1
|
Akram T, Alsuhaibani A, Khan M, Khan S, Naqvi S, Bilal M. Dermo‐Optimizer: Skin Lesion Classification Using Information‐Theoretic Deep Feature Fusion and Entropy‐Controlled Binary Bat Optimization. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2024; 34. [DOI: 10.1002/ima.23172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/25/2024] [Indexed: 09/23/2024]
Abstract
ABSTRACTIncreases in the prevalence of melanoma, the most lethal form of skin cancer, have been observed over the last few decades. However, the likelihood of a longer life span for individuals is considerably improved with early detection of this malignant illness. Even though the field of computer vision has attained a certain level of success, there is still a degree of ambiguity that represents an unresolved research challenge. In the initial phase of this study, the primary objective is to improve the information derived from input features by combining multiple deep models with the proposed Information‐theoretic feature fusion method. Subsequently, in the second phase, the study aims to decrease the redundant and noisy information through down‐sampling using the proposed entropy‐controlled binary bat selection algorithm. The proposed methodology effectively maintains the integrity of the original feature space, resulting in the creation of highly distinctive feature information. In order to obtain the desired set of features, three contemporary deep models are employed via transfer learning: Inception‐Resnet V2, DenseNet‐201, and Nasnet Mobile. By combining feature fusion and selection techniques, we may effectively fuse a significant amount of information into the feature vector and subsequently remove any redundant feature information. The effectiveness of the proposed methodology is supported by an evaluation conducted on three well‐known dermoscopic datasets, specifically , ISIC‐2016, and ISIC‐2017. In order to validate the proposed approach, several performance indicators are taken into account, such as accuracy, sensitivity, specificity, false negative rate (FNR), false positive rate (FPR), and F1‐score. The accuracies obtained for all datasets utilizing the proposed methodology are 99.05%, 96.26%, and 95.71%, respectively.
Collapse
Affiliation(s)
- Tallha Akram
- Department of Information Systems, College of Computer Engineering and Sciences Prince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia
| | - Anas Alsuhaibani
- Department of Information Systems, College of Computer Engineering and Sciences Prince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia
| | - Muhammad Attique Khan
- Department of AI, College of Computer Engineering and Sciences Prince Mohammad Bin Fahd University Al Khobar Saudi Arabia
| | - Sajid Ullah Khan
- Department of Information Systems, College of Computer Engineering and Sciences Prince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia
| | | | - Mohsin Bilal
- Department of Information Systems, College of Computer Engineering and Sciences Prince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia
| |
Collapse
|
2
|
Hermosilla P, Soto R, Vega E, Suazo C, Ponce J. Skin Cancer Detection and Classification Using Neural Network Algorithms: A Systematic Review. Diagnostics (Basel) 2024; 14:454. [PMID: 38396492 PMCID: PMC10888121 DOI: 10.3390/diagnostics14040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, there has been growing interest in the use of computer-assisted technology for early detection of skin cancer through the analysis of dermatoscopic images. However, the accuracy illustrated behind the state-of-the-art approaches depends on several factors, such as the quality of the images and the interpretation of the results by medical experts. This systematic review aims to critically assess the efficacy and challenges of this research field in order to explain the usability and limitations and highlight potential future lines of work for the scientific and clinical community. In this study, the analysis was carried out over 45 contemporary studies extracted from databases such as Web of Science and Scopus. Several computer vision techniques related to image and video processing for early skin cancer diagnosis were identified. In this context, the focus behind the process included the algorithms employed, result accuracy, and validation metrics. Thus, the results yielded significant advancements in cancer detection using deep learning and machine learning algorithms. Lastly, this review establishes a foundation for future research, highlighting potential contributions and opportunities to improve the effectiveness of skin cancer detection through machine learning.
Collapse
Affiliation(s)
- Pamela Hermosilla
- Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile (E.V.); (C.S.); (J.P.)
| | | | | | | | | |
Collapse
|
3
|
AlDahoul N, Karim HA, Momo MA, Escobar FIF, Magallanes VA, Tan MJT. Parasitic egg recognition using convolution and attention network. Sci Rep 2023; 13:14475. [PMID: 37660120 PMCID: PMC10475085 DOI: 10.1038/s41598-023-41711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
Intestinal parasitic infections (IPIs) caused by protozoan and helminth parasites are among the most common infections in humans in low-and-middle-income countries. IPIs affect not only the health status of a country, but also the economic sector. Over the last decade, pattern recognition and image processing techniques have been developed to automatically identify parasitic eggs in microscopic images. Existing identification techniques are still suffering from diagnosis errors and low sensitivity. Therefore, more accurate and faster solution is still required to recognize parasitic eggs and classify them into several categories. A novel Chula-ParasiteEgg dataset including 11,000 microscopic images proposed in ICIP2022 was utilized to train various methods such as convolutional neural network (CNN) based models and convolution and attention (CoAtNet) based models. The experiments conducted show high recognition performance of the proposed CoAtNet that was tuned with microscopic images of parasitic eggs. The CoAtNet produced an average accuracy of 93%, and an average F1 score of 93%. The finding opens door to integrate the proposed solution in automated parasitological diagnosis.
Collapse
Affiliation(s)
- Nouar AlDahoul
- Computer Science, New York University, Abu Dhabi, United Arab Emirates.
- Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia.
| | | | - Mhd Adel Momo
- Fleet Management Systems and Technologies, Istanbul, Turkey
| | | | | | | |
Collapse
|
4
|
Karthick P, Mohiuddine S, Tamilvanan K, Narayanamoorthy S, Maheswari S. Investigations of color image segmentation based on connectivity measure, shape priority and normalized fuzzy graph cut. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
5
|
Maqsood S, Damaševičius R. Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare. Neural Netw 2023; 160:238-258. [PMID: 36701878 DOI: 10.1016/j.neunet.2023.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/13/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND The idea of smart healthcare has gradually gained attention as a result of the information technology industry's rapid development. Smart healthcare uses next-generation technologies i.e., artificial intelligence (AI) and Internet of Things (IoT), to intelligently transform current medical methods to make them more efficient, dependable and individualized. One of the most prominent uses of telemedicine and e-health in medical image analysis is teledermatology. Telecommunications technologies are used in this industry to send medical information to professionals. Teledermatology is a useful method for the identification of skin lesions, particularly in rural locations, because the skin is visually perceptible. One of the most recent tools for diagnosing skin cancer is dermoscopy. To classify skin malignancies, numerous computational approaches have been proposed in the literature. However, difficulties still exist i.e., lesions with low contrast, imbalanced datasets, high level of memory complexity, and the extraction of redundant features. METHODS In this work, a unified CAD model is proposed based on a deep learning framework for skin lesion segmentation and classification. In the proposed approach, the source dermoscopic images are initially pre-processed using a contrast enhancement based modified bio-inspired multiple exposure fusion approach. In the second stage, a custom 26-layered convolutional neural network (CNN) architecture is designed to segment the skin lesion regions. In the third stage, four pre-trained CNN models (Xception, ResNet-50, ResNet-101 and VGG16) are modified and trained using transfer learning on the segmented lesion images. In the fourth stage, the deep features vectors are extracted from all the CNN models and fused using the convolutional sparse image decomposition fusion approach. In the fifth stage, the univariate measurement and Poisson distribution feature selection approach is used for the best features selection for classification. Finally, the selected features are fed to the multi-class support vector machine (MC-SVM) for the final classification. RESULTS The proposed approach employed to the HAM10000, ISIC2018, ISIC2019, and PH2 datasets and achieved an accuracy of 98.57%, 98.62%, 93.47%, and 98.98% respectively which are better than previous works. CONCLUSION When compared to renowned state-of-the-art methods, experimental results show that the proposed skin lesion detection and classification approach achieved higher performance in terms of both visually and enhanced quantitative evaluation with enhanced accuracy.
Collapse
Affiliation(s)
- Sarmad Maqsood
- Department of Software Engineering, Faculty of Informatics Engineering, Kaunas University of Technology, LT-51386 Kaunas, Lithuania.
| | - Robertas Damaševičius
- Department of Software Engineering, Faculty of Informatics Engineering, Kaunas University of Technology, LT-51386 Kaunas, Lithuania.
| |
Collapse
|
6
|
U-Net Model with Transfer Learning Model as a Backbone for Segmentation of Gastrointestinal Tract. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010119. [PMID: 36671690 PMCID: PMC9854836 DOI: 10.3390/bioengineering10010119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
The human gastrointestinal (GI) tract is an important part of the body. According to World Health Organization (WHO) research, GI tract infections kill 1.8 million people each year. In the year 2019, almost 5 million individuals were detected with gastrointestinal disease. Radiation therapy has the potential to improve cure rates in GI cancer patients. Radiation oncologists direct X-ray beams at the tumour while avoiding the stomach and intestines. The current objective is to direct the X-ray beam toward the malignancy while avoiding the stomach and intestines in order to improve dose delivery to the tumour. This study offered a technique for segmenting GI tract organs (small bowel, big intestine, and stomach) to assist radio oncologists to treat cancer patients more quickly and accurately. The suggested model is a U-Net model designed from scratch and used for the segmentation of a small size of images to extract the local features more efficiently. Furthermore, in the proposed model, six transfer learning models were employed as the backbone of the U-Net topology. The six transfer learning models used are Inception V3, SeResNet50, VGG19, DenseNet121, InceptionResNetV2, and EfficientNet B0. The suggested model was analysed with model loss, dice coefficient, and IoU. The results specify that the suggested model outperforms all transfer learning models, with performance parameter values as 0.122 model loss, 0.8854 dice coefficient, and 0.8819 IoU.
Collapse
|
7
|
Zafar M, Sharif MI, Sharif MI, Kadry S, Bukhari SAC, Rauf HT. Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010146. [PMID: 36676093 PMCID: PMC9864434 DOI: 10.3390/life13010146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
The skin is the human body's largest organ and its cancer is considered among the most dangerous kinds of cancer. Various pathological variations in the human body can cause abnormal cell growth due to genetic disorders. These changes in human skin cells are very dangerous. Skin cancer slowly develops over further parts of the body and because of the high mortality rate of skin cancer, early diagnosis is essential. The visual checkup and the manual examination of the skin lesions are very tricky for the determination of skin cancer. Considering these concerns, numerous early recognition approaches have been proposed for skin cancer. With the fast progression in computer-aided diagnosis systems, a variety of deep learning, machine learning, and computer vision approaches were merged for the determination of medical samples and uncommon skin lesion samples. This research provides an extensive literature review of the methodologies, techniques, and approaches applied for the examination of skin lesions to date. This survey includes preprocessing, segmentation, feature extraction, selection, and classification approaches for skin cancer recognition. The results of these approaches are very impressive but still, some challenges occur in the analysis of skin lesions because of complex and rare features. Hence, the main objective is to examine the existing techniques utilized in the discovery of skin cancer by finding the obstacle that helps researchers contribute to future research.
Collapse
Affiliation(s)
- Mehwish Zafar
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan
| | - Muhammad Imran Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan
| | - Muhammad Irfan Sharif
- Department of Computer Science, University of Education, Jauharabad Campus, Khushāb 41200, Pakistan
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos P.O. Box 13-5053, Lebanon
- Correspondence:
| | - Syed Ahmad Chan Bukhari
- Division of Computer Science, Mathematics and Science, Collins College of Professional Studies, St. John’s University, Queens, NY 11439, USA
| | - Hafiz Tayyab Rauf
- Centre for Smart Systems, AI and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
| |
Collapse
|
8
|
Malik S, Islam SMR, Akram T, Naqvi SR, Alghamdi NS, Baryannis G. A novel hybrid meta-heuristic contrast stretching technique for improved skin lesion segmentation. Comput Biol Med 2022; 151:106222. [PMID: 36343406 DOI: 10.1016/j.compbiomed.2022.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 12/27/2022]
Abstract
The high precedence of epidemiological examination of skin lesions necessitated the well-performing efficient classification and segmentation models. In the past two decades, various algorithms, especially machine/deep learning-based methods, replicated the classical visual examination to accomplish the above-mentioned tasks. These automated streams of models demand evident lesions with less background and noise affecting the region of interest. However, even after the proposal of these advanced techniques, there are gaps in achieving the efficacy of matter. Recently, many preprocessors proposed to enhance the contrast of lesions, which further aided the skin lesion segmentation and classification tasks. Metaheuristics are the methods used to support the search space optimisation problems. We propose a novel Hybrid Metaheuristic Differential Evolution-Bat Algorithm (DE-BA), which estimates parameters used in the brightness preserving contrast stretching transformation function. For extensive experimentation we tested our proposed algorithm on various publicly available databases like ISIC 2016, 2017, 2018 and PH2, and validated the proposed model with some state-of-the-art already existing segmentation models. The tabular and visual comparison of the results concluded that DE-BA as a preprocessor positively enhances the segmentation results.
Collapse
Affiliation(s)
- Shairyar Malik
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah Campus, G.T. Road, Wah Cantonment, 47040, Pakistan
| | - S M Riazul Islam
- Department of Computer Science, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Tallha Akram
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah Campus, G.T. Road, Wah Cantonment, 47040, Pakistan.
| | - Syed Rameez Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah Campus, G.T. Road, Wah Cantonment, 47040, Pakistan
| | - Norah Saleh Alghamdi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - George Baryannis
- Department of Computer Science, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| |
Collapse
|
9
|
SkiNet: A deep learning framework for skin lesion diagnosis with uncertainty estimation and explainability. PLoS One 2022; 17:e0276836. [PMID: 36315487 PMCID: PMC9621459 DOI: 10.1371/journal.pone.0276836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Skin cancer is considered to be the most common human malignancy. Around 5 million new cases of skin cancer are recorded in the United States annually. Early identification and evaluation of skin lesions are of great clinical significance, but the disproportionate dermatologist-patient ratio poses a significant problem in most developing nations. Therefore a novel deep architecture, named as SkiNet, is proposed to provide faster screening solution and assistance to newly trained physicians in the process of clinical diagnosis of skin cancer. The main motive behind SkiNet's design and development is to provide a white box solution, addressing a critical problem of trust and interpretability which is crucial for the wider adoption of Computer-aided diagnosis systems by medical practitioners. The proposed SkiNet is a two-stage pipeline wherein the lesion segmentation is followed by the lesion classification. Monte Carlo dropout and test time augmentation techniques have been employed in the proposed method to estimate epistemic and aleatoric uncertainty. A novel segmentation model named Bayesian MultiResUNet is used to estimate the uncertainty on the predicted segmentation map. Saliency-based methods like XRAI, Grad-CAM and Guided Backprop are explored to provide post-hoc explanations of the deep learning models. The ISIC-2018 dataset is used to perform the experimentation and ablation studies. The results establish the robustness of the proposed model on the traditional benchmarks while addressing the black-box nature of such models to alleviate the skepticism of medical practitioners by incorporating transparency and confidence to the model's prediction.
Collapse
|
10
|
An Effective Skin Cancer Classification Mechanism via Medical Vision Transformer. SENSORS 2022; 22:s22114008. [PMID: 35684627 PMCID: PMC9182815 DOI: 10.3390/s22114008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Skin Cancer (SC) is considered the deadliest disease in the world, killing thousands of people every year. Early SC detection can increase the survival rate for patients up to 70%, hence it is highly recommended that regular head-to-toe skin examinations are conducted to determine whether there are any signs or symptoms of SC. The use of Machine Learning (ML)-based methods is having a significant impact on the classification and detection of SC diseases. However, there are certain challenges associated with the accurate classification of these diseases such as a lower detection accuracy, poor generalization of the models, and an insufficient amount of labeled data for training. To address these challenges, in this work we developed a two-tier framework for the accurate classification of SC. During the first stage of the framework, we applied different methods for data augmentation to increase the number of image samples for effective training. As part of the second tier of the framework, taking into consideration the promising performance of the Medical Vision Transformer (MVT) in the analysis of medical images, we developed an MVT-based classification model for SC. This MVT splits the input image into image patches and then feeds these patches to the transformer in a sequence structure, like word embedding. Finally, Multi-Layer Perceptron (MLP) is used to classify the input image into the corresponding class. Based on the experimental results achieved on the Human Against Machine (HAM10000) datasets, we concluded that the proposed MVT-based model achieves better results than current state-of-the-art techniques for SC classification.
Collapse
|
11
|
System for the Recognizing of Pigmented Skin Lesions with Fusion and Analysis of Heterogeneous Data Based on a Multimodal Neural Network. Cancers (Basel) 2022; 14:cancers14071819. [PMID: 35406591 PMCID: PMC8997449 DOI: 10.3390/cancers14071819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Skin cancer is one of the most common cancers in humans. This study aims to create a system for recognizing pigmented skin lesions by analyzing heterogeneous data based on a multimodal neural network. Fusing patient statistics and multidimensional visual data allows for finding additional links between dermoscopic images and medical diagnostic results, significantly improving neural network classification accuracy. The use by specialists of the proposed system of neural network recognition of pigmented skin lesions will enhance the efficiency of diagnosis compared to visual diagnostic methods. Abstract Today, skin cancer is one of the most common malignant neoplasms in the human body. Diagnosis of pigmented lesions is challenging even for experienced dermatologists due to the wide range of morphological manifestations. Artificial intelligence technologies are capable of equaling and even surpassing the capabilities of a dermatologist in terms of efficiency. The main problem of implementing intellectual analysis systems is low accuracy. One of the possible ways to increase this indicator is using stages of preliminary processing of visual data and the use of heterogeneous data. The article proposes a multimodal neural network system for identifying pigmented skin lesions with a preliminary identification, and removing hair from dermatoscopic images. The novelty of the proposed system lies in the joint use of the stage of preliminary cleaning of hair structures and a multimodal neural network system for the analysis of heterogeneous data. The accuracy of pigmented skin lesions recognition in 10 diagnostically significant categories in the proposed system was 83.6%. The use of the proposed system by dermatologists as an auxiliary diagnostic method will minimize the impact of the human factor, assist in making medical decisions, and expand the possibilities of early detection of skin cancer.
Collapse
|
12
|
Attique Khan M, Sharif M, Akram T, Kadry S, Hsu C. A two‐stream deep neural network‐based intelligent system for complex skin cancer types classification. INT J INTELL SYST 2021. [DOI: 10.1002/int.22691] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Muhammad Attique Khan
- Department of Computer Science COMSATS University Islamabad Wah Campus Wah Cantt Pakistan
| | - Muhammad Sharif
- Department of Computer Science COMSATS University Islamabad Wah Campus Wah Cantt Pakistan
| | - Tallha Akram
- Department of Electrical and Computer Engineering COMSATS University Islamabad Wah Campus Wah Cantt Pakistan
| | - Seifedine Kadry
- Faculty of Applied Computing and Technology Noroff University College Kristiansand Norway
| | - Ching‐Hsien Hsu
- Guangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic Technology, School of Mathematics and Big Data Foshan University Foshan China
- Department of Computer Science and Information Engineering Asia University Taichung Taiwan
- Department of Medical Research China Medical University Hospital China Medical University Taichung Taiwan
| |
Collapse
|
13
|
Khan MA, Sharif M, Akram T, Damaševičius R, Maskeliūnas R. Skin Lesion Segmentation and Multiclass Classification Using Deep Learning Features and Improved Moth Flame Optimization. Diagnostics (Basel) 2021; 11:811. [PMID: 33947117 PMCID: PMC8145295 DOI: 10.3390/diagnostics11050811] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Manual diagnosis of skin cancer is time-consuming and expensive; therefore, it is essential to develop automated diagnostics methods with the ability to classify multiclass skin lesions with greater accuracy. We propose a fully automated approach for multiclass skin lesion segmentation and classification by using the most discriminant deep features. First, the input images are initially enhanced using local color-controlled histogram intensity values (LCcHIV). Next, saliency is estimated using a novel Deep Saliency Segmentation method, which uses a custom convolutional neural network (CNN) of ten layers. The generated heat map is converted into a binary image using a thresholding function. Next, the segmented color lesion images are used for feature extraction by a deep pre-trained CNN model. To avoid the curse of dimensionality, we implement an improved moth flame optimization (IMFO) algorithm to select the most discriminant features. The resultant features are fused using a multiset maximum correlation analysis (MMCA) and classified using the Kernel Extreme Learning Machine (KELM) classifier. The segmentation performance of the proposed methodology is analyzed on ISBI 2016, ISBI 2017, ISIC 2018, and PH2 datasets, achieving an accuracy of 95.38%, 95.79%, 92.69%, and 98.70%, respectively. The classification performance is evaluated on the HAM10000 dataset and achieved an accuracy of 90.67%. To prove the effectiveness of the proposed methods, we present a comparison with the state-of-the-art techniques.
Collapse
Affiliation(s)
- Muhammad Attique Khan
- Department of Computer Science, Wah Campus, COMSATS University Islamabad, Wah Cantonment 47040, Pakistan;
| | - Muhammad Sharif
- Department of Computer Science, Wah Campus, COMSATS University Islamabad, Wah Cantonment 47040, Pakistan;
| | - Tallha Akram
- Department of Electrical Engineering, Wah Campus, COMSATS University Islamabad, Islamabad 45550, Pakistan;
| | - Robertas Damaševičius
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Rytis Maskeliūnas
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania;
| |
Collapse
|
14
|
A Probabilistic-Based Deep Learning Model for Skin Lesion Segmentation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The analysis and detection of skin cancer diseases from skin lesion have always been tedious when done manually. The complex nature of skin lesion images is one of the key reasons for this. The skin lesion images contain noise and artifacts such as hairs, oil and bubbles, blood vessels, and skin lines. They also have variegated colors, low contrast, and irregular borders. Various computational approaches have been designed in the past for aiding in the detection and diagnosis of skin cancer diseases using skin lesion images. The existing techniques have been limited due to the interference of the aforementioned features of skin lesion. Recently, machine learning techniques, in particular the deep learning techniques have been used for the detection of skin cancer. However, they are still limited to the fuzzy and irregular borders of skin lesion images coupled with the low contrast that exists between the diseased lesion and healthy tissues. In this paper, we utilized a probabilistic model for the enhancement of a fully convolutional network-based deep learning system to analyze and segment skin lesion images. The probabilistic model employs an efficient mean-field approximate probabilistic inference approach with a fully connected conditional random field that utilizes a Gaussian kernel. The probabilistic model further performs a refinement of skin lesion borders. The whole framework is tested and evaluated on publicly available skin lesion image datasets of ISBI 2017 and PH2. The system achieved a better performance, having an accuracy of 98%.
Collapse
|
15
|
Khan MA, Muhammad K, Sharif M, Akram T, Albuquerque VHCD. Multi-Class Skin Lesion Detection and Classification via Teledermatology. IEEE J Biomed Health Inform 2021; 25:4267-4275. [PMID: 33750716 DOI: 10.1109/jbhi.2021.3067789] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Teledermatology is one of the most illustrious applications of telemedicine and e-health. In this area, telecommunication technologies are utilized to transfer medical information to the experts. Due to the skin's visual nature, teledermatology is an effective tool for the diagnosis of skin lesions, especially, in rural areas. Further, it can also be useful to limit gratuitous clinical referrals and triage dermatology cases. The objective of this research is to classify the skin lesion image samples, received from different servers. The proposed framework comprises two modules including the skin lesion localization/segmentation and classification. In the localization module, we propose a hybrid strategy that fuses the binary images generated from the designed 16-layered convolutional neural network model and improved high dimension contrast transform (HDCT) based saliency segmentation. To utilize maximum information extracted from the binary images, a maximal mutual information method is proposed, which returns the segmented RGB lesion image. In the classification module, a pre-trained DenseNet201 model is re-trained on the segmented lesion images using transfer learning. Afterward, the extracted features from two fully connected layers are down-sampled using the t-distribution stochastic neighbor embedding (t-SNE) method. These resultant features are finally fused using a multi canonical correlation (MCCA) approach and are passed to a multi-class ELM classifier. Four datasets (i.e., ISBI2016, ISIC2017, PH2, and ISBI2018) are employed for the evaluation of segmentation task, while HAM10000, the most challenging dataset, is used for the classification task. Experimental results in comparison with the state-of-the-art methods affirm the strength of our proposed framework.
Collapse
|
16
|
Zahoor S, Lali IU, Khan MA, Javed K, Mehmood W. Breast Cancer Detection and Classification using Traditional Computer Vision Techniques: A Comprehensive Review. Curr Med Imaging 2021; 16:1187-1200. [PMID: 32250226 DOI: 10.2174/1573405616666200406110547] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 11/22/2022]
Abstract
Breast Cancer is a common dangerous disease for women. Around the world, many women have died due to Breast cancer. However, in the initial stage, the diagnosis of breast cancer can save women's life. To diagnose cancer in the breast tissues, there are several techniques and methods. The image processing, machine learning, and deep learning methods and techniques are presented in this paper to diagnose the breast cancer. This work will be helpful to adopt better choices and reliable methods to diagnose breast cancer in an initial stage to save a women's life. To detect the breast masses, microcalcifications, and malignant cells,different techniques are used in the Computer-Aided Diagnosis (CAD) systems phases like preprocessing, segmentation, feature extraction, and classification. We have reported a detailed analysis of different techniques or methods with their usage and performance measurement. From the reported results, it is concluded that for breast cancer survival, it is essential to improve the methods or techniques to diagnose it at an initial stage by improving the results of the Computer-Aided Diagnosis systems. Furthermore, segmentation and classification phases are also challenging for researchers for the diagnosis of breast cancer accurately. Therefore, more advanced tools and techniques are still essential for the accurate diagnosis and classification of breast cancer.
Collapse
Affiliation(s)
- Saliha Zahoor
- Department of Computer Science, University of Gujrat, Gujrat, Pakistan
| | - Ikram Ullah Lali
- Department of Information Technology, University of Education, Lahore, Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University, Museum Road Taxila, Rawalpindi, Pakistan
| | - Kashif Javed
- Department of Robotics, SMME NUST, Islamabad, Pakistan
| | - Waqar Mehmood
- Department of Computer Science, COMSATS University Islamabad, Wah Cantt, Pakistan
| |
Collapse
|
17
|
Attique Khan M, Majid A, Hussain N, Alhaisoni M, Zhang YD, Kadry S, Nam Y. Multiclass Stomach Diseases Classification Using Deep Learning Features Optimization. COMPUTERS, MATERIALS & CONTINUA 2021; 67:3381-3399. [DOI: 10.32604/cmc.2021.014983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/16/2020] [Indexed: 08/25/2024]
|
18
|
Bhargava A, Bansal A. Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 80:19931-19946. [PMID: 33686333 PMCID: PMC7928188 DOI: 10.1007/s11042-021-10714-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/23/2020] [Accepted: 02/10/2021] [Indexed: 05/07/2023]
Abstract
The universal transmission of pandemic COVID-19 (Coronavirus) causes an immediate need to commit in the fight across the whole human population. The emergencies for human health care are limited for this abrupt outbreak and abandoned environment. In this situation, inventive automation like computer vision (machine learning, deep learning, artificial intelligence), medical imaging (computed tomography, X-Ray) has developed an encouraging solution against COVID-19. In recent months, different techniques using image processing are done by various researchers. In this paper, a major review on image acquisition, segmentation, diagnosis, avoidance, and management are presented. An analytical comparison of the various proposed algorithm by researchers for coronavirus has been carried out. Also, challenges and motivation for research in the future to deal with coronavirus are indicated. The clinical impact and use of computer vision and deep learning were discussed and we hope that dermatologists may have better understanding of these areas from the study.
Collapse
|
19
|
Nasir IM, Khan MA, Yasmin M, Shah JH, Gabryel M, Scherer R, Damaševičius R. Pearson Correlation-Based Feature Selection for Document Classification Using Balanced Training. SENSORS 2020; 20:s20236793. [PMID: 33261136 PMCID: PMC7730850 DOI: 10.3390/s20236793] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022]
Abstract
Documents are stored in a digital form across several organizations. Printing this amount of data and placing it into folders instead of storing digitally is against the practical, economical, and ecological perspective. An efficient way of retrieving data from digitally stored documents is also required. This article presents a real-time supervised learning technique for document classification based on deep convolutional neural network (DCNN), which aims to reduce the impact of adverse document image issues such as signatures, marks, logo, and handwritten notes. The proposed technique’s major steps include data augmentation, feature extraction using pre-trained neural network models, feature fusion, and feature selection. We propose a novel data augmentation technique, which normalizes the imbalanced dataset using the secondary dataset RVL-CDIP. The DCNN features are extracted using the VGG19 and AlexNet networks. The extracted features are fused, and the fused feature vector is optimized by applying a Pearson correlation coefficient-based technique to select the optimized features while removing the redundant features. The proposed technique is tested on the Tobacco3482 dataset, which gives a classification accuracy of 93.1% using a cubic support vector machine classifier, proving the validity of the proposed technique.
Collapse
Affiliation(s)
- Inzamam Mashood Nasir
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (I.M.N.); (M.A.K.)
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (I.M.N.); (M.A.K.)
| | - Mussarat Yasmin
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantonment 47040, Pakistan; (M.Y.); (J.H.S.)
| | - Jamal Hussain Shah
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantonment 47040, Pakistan; (M.Y.); (J.H.S.)
| | - Marcin Gabryel
- Department of Intelligent Computer Systems, Częstochowa University of Technology, 42-200 Częstochowa, Poland; (M.G.); (R.S.)
| | - Rafał Scherer
- Department of Intelligent Computer Systems, Częstochowa University of Technology, 42-200 Częstochowa, Poland; (M.G.); (R.S.)
| | - Robertas Damaševičius
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence:
| |
Collapse
|
20
|
Farahani A, Mohseni H. Medical image segmentation using customized U-Net with adaptive activation functions. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05396-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Akram T, Lodhi HMJ, Naqvi SR, Naeem S, Alhaisoni M, Ali M, Haider SA, Qadri NN. A multilevel features selection framework for skin lesion classification. HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES 2020. [DOI: 10.1186/s13673-020-00216-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Melanoma is considered to be one of the deadliest skin cancer types, whose occurring frequency elevated in the last few years; its earlier diagnosis, however, significantly increases the chances of patients’ survival. In the quest for the same, a few computer based methods, capable of diagnosing the skin lesion at initial stages, have been recently proposed. Despite some success, however, margin exists, due to which the machine learning community still considers this an outstanding research challenge. In this work, we come up with a novel framework for skin lesion classification, which integrates deep features information to generate most discriminant feature vector, with an advantage of preserving the original feature space. We utilize recent deep models for feature extraction, and by taking advantage of transfer learning. Initially, the dermoscopic images are segmented, and the lesion region is extracted, which is later subjected to retrain the selected deep models to generate fused feature vectors. In the second phase, a framework for most discriminant feature selection and dimensionality reduction is proposed, entropy-controlled neighborhood component analysis (ECNCA). This hierarchical framework optimizes fused features by selecting the principle components and extricating the redundant and irrelevant data. The effectiveness of our design is validated on four benchmark dermoscopic datasets; PH2, ISIC MSK, ISIC UDA, and ISBI-2017. To authenticate the proposed method, a fair comparison with the existing techniques is also provided. The simulation results clearly show that the proposed design is accurate enough to categorize the skin lesion with 98.8%, 99.2% and 97.1% and 95.9% accuracy with the selected classifiers on all four datasets, and by utilizing less than 3% features.
Collapse
|
22
|
Khan MA, Kadry S, Alhaisoni M, Nam Y, Zhang Y, Rajinikanth V, Sarfraz MS. Computer-Aided Gastrointestinal Diseases Analysis From Wireless Capsule Endoscopy: A Framework of Best Features Selection. IEEE ACCESS 2020; 8:132850-132859. [DOI: 10.1109/access.2020.3010448] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|