1
|
Singh AV, Chandrasekar V, Paudel N, Laux P, Luch A, Gemmati D, Tissato V, Prabhu KS, Uddin S, Dakua SP. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed Pharmacother 2023; 163:114784. [PMID: 37121152 DOI: 10.1016/j.biopha.2023.114784] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any personalized medicine approaches. In this article, we have studied the current trends and future perspectives in personalized medicine & toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI on personalized medicine & toxicology. In this work, we also study the key challenges and limitations in personalized medicine, toxicogenomics, and AI in order to fully realize their potential.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Namuna Paudel
- Department of Chemistry, Amrit Campus, Institute of Science and Technology, Tribhuvan University, Lainchaur, Kathmandu 44600 Nepal
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy; Centre for Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tissato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy; Centre for Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
2
|
Abstract
In order to comprehensively grasp the dynamics of karst collapse, promote the comprehensive prevention and control level of karst collapse, and prevent secondary disasters caused by lava collapse, this study presents a method of karst collapse early warning based on the BP neural network. This method does not need to set the sliding surface in the finite element calculation model. The stress of the sliding surface is fitted according to the spatial stress relationship of the deep karst layer through the improved BP neural network PID control algorithm and BP neural network algorithm, which avoids the modeling and mesh generation of the complex sliding block and has good accuracy and ease of use. According to the basic theory of the BP neural network, the calculation formulas of multilayer feedforward and error back propagation processes are derived, and the two-dimensional and three-dimensional finite element models of gravity dams without and with sliding blocks are established, respectively. Finally, according to the common formulas of viscoelastic artificial boundary and equivalent load, the two-dimensional and three-dimensional input programs of the karst fluid state are compiled, and a neural network early warning model is obtained. The experimental results show that the process karst state simulated by the algorithm is very close to the actual situation, and the minimum value of antisliding coefficient and its occurrence time can be accurately predicted, with an error range of less than 3%. Conclusion. BP neural network prediction can effectively predict karst collapse, with higher prediction accuracy, and can effectively simulate the actual collapse risk.
Collapse
|