1
|
Li J, Kong X, Sun L, Chen X, Ouyang G, Li X, Chen S. Identification of autism spectrum disorder based on electroencephalography: A systematic review. Comput Biol Med 2024; 170:108075. [PMID: 38301514 DOI: 10.1016/j.compbiomed.2024.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/22/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties in social communication and repetitive and stereotyped behaviors. According to the World Health Organization, about 1 in 100 children worldwide has autism. With the global prevalence of ASD, timely and accurate diagnosis has been essential in enhancing the intervention effectiveness for ASD children. Traditional ASD diagnostic methods rely on clinical observations and behavioral assessment, with the disadvantages of time-consuming and lack of objective biological indicators. Therefore, automated diagnostic methods based on machine learning and deep learning technologies have emerged and become significant since they can achieve more objective, efficient, and accurate ASD diagnosis. Electroencephalography (EEG) is an electrophysiological monitoring method that records changes in brain spontaneous potential activity, which is of great significance for identifying ASD children. By analyzing EEG data, it is possible to detect abnormal synchronous neuronal activity of ASD children. This paper gives a comprehensive review of the EEG-based ASD identification using traditional machine learning methods and deep learning approaches, including their merits and potential pitfalls. Additionally, it highlights the challenges and the opportunities ahead in search of more effective and efficient methods to automatically diagnose autism based on EEG signals, which aims to facilitate automated ASD identification.
Collapse
Affiliation(s)
- Jing Li
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaoli Kong
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Linlin Sun
- Neuroscience Research Institute, Peking University, Beijing, 100191, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Beijing, 100191, China
| | - Xu Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing, 100120, China; The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100032, China
| | - Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Shengyong Chen
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
2
|
Merabet K, Heddam S. Improving the accuracy of air relative humidity prediction using hybrid machine learning based on empirical mode decomposition: a comparative study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60868-60889. [PMID: 37041358 DOI: 10.1007/s11356-023-26779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
This paper proposes a hybrid air relative humidity prediction based on preprocessing signal decomposition. New modelling strategy was introduced based on the use of the empirical mode decomposition, variational mode decomposition, and the empirical wavelet transform, combined with standalone machine learning to increase their numerical performances. First, standalone models, i.e., extreme learning machine, multilayer perceptron neural network, and random forest regression, were used for predicting daily air relative humidity using various daily meteorological variables, i.e., maximal and minimal air temperatures, precipitation, solar radiation, and wind speed, measured at two meteorological stations located in Algeria. Second, meteorological variables are decomposed into several intrinsic mode functions and presented as new input variables to the hybrid models. The comparison between the models was achieved based on numerical and graphical indices, and obtained results demonstrate the superiority of the proposed hybrid models compared to the standalone models. Further analysis revealed that using standalone models, the best performances are obtained using the multilayer perceptron neural network with Pearson correlation coefficient, Nash-Sutcliffe efficiency, root-mean-square error, and mean absolute error of approximately ≈0.939, ≈0.882, ≈7.44, and ≈5.62 at Constantine station, and ≈0.943, ≈0.887, ≈7.72, and ≈5.93 at Sétif station, respectively. The hybrid models based on the empirical wavelet transform decomposition exhibited high performances with Pearson correlation coefficient, Nash-Sutcliffe efficiency, root-mean-square error, and mean absolute error of approximately ≈0.950, ≈0.902, ≈6.79, and ≈5.24, at Constantine station, and ≈0.955, ≈0.912, ≈6.82, and ≈5.29, at Sétif station. Finally, we show that the new hybrid approaches delivered high predictive accuracies of air relative humidity, and it was concluded that the contribution of the signal decomposition was demonstrated and justified.
Collapse
Affiliation(s)
- Khaled Merabet
- Laboratory of Optimizing Agricultural Production in Subhumid Zones (LOPAZS), Faculty of Science, Agronomy Department, University 20 Août 1955-Skikda, Route El Hadaik, BP 26, Skikda, Algeria.
| | - Salim Heddam
- Laboratory of Research in Biodiversity Interaction Ecosystem and Biotechnology (LRIBEB), Faculty of Science, Agronomy Department, University 20 Août 1955-Skikda, Route El Hadaik, BP 26, Skikda, Algeria
| |
Collapse
|
3
|
Wang R, Wang H, Shi L, Han C, Che Y. Epileptic Seizure Detection Using Geometric Features Extracted from SODP Shape of EEG Signals and AsyLnCPSO-GA. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1540. [PMID: 36359630 PMCID: PMC9689850 DOI: 10.3390/e24111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Epilepsy is a neurological disorder that is characterized by transient and unexpected electrical disturbance of the brain. Seizure detection by electroencephalogram (EEG) is associated with the primary interest of the evaluation and auxiliary diagnosis of epileptic patients. The aim of this study is to establish a hybrid model with improved particle swarm optimization (PSO) and a genetic algorithm (GA) to determine the optimal combination of features for epileptic seizure detection. First, the second-order difference plot (SODP) method was applied, and ten geometric features of epileptic EEG signals were derived in each frequency band (δ, θ, α and β), forming a high-dimensional feature vector. Secondly, an optimization algorithm, AsyLnCPSO-GA, combining a modified PSO with asynchronous learning factor (AsyLnCPSO) and the genetic algorithm (GA) was proposed for feature selection. Finally, the feature combinations were fed to a naïve Bayesian classifier for epileptic seizure and seizure-free identification. The method proposed in this paper achieved 95.35% classification accuracy with a tenfold cross-validation strategy when the interfrequency bands were crossed, serving as an effective method for epilepsy detection, which could help clinicians to expeditiously diagnose epilepsy based on SODP analysis and an optimization algorithm for feature selection.
Collapse
Affiliation(s)
- Ruofan Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Haodong Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Lianshuan Shi
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Chunxiao Han
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Yanqiu Che
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| |
Collapse
|
4
|
Alafeef M, Pan D. Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward. ACS NANO 2022; 16:11545-11576. [PMID: 35921264 PMCID: PMC9364978 DOI: 10.1021/acsnano.2c01697] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/12/2022] [Indexed: 05/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a transmitted respiratory disease caused by the infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although humankind has experienced several outbreaks of infectious diseases, the COVID-19 pandemic has the highest rate of infection and has had high levels of social and economic repercussions. The current COVID-19 pandemic has highlighted the limitations of existing virological tests, which have failed to be adopted at a rate to properly slow the rapid spread of SARS-CoV-2. Pandemic preparedness has developed as a focus of many governments around the world in the event of a future outbreak. Despite the largely widespread availability of vaccines, the importance of testing has not diminished to monitor the evolution of the virus and the resulting stages of the pandemic. Therefore, developing diagnostic technology that serves as a line of defense has become imperative. In particular, that test should satisfy three criteria to be widely adopted: simplicity, economic feasibility, and accessibility. At the heart of it all, it must enable early diagnosis in the course of infection to reduce spread. However, diagnostic manufacturers need guidance on the optimal characteristics of a virological test to ensure pandemic preparedness and to aid in the effective treatment of viral infections. Nanomaterials are a decisive element in developing COVID-19 diagnostic kits as well as a key contributor to enhance the performance of existing tests. Our objective is to develop a profile of the criteria that should be available in a platform as the target product. In this work, virus detection tests were evaluated from the perspective of the COVID-19 pandemic, and then we generalized the requirements to develop a target product profile for a platform for virus detection.
Collapse
Affiliation(s)
- Maha Alafeef
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
- Biomedical Engineering Department, Jordan
University of Science and Technology, Irbid 22110,
Jordan
| | - Dipanjan Pan
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
| |
Collapse
|
5
|
Aslam AR, Hafeez N, Heidari H, Altaf MAB. Channels and Features Identification: A Review and a Machine-Learning Based Model With Large Scale Feature Extraction for Emotions and ASD Classification. Front Neurosci 2022; 16:844851. [PMID: 35937896 PMCID: PMC9355483 DOI: 10.3389/fnins.2022.844851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by impairments in social and cognitive skills, emotional disorders, anxiety, and depression. The prolonged conventional ASD diagnosis raises the sheer need for early meaningful intervention. Recently different works have proposed potential for ASD diagnosis and intervention through emotions prediction using deep neural networks (DNN) and machine learning algorithms. However, these systems lack an extensive large-scale feature extraction (LSFE) analysis through multiple benchmark data sets. LSFE analysis is required to identify and utilize the most relevant features and channels for emotion recognition and ASD prediction. Considering these challenges, for the first time, we have analyzed and evaluated an extensive feature set to select the optimal features using LSFE and feature selection algorithms (FSA). A set of up to eight most suitable channels was identified using different best-case FSA. The subject-wise importance of channels and features is also identified. The proposed method provides the best-case accuracies, precision, and recall of 95, 92, and 90%, respectively, for emotions prediction using a linear support vector machine (LSVM) classifier. It also provides the best-case accuracy, precision, and recall of 100% for ASD classification. This work utilized the largest number of benchmark data sets (5) and subjects (99) for validation reported till now in the literature. The LSVM classification algorithm proposed and utilized in this work has significantly lower complexity than the DNN, convolutional neural network (CNN), Naïve Bayes, and dynamic graph CNN used in recent ASD and emotion prediction systems.
Collapse
Affiliation(s)
- Abdul Rehman Aslam
- Department of Electrical Engineering, Lahore University of Management Sciences, Lahore, Pakistan
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
- Department of Computer Engineering, University of Engineering and Technology-Taxila, Taxila, Pakistan
- *Correspondence: Abdul Rehman Aslam
| | - Nauman Hafeez
- Institute of Environment, Health and Societies, Brunel University, London, United Kingdom
| | - Hadi Heidari
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Muhammad Awais Bin Altaf
- Department of Electrical Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
6
|
Application of Machine Learning Techniques to Detect the Children with Autism Spectrum Disorder. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9340027. [PMID: 35368925 PMCID: PMC8975630 DOI: 10.1155/2022/9340027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Early detection of autism spectrum disorder (ASD) is highly beneficial to the health sustainability of children. Existing detection methods depend on the assessment of experts, which are subjective and costly. In this study, we proposed a machine learning approach that fuses physiological data (electroencephalography, EEG) and behavioral data (eye fixation and facial expression) to detect children with ASD. Its implementation can improve detection efficiency and reduce costs. First, we used an innovative approach to extract features of eye fixation, facial expression, and EEG data. Then, a hybrid fusion approach based on a weighted naive Bayes algorithm was presented for multimodal data fusion with a classification accuracy of 87.50%. Results suggest that the machine learning classification approach in this study is effective for the early detection of ASD. Confusion matrices and graphs demonstrate that eye fixation, facial expression, and EEG have different discriminative powers for the detection of ASD and typically developing children, and EEG may be the most discriminative information. The physiological and behavioral data have important complementary characteristics. Thus, the machine learning approach proposed in this study, which combines the complementary information, can significantly improve classification accuracy.
Collapse
|
7
|
Abdulhay E, Alafeef M, Hadoush H, Venkataraman V, Arunkumar N. EMD-based analysis of complexity with dissociated EEG amplitude and frequency information: a data-driven robust tool -for Autism diagnosis- compared to multi-scale entropy approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5031-5054. [PMID: 35430852 DOI: 10.3934/mbe.2022235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is usually characterised by altered social skills, repetitive behaviours, and difficulties in verbal/nonverbal communication. It has been reported that electroencephalograms (EEGs) in ASD are characterised by atypical complexity. The most commonly applied method in studies of ASD EEG complexity is multiscale entropy (MSE), where the sample entropy is evaluated across several scales. However, the accuracy of MSE-based classifications between ASD and neurotypical EEG activities is poor owing to several shortcomings in scale extraction and length, the overlap between amplitude and frequency information, and sensitivity to frequency. The present study proposes a novel, nonlinear, non-stationary, adaptive, data-driven, and accurate method for the classification of ASD and neurotypical groups based on EEG complexity and entropy without the shortcomings of MSE. APPROACH The proposed method is as follows: (a) each ASD and neurotypical EEG (122 subjects × 64 channels) is decomposed using empirical mode decomposition (EMD) to obtain the intrinsic components (intrinsic mode functions). (b) The extracted components are normalised through the direct quadrature procedure. (c) The Hilbert transforms of the components are computed. (d) The analytic counterparts of components (and normalised components) are found. (e) The instantaneous frequency function of each analytic normalised component is calculated. (f) The instantaneous amplitude function of each analytic component is calculated. (g) The Shannon entropy values of the instantaneous frequency and amplitude vectors are computed. (h) The entropy values are classified using a neural network (NN). (i) The achieved accuracy is compared to that obtained with MSE-based classification. (j) The consistency of the results of entropy 3D mapping with clinical data is assessed. MAIN RESULTS The results demonstrate that the proposed method outperforms MSE (accuracy: 66.4%), with an accuracy of 93.5%. Moreover, the entropy 3D mapping results are more consistent with the available clinical data regarding brain topography in ASD. SIGNIFICANCE This study presents a more robust alternative to MSE, which can be used for accurate classification of ASD/neurotypical as well as for the examination of EEG entropy across brain zones in ASD.
Collapse
Affiliation(s)
- Enas Abdulhay
- Biomedical Engineering department, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - Maha Alafeef
- Biomedical Engineering department, Jordan University of Science and Technology, 22110 Irbid, Jordan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hikmat Hadoush
- Rehabilitation Sciences department, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - V Venkataraman
- Department of Mathematics, School of Arts, Science and Humanities, SASTRA Deemed University, Thanjavur, 613401, India
| | - N Arunkumar
- Biomedical Engineering department, Rathinam Technical Campus, Coimbatore, India
| |
Collapse
|
8
|
Few-shot pulse wave contour classification based on multi-scale feature extraction. Sci Rep 2021; 11:3762. [PMID: 33580107 PMCID: PMC7881007 DOI: 10.1038/s41598-021-83134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/14/2021] [Indexed: 11/22/2022] Open
Abstract
The annotation procedure of pulse wave contour (PWC) is expensive and time-consuming, thereby hindering the formation of large-scale datasets to match the requirements of deep learning. To obtain better results under the condition of few-shot PWC, a small-parameter unit structure and a multi-scale feature-extraction model are proposed. In the small-parameter unit structure, information of adjacent cells is transmitted through state variables. Simultaneously, a forgetting gate is used to update the information and retain long-term dependence of PWC in the form of unit series. The multi-scale feature-extraction model is an integrated model containing three parts. Convolution neural networks are used to extract spatial features of single-period PWC and rhythm features of multi-period PWC. Recursive neural networks are used to retain the long-term dependence features of PWC. Finally, an inference layer is used for classification through extracted features. Classification experiments of cardiovascular diseases are performed on photoplethysmography dataset and continuous non-invasive blood pressure dataset. Results show that the classification accuracy of the multi-scale feature-extraction model on the two datasets respectively can reach 80% and 96%, respectively.
Collapse
|
9
|
Abdulhay E, Alafeef M, Hadoush H, Arunkumar N. Resting state EEG-based diagnosis of Autism via elliptic area of continuous wavelet transform complex plot. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-189176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Autism is a developmental disorder that influences social communication skills. It is currently diagnosed only by behavioral assessment. The assessment is susceptible to the experience of the examiner as well as to the descriptive scaling standard. This paper presents a computer aided approach to discrimination between neuro-typical and autistic children. A new method- based on the computing of the elliptic area of the Continuous Wavelet Transform complex plot of resting state EEG- is presented. First, the complex values of CWT, as a function of both time and frequency, are calculated for every EEG channel. Second, the CWT complex plot is obtained by plotting the real parts of the resulted CWT values versus the related imaginary components. Third, the 95% confidence value of the elliptic area of the complex plot is computed for every channel for both autistic and healthy subjects; and the obtained values are considered as the first set of features. Fourth, three additional features are computed for every channel: the average CWT, the maximum EEG amplitude, and the maximum real part of CWT. The classification of those features is realized through artificial neural network (ANN). The obtained accuracy, sensitivity and specificity values are: 95.9%, 96.7%, and 95.1% respectively.
Collapse
Affiliation(s)
- Enas Abdulhay
- Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Maha Alafeef
- Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid, Jordan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hikmat Hadoush
- Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - N. Arunkumar
- Department of Biomedical Engineering, Rathinam Technical Campus, Coimbatore, India
| |
Collapse
|
10
|
Alafeef M, Srivastava I, Pan D. Machine Learning for Precision Breast Cancer Diagnosis and Prediction of the Nanoparticle Cellular Internalization. ACS Sens 2020; 5:1689-1698. [PMID: 32466640 DOI: 10.1021/acssensors.0c00329] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the field of theranostics, diagnostic nanoparticles are designed to collect highly patient-selective disease profiles, which is then leveraged by a set of nanotherapeutics to improve the therapeutic results. Despite their early promise, high interpatient and intratumoral heterogeneities make any rational design and analysis of these theranostics platforms extremely problematic. Recent advances in deep-learning-based tools may help bridge this gap, using pattern recognition algorithms for better diagnostic precision and therapeutic outcome. Triple-negative breast cancer (TNBC) is a conundrum because of the complex molecular diversity, making its diagnosis and therapy challenging. To address these challenges, we propose a method to predict the cellular internalization of nanoparticles (NPs) against different cancer stages using artificial intelligence. Here, we demonstrate for the first time that a combination of machine-learning (ML) algorithm and characteristic cellular uptake responses for individual cancer cell types can be successfully used to classify various cancer cell types. Utilizing this approach, we can optimize the nanomaterials to get an optimum structure-internalization response for a given particle. This methodology predicted the structure-internalization response of the evaluated nanoparticles with remarkable accuracy (Q2 = 0.9). We anticipate that it can reduce the effort by minimizing the number of nanoparticles that need to be tested and could be utilized as a screening tool for designing nanotherapeutics. Following this, we have proposed a diagnostic nanomaterial-based platform used to assemble a patient-specific cancer profile with the assistance of machine learning (ML). The platform is composed of eight carbon nanoparticles (CNPs) with multifarious surface chemistries that can differentiate healthy breast cells from cancerous cells and then subclassify TNBC cells vs non-TNBC cells, within the TNBC group. The artificial neural network (ANN) algorithm has been successfully used in identifying the type of cancer cells from 36 unknown cancer samples with an overall accuracy of >98%, providing potential applications in cancer diagnostics.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Indrajit Srivastava
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Dipanjan Pan
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics and Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore, Maryland 21250, United States
- University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
11
|
|