechanisms behind cell fate differentiation.
Collapse
Affiliation(s)
- Chen You
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - YuPing Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - ShaoYu Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xu Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wen Yao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - WeiHuan Jin
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - XiuLi Hu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hao Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Evans DE, Mermet S, Tatout C. Advancing knowledge of the plant nuclear periphery and its application for crop science. Nucleus 2021; 11:347-363. [PMID: 33295233 PMCID: PMC7746251 DOI: 10.1080/19491034.2020.1838697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, we explore recent advances in knowledge of the structure and dynamics of the plant nuclear envelope. As a paradigm, we focused our attention on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, a structurally conserved bridging complex comprising SUN domain proteins in the inner nuclear membrane and KASH domain proteins in the outer nuclear membrane. Studies have revealed that this bridging complex has multiple functions with structural roles in positioning the nucleus within the cell, conveying signals across the membrane and organizing chromatin in the 3D nuclear space with impact on gene transcription. We also provide an up-to-date survey in nuclear dynamics research achieved so far in the model plant Arabidopsis thaliana that highlights its potential impact on several key plant functions such as growth, seed maturation and germination, reproduction and response to biotic and abiotic stress. Finally, we bring evidences that most of the constituents of the LINC Complex and associated components are, with some specificities, conserved in monocot and dicot crop species and are displaying very similar functions to those described for Arabidopsis. This leads us to suggest that a better knowledge of this system and a better account of its potential applications will in the future enhance the resilience and productivity of crop plants.
Collapse
Affiliation(s)
- David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University , Oxford, UK
| | - Sarah Mermet
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Christophe Tatout
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| |
Collapse
|
21
|
Wang Q, Guo C, Li Z, Sun J, Wang D, Xu L, Li X, Guo Y. Identification and Analysis of bZIP Family Genes in Potato and Their Potential Roles in Stress Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:637343. [PMID: 34122468 PMCID: PMC8193719 DOI: 10.3389/fpls.2021.637343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 05/27/2023]
Abstract
The bZIP proteins comprise one of the largest transcription factor families and play important roles in plant growth and development, senescence, metabolic reactions, and stress responses. In this study, 49 bZIP transcription factor-encoding genes (StbZIP genes) on the potato genome were identified and analyzed. The 49 StbZIP genes, which are located on 12 chromosomes of the potato genome, were divided into 11 subgroups together with their Arabidopsis homologs based on the results of phylogenetic analysis. Gene structure and protein motif analysis revealed that members from the same subgroup often possessed similar exon/intron structures and motif organizations, further supporting the results of the phylogenetic analysis. Syntenic analysis indicated the existence of gene duplication events, which might play an important role in the expansion of the bZIP gene family in potato. Expressions of the StbZIP genes were analyzed in a variety of tissues via RNA-Seq data, suggesting functional diversity. Several StbZIP genes were found to be induced by different stress conditions. For example, the expression of StbZIP25, the close homolog of AtbZIP36/ABF2, was significantly upregulated by salt stress treatments. The StbZIP25 protein was found to be located in the nucleus and function as a transcriptional activator. Overexpression of StbZIP25 enhanced salt tolerance in Arabidopsis. The results from this study imply potential roles of the bZIP family genes in the stress response of potato.
Collapse
Affiliation(s)
- Qi Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cun Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinhao Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Wang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Liangtao Xu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
22
|
Liu H, Luo C, Chen D, Wang Y, Guo S, Chen X, Bai J, Li M, Huang X, Cheng X, Huang C. Whole-transcriptome analysis of differentially expressed genes in the mutant and normal capitula of Chrysanthemum morifolium. BMC Genom Data 2021; 22:2. [PMID: 33568073 PMCID: PMC7853313 DOI: 10.1186/s12863-021-00959-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chrysanthemum morifolium is one of the most economically important and popular floricultural crops in the family Asteraceae. Chrysanthemum flowers vary considerably in terms of colors and shapes. However, the molecular mechanism controlling the development of chrysanthemum floral colors and shapes remains an enigma. We analyzed a cut-flower chrysanthemum variety that produces normal capitula composed of ray florets with normally developed pistils and purple corollas and mutant capitula comprising ray florets with green corollas and vegetative buds instead of pistils. RESULTS We conducted a whole-transcriptome analysis of the differentially expressed genes (DEGs) in the mutant and normal capitula using third-generation and second-generation sequencing techniques. We identified the DEGs between the mutant and normal capitula to reveal important regulators underlying the differential development. Many transcription factors and genes related to the photoperiod and GA pathways, floral organ identity, and the anthocyanin biosynthesis pathway were differentially expressed between the normal and mutant capitula. A qualitative analysis of the pigments in the florets of normal and mutant capitula indicated anthocyanins were synthesized and accumulated in the florets of normal capitula, but not in the florets of mutant capitula. These results provide clues regarding the molecular basis of the replacement of Chrysanthemum morifolium ray florets with normally developed pistils and purple corollas with mutant ray florets with green corollas and vegetative buds. Additionally, the study findings will help to elucidate the molecular mechanisms underlying floral organ development and contribute to the development of techniques for studying the regulation of flower shape and color, which may enhance chrysanthemum breeding. CONCLUSIONS The whole-transcriptome analysis of DEGs in mutant and normal C. morifolium capitula described herein indicates the anthocyanin deficiency of the mutant capitula may be related to the mutation that replaces ray floret pistils with vegetative buds. Moreover, pistils may be required for the anthocyanin biosynthesis in the corollas of chrysanthemum ray florets.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Chang Luo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Dongliang Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Yaqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Guo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xiaoxi Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Jingyi Bai
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Mingyuan Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xinlei Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xi Cheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Conglin Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China.
| |
Collapse
|
23
|
Liu H, Luo C, Chen D, Wang Y, Guo S, Chen X, Bai J, Li M, Huang X, Cheng X, Huang C. Whole-transcriptome analysis of differentially expressed genes in the mutant and normal capitula of Chrysanthemum morifolium. BMC Genom Data 2021; 22:2. [PMID: 33568073 DOI: 10.21203/rs.3.rs-27505/v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/05/2021] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Chrysanthemum morifolium is one of the most economically important and popular floricultural crops in the family Asteraceae. Chrysanthemum flowers vary considerably in terms of colors and shapes. However, the molecular mechanism controlling the development of chrysanthemum floral colors and shapes remains an enigma. We analyzed a cut-flower chrysanthemum variety that produces normal capitula composed of ray florets with normally developed pistils and purple corollas and mutant capitula comprising ray florets with green corollas and vegetative buds instead of pistils. RESULTS We conducted a whole-transcriptome analysis of the differentially expressed genes (DEGs) in the mutant and normal capitula using third-generation and second-generation sequencing techniques. We identified the DEGs between the mutant and normal capitula to reveal important regulators underlying the differential development. Many transcription factors and genes related to the photoperiod and GA pathways, floral organ identity, and the anthocyanin biosynthesis pathway were differentially expressed between the normal and mutant capitula. A qualitative analysis of the pigments in the florets of normal and mutant capitula indicated anthocyanins were synthesized and accumulated in the florets of normal capitula, but not in the florets of mutant capitula. These results provide clues regarding the molecular basis of the replacement of Chrysanthemum morifolium ray florets with normally developed pistils and purple corollas with mutant ray florets with green corollas and vegetative buds. Additionally, the study findings will help to elucidate the molecular mechanisms underlying floral organ development and contribute to the development of techniques for studying the regulation of flower shape and color, which may enhance chrysanthemum breeding. CONCLUSIONS The whole-transcriptome analysis of DEGs in mutant and normal C. morifolium capitula described herein indicates the anthocyanin deficiency of the mutant capitula may be related to the mutation that replaces ray floret pistils with vegetative buds. Moreover, pistils may be required for the anthocyanin biosynthesis in the corollas of chrysanthemum ray florets.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Chang Luo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Dongliang Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Yaqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Guo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xiaoxi Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Jingyi Bai
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Mingyuan Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xinlei Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xi Cheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Conglin Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing, Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China.
| |
Collapse
|
24
|
Arabidopsis bZIP18 and bZIP52 Accumulate in Nuclei Following Heat Stress where They Regulate the Expression of a Similar Set of Genes. Int J Mol Sci 2021; 22:ijms22020530. [PMID: 33430325 PMCID: PMC7830406 DOI: 10.3390/ijms22020530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/07/2023] Open
Abstract
Heat stress (HS) is a major abiotic stress that negatively impacts crop yields across the globe. Plants respond to elevated temperatures by changing gene expression, mediated by transcription factors (TFs) functioning to enhance HS tolerance. The involvement of Group I bZIP TFs in the heat stress response (HSR) is not known. In this study, bZIP18 and bZIP52 were investigated for their possible role in the HSR. Localization experiments revealed their nuclear accumulation following heat stress, which was found to be triggered by dephosphorylation. Both TFs were found to possess two motifs containing serine residues that are candidates for phosphorylation. These motifs are recognized by 14–3–3 proteins, and bZIP18 and bZIP52 were found to bind 14–3–3 ε, the interaction of which sequesters them to the cytoplasm. Mutation of both residues abolished 14–3–3 ε interaction and led to a strict nuclear localization for both TFs. RNA-seq analysis revealed coordinated downregulation of several metabolic pathways including energy metabolism and translation, and upregulation of numerous lncRNAs in particular. These results support the idea that bZIP18 and bZIP52 are sequestered to the cytoplasm under control conditions, and that heat stress leads to their re-localization to nuclei, where they jointly regulate gene expression.
Collapse
|
25
|
Liu SX, Qin B, Fang QX, Zhang WJ, Zhang ZY, Liu YC, Li WJ, Du C, Liu XX, Zhang YL, Guo YX. Genome-wide identification, phylogeny and expression analysis of the bZIP gene family in Alfalfa ( Medicago sativa). BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1938674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Shu-Xia Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Laboratory of Economic Plants, Crop Cultivation Center, Daqing Branch of Heilongjiang Academy of Sciences, Daqing, Heilongjiang, PR China
| | - Bin Qin
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Qing-xi Fang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Wen-Jing Zhang
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Zhe-Yu Zhang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yang-Cheng Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wei-Jia Li
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Chao Du
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Xian-xian Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - You-li Zhang
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Yong-Xia Guo
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| |
Collapse
|
26
|
Rong S, Wu Z, Cheng Z, Zhang S, Liu H, Huang Q. Genome-Wide Identification, Evolutionary Patterns, and Expression Analysis of bZIP Gene Family in Olive ( Olea europaea L.). Genes (Basel) 2020; 11:genes11050510. [PMID: 32380769 PMCID: PMC7288668 DOI: 10.3390/genes11050510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Olive (Olea europaea.L) is an economically important oleaginous crop and its fruit cold-pressed oil is used for edible oil all over the world. The basic region-leucine zipper (bZIP) family is one of the largest transcription factors families among eukaryotic organisms; its members play vital roles in environmental signaling, stress response, plant growth, seed maturation, and fruit development. However, a comprehensive report on the bZIP gene family in olive is lacking. In this study, 103 OebZIP genes from the olive genome were identified and divided into 12 subfamilies according to their genetic relationship with 78 bZIPs of A. thaliana. Most OebZIP genes are clustered in the subgroup that has a similar gene structure and conserved motif distribution. According to the characteristics of the leucine zipper region, the dimerization characteristics of 103 OebZIP proteins were predicted. Gene duplication analyses revealed that 22 OebZIP genes were involved in the expansion of the bZIP family. To evaluate the expression patterns of OebZIP genes, RNA-seq data available in public databases were analyzed. The highly expressed OebZIP genes and several lipid synthesis genes (LPGs) in fruits of two varieties with different oil contents during the fast oil accumulation stage were examined via qRT-PCR. By comparing the dynamic changes of oil accumulation, OebZIP1, OebZIP7, OebZIP22, and OebZIP99 were shown to have a close relationship with fruit development and lipid synthesis. Additionally, some OebZIP had a significant positive correlation with various LPG genes. This study gives insights into the structural features, evolutionary patterns, and expression analysis, laying a foundation to further reveal the function of the 103 OebZIP genes in olive.
Collapse
|
27
|
Matoušek J, Steinbachová L, Drábková LZ, Kocábek T, Potěšil D, Mishra AK, Honys D, Steger G. Elimination of Viroids from Tobacco Pollen Involves a Decrease in Propagation Rate and an Increase of the Degradation Processes. Int J Mol Sci 2020; 21:E3029. [PMID: 32344786 PMCID: PMC7216239 DOI: 10.3390/ijms21083029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Some viroids-single-stranded, non-coding, circular RNA parasites of plants-are not transmissible through pollen to seeds and to next generation. We analyzed the cause for the elimination of apple fruit crinkle viroid (AFCVd) and citrus bark cracking viroid (CBCVd) from male gametophyte cells of Nicotiana tabacum by RNA deep sequencing and molecular methods using infected and transformed tobacco pollen tissues at different developmental stages. AFCVd was not transferable from pollen to seeds in reciprocal pollinations, due to a complete viroid eradication during the last steps of pollen development and fertilization. In pollen, the viroid replication pathway proceeds with detectable replication intermediates, but is dramatically depressed in comparison to leaves. Specific and unspecific viroid degradation with some preference for (-) chains occurred in pollen, as detected by analysis of viroid-derived small RNAs, by quantification of viroid levels and by detection of viroid degradation products forming "comets" on Northern blots. The decrease of viroid levels during pollen development correlated with mRNA accumulation of several RNA-degrading factors, such as AGO5 nuclease, DICER-like and TUDOR S-like nuclease. In addition, the functional status of pollen, as a tissue with high ribosome content, could play a role during suppression of AFCVd replication involving transcription factors IIIA and ribosomal protein L5.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Lenka Záveská Drábková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany
| |
Collapse
|
28
|
Yang Y, Li J, Li H, Yang Y, Guang Y, Zhou Y. The bZIP gene family in watermelon: genome-wide identification and expression analysis under cold stress and root-knot nematode infection. PeerJ 2019; 7:e7878. [PMID: 31637131 PMCID: PMC6800529 DOI: 10.7717/peerj.7878] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
The basic leucine zipper (bZIP) family transcription factors play crucial roles in regulating plant development and stress response. In this study, we identified 62 ClabZIP genes from watermelon genome, which were unevenly distributed across the 11 chromosomes. These ClabZIP proteins could be classified into 13 groups based on the phylogenetic relationships, and members in the same group showed similar compositions of conserved motifs and gene structures. Transcriptome analysis revealed that a number of ClabZIP genes have important roles in the melatonin (MT) induction of cold tolerance. In addition, some ClabZIP genes were induced or repressed under red light (RL) or root-knot nematode infection according to the transcriptome data, and the expression patterns of several ClabZIP genes were further verified by quantitative real-time PCR, revealing their possible roles in RL induction of watermelon defense against nematode infection. Our results provide new insights into the functions of different ClabZIP genes in watermelon and their roles in response to cold stress and nematode infection.
Collapse
Affiliation(s)
- Youxin Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jingwen Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Hao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Yingui Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yelan Guang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Department of Biochemistry and Molecular Biology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
29
|
Liu D, Shi S, Hao Z, Xiong W, Luo M. OsbZIP81, A Homologue of Arabidopsis VIP1, May Positively Regulate JA Levels by Directly Targetting the Genes in JA Signaling and Metabolism Pathway in Rice. Int J Mol Sci 2019; 20:ijms20092360. [PMID: 31086007 PMCID: PMC6539606 DOI: 10.3390/ijms20092360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops in the world. In plants, jasmonic acid (JA) plays essential roles in response to biotic and abiotic stresses. As one of the largest transcription factors (TFs), basic region/leucine zipper motif (bZIP) TFs play pivotal roles through the whole life of plant growth. However, the relationship between JA and bZIP TFs were rarely reported, especially in rice. In this study, we found two rice homologues of Arabidopsis VIP1 (VirE2-interacting protein 1), OsbZIP81, and OsbZIP84. OsbZIP81 has at least two alternative transcripts, OsbZIP81.1 and OsbZIP81.2. OsbZIP81.1 and OsbZIP84 are typical bZIP TFs, while OsbZIP81.2 is not. OsbZIP81.1 can directly bind OsPIOX and activate its expression. In OsbZIP81.1 overexpression transgenic rice plant, JA (Jasmonic Acid) and SA (Salicylic acid) were up-regulated, while ABA (Abscisic acid) was down-regulated. Moreover, Agrobacterium, Methyl Jasmonic Acid (MeJA), and PEG6000 can largely induce OsbZIP81. Based on ChIP-Seq and Random DNA Binding Selection Assay (RDSA), we identified a novel cis-element OVRE (Oryza VIP1 response element). Combining ChIP-Seq and RNA-Seq, we obtained 1332 targeted genes that were categorized in biotic and abiotic responses, including α-linolenic acid metabolism and fatty acid degradation. Together, these results suggest that OsbZIP81 may positively regulate JA levels by directly targeting the genes in JA signaling and metabolism pathway in rice.
Collapse
Affiliation(s)
- Defang Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaopeng Shi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhijun Hao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wentao Xiong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Tsugama D, Liu S, Fujino K, Takano T. Calcium signalling regulates the functions of the bZIP protein VIP1 in touch responses in Arabidopsis thaliana. ANNALS OF BOTANY 2018; 122:1219-1229. [PMID: 30010769 PMCID: PMC6324745 DOI: 10.1093/aob/mcy125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/12/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS VIP1 is a bZIP transcription factor in Arabidopsis thaliana. VIP1 and its close homologues transiently accumulate in the nucleus when cells are exposed to hypo-osmotic and/or mechanical stress. Touch-induced root bending is enhanced in transgenic plants overexpressing a repression domain-fused form of VIP1 (VIP1-SRDXox), suggesting that VIP1, possibly with its close homologues, suppresses touch-induced root bending. The aim of this study was to identify regulators of these functions of VIP1 in mechanical stress responses. METHODS Co-immunoprecipitation analysis using VIP1-GFP fusion protein expressed in Arabidopsis plants identified calmodulins as VIP1-GFP interactors. In vitro crosslink analysis was performed using a hexahistidine-tagged calmodulin and glutathione S-transferase-fused forms of VIP1 and its close homologues. Plants expressing GFP-fused forms of VIP1 and its close homologues (bZIP59 and bZIP29) were submerged in hypotonic solutions containing divalent cation chelators, EDTA and EGTA, and a potential calmodulin inhibitor, chlorpromazine, to examine their effects on the nuclear-cytoplasmic shuttling of those proteins. VIP1-SRDXox plants were grown on medium containing 40 mm CaCl2, 40 mm MgCl2 or 80 mm NaCl. MCA1 and MCA2 are mechanosensitive calcium channels, and the hypo-osmotic stress-dependent nuclear-cytoplasmic shuttling of VIP1-GFP in the mca1 mca2 double knockout mutant background was examined. KEY RESULTS In vitro crosslink products were detected in the presence of CaCl2, but not in its absence. EDTA, EGTA and chlorpromazine all inhibited both the nuclear import and the nuclear export of VIP1-GFP, bZIP59-GFP and bZIP29-GFP. Either 40 mm CaCl2or 80 mm NaCl enhanced the VIP-SRDX-dependent root bending. The nuclear-cytoplasmic shuttling of VIP1 was observed even in the mca1 mca2 mutant. CONCLUSIONS VIP1 and its close homologues can interact with calmodulins. Their nuclear-cytoplasmic shuttling requires neither MCA1 nor MCA2, but does require calcium signalling. Salt stress affects the VIP1-dependent regulation of root bending.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
- For correspondence. E-mail:
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, PR China
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
31
|
Kumar P, Mishra A, Sharma H, Sharma D, Rahim MS, Sharma M, Parveen A, Jain P, Verma SK, Rishi V, Roy J. Pivotal role of bZIPs in amylose biosynthesis by genome survey and transcriptome analysis in wheat (Triticum aestivum L.) mutants. Sci Rep 2018; 8:17240. [PMID: 30467374 PMCID: PMC6250691 DOI: 10.1038/s41598-018-35366-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/31/2018] [Indexed: 11/09/2022] Open
Abstract
Starch makes up 70% of the wheat grain, and is an important source of calories for humans, however, the overconsumption of wheat starch may contribute to nutrition-associated health problems. The challenge is to develop resistant starch including high amylose wheat varieties with health benefits. Adapting advance genomic approaches in EMS-induced mutant lines differing in amylose content, basic leucine zipper (bZIP) regulatory factors that may play role in controlling amylose biosynthesis were identified in wheat. bZIP transcription factors are key regulators of starch biosynthesis genes in rice and maize, but their role in regulating these genes in wheat is poorly understood. A genome-wide survey identified 370 wheat bZIPs, clustered in 11 groups, showing variations in amino acids composition and predicted physicochemical properties. Three approaches namely, whole transcriptome sequencing, qRT-PCR, and correlation analysis in contrasting high and low amylose mutants and their parent line identified 24 candidate bZIP (positive and negative regulators), suggesting bZIPs role in high amylose biosynthesis. bZIPs positive role in high amylose biosynthesis is not known. In silico interactome studies of candidate wheat bZIP homologs in Arabidopsis and rice identified their putative functional role. The identified bZIPs are involved in stress-related pathways, flower and seed development, and starch biosynthesis. An in-depth analysis of molecular mechanism of novel candidate bZIPs may help in raising and improving high amylose wheat varieties.
Collapse
Affiliation(s)
- Pankaj Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Ankita Mishra
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | - Mohammed Saba Rahim
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
- Department of Plant Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Monica Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Afsana Parveen
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Prateek Jain
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India.
| |
Collapse
|
32
|
Dröge-Laser W, Snoek BL, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:36-49. [PMID: 29860175 DOI: 10.1016/j.pbi.2018.05.001] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 05/18/2023]
Abstract
The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups.
Collapse
Affiliation(s)
- Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| |
Collapse
|
33
|
Wang X, Li X, Li M, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J. BnaA.bZIP1 Negatively Regulates a Novel Small Peptide Gene, BnaC.SP6, Involved in Pollen Activity. FRONTIERS IN PLANT SCIENCE 2017; 8:2117. [PMID: 29312383 PMCID: PMC5732959 DOI: 10.3389/fpls.2017.02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Small peptides secreted to the extracellular matrix control many aspects of the plant's physiological activities which were identified in Arabidopsis thaliana, called ATSPs. Here, we isolated and characterized the small peptide gene Bna.SP6 from Brassica napus. The BnaC.SP6 promoter was cloned and identified. Promoter deletion analysis suggested that the -447 to -375 and -210 to -135 regions are crucial for the silique septum and pollen expression of BnaC.SP6, respectively. Furthermore, the minimal promoter region of p158 (-210 to -52) was sufficient for driving gene expression specifically in pollen and highly conserved in Brassica species. In addition, BnaA.bZIP1 was predominantly expressed in anthers where BnaC.SP6 was also expressed, and was localized to the nuclei. BnaA.bZIP1 possessed transcriptional activation activity in yeast and protoplast system. It could specifically bind to the C-box in p158 in vitro, and negatively regulate p158 activity in vivo. BnaA.bZIP1 functions as a transcriptional repressor of BnaC.SP6 in pollen activity. These results provide novel insight into the transcriptional regulation of BnaC.SP6 in pollen activity and the pollen/anther-specific promoter regions of BnaC.SP6 may have their potential agricultural application for new male sterility line generation.
Collapse
|
34
|
Záveská Drábková L, Honys D. Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development. PLoS One 2017; 12:e0187331. [PMID: 29131847 PMCID: PMC5683620 DOI: 10.1371/journal.pone.0187331] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022] Open
Abstract
Callose is a plant-specific polysaccharide (β-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants.
Collapse
Affiliation(s)
- Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Praha 6, Czech Republic
- * E-mail: (LZD); (DH)
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Praha 6, Czech Republic
- * E-mail: (LZD); (DH)
| |
Collapse
|