1
|
Dama F, Sinoquet C. Partially Hidden Markov Chain Multivariate Linear Autoregressive model: inference and forecasting—application to machine health prognostics. Mach Learn 2022. [DOI: 10.1007/s10994-022-06209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractTime series subject to regime shifts have attracted much interest in domains such as econometry, finance or meteorology. For discrete-valued regimes, models such as the popular Hidden Markov Chain (HMC) describe time series whose state process is unknown at all time-steps. Sometimes, time series are annotated. Thus, another category of models handles the case with regimes observed at all time-steps. We present a novel model which addresses the intermediate case: (i) state processes associated to such time series are modelled by Partially Hidden Markov Chains (PHMCs); (ii) a multivariate linear autoregressive (MLAR) model drives the dynamics of the time series, within each regime. We describe a variant of the expectation maximization (EM) algorithm devoted to PHMC-MLAR model learning. We propose a hidden state inference procedure and a forecasting function adapted to the semi-supervised framework. We first assess inference and prediction performances, and analyze EM convergence times for PHMC-MLAR, using simulated data. We show the benefits of using partially observed states as well as a fully labelled scheme with unreliable labels, to decrease EM convergence times. We highlight the robustness of PHMC-MLAR to labelling errors in inference and prediction tasks. Finally, using turbofan engine data from a NASA repository, we show that PHMC-MLAR outperforms or largely outperforms other models: PHMC and MSAR (Markov Switching AutoRegressive model) for the feature prediction task, PHMC and five out of six recent state-of-the-art methods for the prediction of machine useful remaining life.
Collapse
|
2
|
A Hidden Markov Model-based fuzzy modeling of multivariate time series. Soft comput 2022. [DOI: 10.1007/s00500-022-07623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Mbo Nkoulou LF, Ngalle HB, Cros D, Adje COA, Fassinou NVH, Bell J, Achigan-Dako EG. Perspective for genomic-enabled prediction against black sigatoka disease and drought stress in polyploid species. FRONTIERS IN PLANT SCIENCE 2022; 13:953133. [PMID: 36388523 PMCID: PMC9650417 DOI: 10.3389/fpls.2022.953133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Genomic selection (GS) in plant breeding is explored as a promising tool to solve the problems related to the biotic and abiotic threats. Polyploid plants like bananas (Musa spp.) face the problem of drought and black sigatoka disease (BSD) that restrict their production. The conventional plant breeding is experiencing difficulties, particularly phenotyping costs and long generation interval. To overcome these difficulties, GS in plant breeding is explored as an alternative with a great potential for reducing costs and time in selection process. So far, GS does not have the same success in polyploid plants as with diploid plants because of the complexity of their genome. In this review, we present the main constraints to the application of GS in polyploid plants and the prospects for overcoming these constraints. Particular emphasis is placed on breeding for BSD and drought-two major threats to banana production-used in this review as a model of polyploid plant. It emerges that the difficulty in obtaining markers of good quality in polyploids is the first challenge of GS on polyploid plants, because the main tools used were developed for diploid species. In addition to that, there is a big challenge of mastering genetic interactions such as dominance and epistasis effects as well as the genotype by environment interaction, which are very common in polyploid plants. To get around these challenges, we have presented bioinformatics tools, as well as artificial intelligence approaches, including machine learning. Furthermore, a scheme for applying GS to banana for BSD and drought has been proposed. This review is of paramount impact for breeding programs that seek to reduce the selection cycle of polyploids despite the complexity of their genome.
Collapse
Affiliation(s)
- Luther Fort Mbo Nkoulou
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
- Unit of Genetics and Plant Breeding (UGAP), Department of Plant Biology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Institute of Agricultural Research for Development, Centre de Recherche Agricole de Mbalmayo (CRAM), Mbalmayo, Cameroon
| | - Hermine Bille Ngalle
- Unit of Genetics and Plant Breeding (UGAP), Department of Plant Biology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - David Cros
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Institut, Montpellier, France
- Unité Mixte de Recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Institut, University of Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Charlotte O. A. Adje
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
| | - Nicodeme V. H. Fassinou
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
| | - Joseph Bell
- Unit of Genetics and Plant Breeding (UGAP), Department of Plant Biology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Enoch G. Achigan-Dako
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
| |
Collapse
|
4
|
Kalina J. Robust coefficients of correlation or spatial autocorrelation based on implicit weighting. J Korean Stat Soc 2022. [DOI: 10.1007/s42952-022-00184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Abstract
The intelligent use of green and renewable energies requires reliable and preferably anticipated information regarding their availability and the behavior of meteorological variables in a scenario of natural intermittency. Examples of this are the smart grids, which can incorporate, among others, a charging system for electric vehicles and modern and predictive management techniques. However, some issues associated with such procedures are data captured by sensors and transducers with noise in their signals and low information repeatability under the same reading conditions. To tackle such problems, numerous filtering and data fitting techniques and various prediction methods have been developed, but an appropriate selection can be cumbersome. Also, some filtering techniques, such as RANdom SAmple Consensus (RANSAC) appear not to have been used in prediction scenarios for smart grids, to the authors’ knowledge. In this regard, this paper aims to present a comparison in terms of average error, determination coefficient, and cross validation that can be expected under prediction schemes as Multiple Linear Regression, Vector Support Machines and a Multilayer Perceptron Regression Neural Network (MLPRNN), with filtering/scaling methods such as Maximum and Minimum, L2 Norm, Standard Scale, and RANSAC. Cross validation allows to flag problems like overfitting or selection bias, and this comparison is another novelty for smart grid scenarios, to the authors’ knowledge. Although many combinations were analyzed, RANSAC, with L2 Norm filtering and an MLPRNN for prediction, generate the best results. RANSAC algorithm with L2 Norm is a novelty for filtering and predicting in smart grids, and through an MLPRNN, the R2 error can be reduced to 0.8843, the MSE to 0.8960, and the cross validation accuracy can be increased to 0.44 (±0.2).
Collapse
|