1
|
Munteanu C, Schwartz B. The Effect of Bioactive Aliment Compounds and Micronutrients on Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12040903. [PMID: 37107278 PMCID: PMC10136128 DOI: 10.3390/antiox12040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
In the current review, we focused on identifying aliment compounds and micronutrients, as well as addressed promising bioactive nutrients that may interfere with NAFLD advance and ultimately affect this disease progress. In this regard, we targeted: 1. Potential bioactive nutrients that may interfere with NAFLD, specifically dark chocolate, cocoa butter, and peanut butter which may be involved in decreasing cholesterol concentrations. 2. The role of sweeteners used in coffee and other frequent beverages; in this sense, stevia has proven to be adequate for improving carbohydrate metabolism, liver steatosis, and liver fibrosis. 3. Additional compounds were shown to exert a beneficial action on NAFLD, namely glutathione, soy lecithin, silymarin, Aquamin, and cannabinoids which were shown to lower the serum concentration of triglycerides. 4. The effects of micronutrients, especially vitamins, on NAFLD. Even if most studies demonstrate the beneficial role of vitamins in this pathology, there are exceptions. 5. We provide information regarding the modulation of the activity of some enzymes related to NAFLD and their effect on this disease. We conclude that NAFLD can be prevented or improved by different factors through their involvement in the signaling, genetic, and biochemical pathways that underlie NAFLD. Therefore, exposing this vast knowledge to the public is particularly important.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
2
|
Wang M, Su Y, Hou C, Ren K, Liu X, Zhao S, Wang Y, Liu X. Targeted Lipidomics Analysis of Lysine 179 Acetylation of ACSF2 in Rat Hepatic Stellate Cells. Prostaglandins Other Lipid Mediat 2022; 163:106671. [PMID: 36028068 DOI: 10.1016/j.prostaglandins.2022.106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is generally recognized as a central driver of liver fibrosis. Metabolism of fatty acids (FA) play a critical role in the activation of HSCs. Proteomics analysis on lysine acetylation of proteins in activated HSCs in our previous study indicated that acetylation of the lysine residues on ACSF2 is one of the most significantly upregulated sites in activated-HSCs and K179 is its important acetylation site. However, the role of acetylation at K179 of ACSF2 on activation of HSCs and free fatty acids (FFA) metabolism remains largely unknown. The reported study demonstrates that acetylation at K179 of ACSF2 promoted HSCs activation. The targeted lipidomic analysis indicated K179 acetylation of ACSF2 mainly affected long chain fatty acids (LCFA) metabolism, especially oleic acid, elaidic acid and palmitoleic acid. And the liquid chromatography mass spectrometry (LC-MS) analysis further demonstrated the formation of many long-chain acyl-CoAs were catalyzed by acetylation at K179 of ACSF2 including oleic acid, elaidic acid and palmitoleic acid. In conclusion, this study indicated that ACSF2 may be a potential therapeutic targets by regulating the metabolism of LCFA for liver fibrosis.
Collapse
Affiliation(s)
- Meili Wang
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Ying Su
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenjian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoli Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shanyu Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuxiang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiuping Liu
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Habibi E, Baâti T, Njim L, M’Rabet Y, Hosni K. Antioxidant and protective effects of extra virgin olive oil incorporated with diallyl sulfide against CCl 4-induced acute liver injury in mice. Food Sci Nutr 2021; 9:6818-6830. [PMID: 34925810 PMCID: PMC8645721 DOI: 10.1002/fsn3.2638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present study delineates the effects of incorporation of 1% diallyl sulfide (DAS) into extra virgin olive oil (EVOO) on the physico-chemical characteristics, in vitro antioxidant, and in vivo hepatoprotective properties in CCl4-induced acute liver injury in mice. Results showed that the DAS-rich EVOO exhibited good oxidative stability over one-month storage and preserved its original quality-related parameters including major components (oleic acid, linoleic acid, and palmitic acid), and minor components (tocopherols, chlorophylls and carotenoids, tyrosol, hydroxytyrosol, elenolic acid, oleuropein and its aglycone, pinoresinol, vanilic acid, cinnamic acid, ferulic acid, luteolin, apigenin, and sterols). Compared with EVOO or DAS, the DAS-rich EVOO displayed the highest DPPH and ABTS-radical scavenging activities and showed the strongest cellular antioxidant activity (CAA). In connection with its free radical scavenging activity and CAA, DAS-rich EVOO significantly normalized the serum ALT and AST levels and prevented the increase in interleukin-6 in CCl4-intoxicated mice. The manifest anti-inflammatory and hepatoprotective effects of DAS-rich EVOO were further supported by liver histopathological examinations. Overall, the EVOO enrichment with DAS could open up opportunities for the development of novel functional food with improved antioxidant and hepatoprotective properties.
Collapse
Affiliation(s)
- Emna Habibi
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
- Faculté des Sciences de GabesUniversité de GabesTunisTunisia
| | - Tarek Baâti
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
| | - Leila Njim
- Service d’Anatomie et de Cytologie PathologiqueCHU Fattouma BourguibaMonastirTunisia
| | - Yassine M’Rabet
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
| | - Karim Hosni
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
| |
Collapse
|
4
|
Differential effects of olive oil, soybean oil, corn oil and lard oil on carbon tetrachloride-induced liver fibrosis in mice. Biosci Rep 2020; 39:BSR20191913. [PMID: 31481526 PMCID: PMC6822505 DOI: 10.1042/bsr20191913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Olive oil could attenuate carbon tetrachloride (CCl4) induced liver fibrosis (LF) in mouse model. The present study aimed to evaluate the effects of other common oils on CCl4 induced LF. Healthy male ICR mice were administered with CCl4 intraperitoneally at 2.5 ml/kg twice a week for total 3 weeks. Mice were pre-treated with olive oil, soybean oil, corn oil or lard oil. After treatment, histopathological changes were observed using Masson trichrome staining, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), hydroxyproline (HYP) and triglyceride (TG) were measured by commercial kits. The expression of LF related genes was detected by quantitative real-time PCR. We found that soybean oil or olive oil significantly reduced ALT and AST levels in serum, and MDA, HYP and TG levels in the liver, compared with corn oil or lard oil. Moreover, Masson trichrome staining and real-time PCR showed that the mice treated with CCl4 dissolved in soybean oil or olive oil had less fibrosis and apoptosis in the liver comparted to the mice treated with CCl4 dissolved in corn oil or lard oil. In conclusion, soybean oil but not corn or lard oil exerts protective effects against CCl4 induced LF in mice, possibly due to its antioxidant activity.
Collapse
|
5
|
Hong Y, Li S, Wang J, Li Y. In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A. Sci Rep 2018; 8:9232. [PMID: 29915313 PMCID: PMC6006255 DOI: 10.1038/s41598-018-27686-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
Clinical studies have found that moderate intake of retinol or oleic acid can enlarge the lipid droplets of hepatic stellate cells and suppress their activation. However, the link between lipid droplets and cell activation is unknown. This study compared the dynamics of lipid droplet-associated protein expression between activated and reverted stellate cells. Reversion of the activated human stellate cell line LX-2 and inhibition of primary mouse stellate cell activation were induced by retinol or oleic acid, which resulted in larger lipid droplets and the downregulation of cell activation markers. Quantitative proteomics and immunoblotting were performed to compare lipid-droplet protein profiles between activated and reverted LX-2 cells. Compared to expression in activated cells, 50 lipid-droplet proteins were upregulated, whereas 28 were downregulated upon reversion. ATG2A was significantly enriched in lipid droplets of retinol/oleic acid-treated LX-2 cells and quiescent primary stellate cells. Reduced expression of α-SMA, increased expression of perilipin-3, enlarged lipid droplets, and suppression of autophagic flux were observed in ATG2A-deficient LX2 cells. Lipid-droplet protein profile changes during the reversion of activated stellate cells might provide new insights into the molecular mechanisms linking lipid droplets to liver fibrosis. ATG2A could represent a potential new drug target for hepatic fibrosis.
Collapse
Affiliation(s)
- Yun Hong
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Sirui Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jifeng Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Youming Li
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Ducheix S, Montagner A, Polizzi A, Lasserre F, Régnier M, Marmugi A, Benhamed F, Bertrand-Michel J, Mselli-Lakhal L, Loiseau N, Martin PG, Lobaccaro JM, Ferrier L, Postic C, Guillou H. Dietary oleic acid regulates hepatic lipogenesis through a liver X receptor-dependent signaling. PLoS One 2017; 12:e0181393. [PMID: 28732092 PMCID: PMC5521785 DOI: 10.1371/journal.pone.0181393] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022] Open
Abstract
Olive oil consumption is beneficial for health as it is associated with a decreased prevalence of cancer and cardiovascular diseases. Oleic acid is, by far, the most abundant component of olive oil. Since it can be made through de novo synthesis in animals, it is not an essential fatty acid. While it has become clear that dietary oleic acid regulates many biological processes, the signaling pathway involved in these regulations remains poorly defined. In this work we tested the impact of an oleic acid-rich diet on hepatic gene expression. We were particularly interested in addressing the contribution of Liver X Receptors (LXR) in the control of genes involved in hepatic lipogenesis, an essential process in whole body energy homeostasis. We used wild-type mice and transgenic mice deficient for both α and β Liver X Receptor isoforms (LXR-/-) fed a control or an oleate enriched diet. We observed that hepatic-lipid accumulation was enhanced as well as the expression of lipogenic genes in the liver of wild-type mice fed the oleate enriched diet. In contrast, none of these changes occurred in the liver of LXR-/- mice. Strikingly, oleate-rich diet reduced cholesterolemia in wild-type mice and induced signs of liver inflammation and damage in LXR-/- mice but not in wild-type mice. This work suggests that dietary oleic acid reduces cholesterolemia while promoting LXR-dependent hepatic lipogenesis without detrimental effects to the liver.
Collapse
Affiliation(s)
- Simon Ducheix
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Alexandra Montagner
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Arnaud Polizzi
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Frédéric Lasserre
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Marion Régnier
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Alice Marmugi
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Fadila Benhamed
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France
| | | | - Laila Mselli-Lakhal
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Nicolas Loiseau
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Pascal G Martin
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Jean-Marc Lobaccaro
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, Clermont-Ferrand, France.,CNRS, UMR 6293, GReD, Aubière, France.,INSERM, U1103, GReD, Aubière, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Laurent Ferrier
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| | - Catherine Postic
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hervé Guillou
- INRA, ToxAlim, Toulouse, France.,Université de Toulouse, INP, UPS, ToxAlim, Toulouse, France
| |
Collapse
|
7
|
Al-Seeni MN, El Rabey HA, Zamzami MA, Alnefayee AM. The hepatoprotective activity of olive oil and Nigella sativa oil against CCl 4 induced hepatotoxicity in male rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:438. [PMID: 27814700 PMCID: PMC5097446 DOI: 10.1186/s12906-016-1422-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Liver disease is the major cause of serious health problem leading to morbidity and mortality worldwide and the problem has increased in search for hepatotherapeutic agents from plants. The present study was designed to compare the probable hepatoprotective activity of olive oil and N. sativa oil on CCl4 induced liver damage in male rats. METHODS Forty males of a new model of albino rats (Wistar strain) (175-205 g) were divided into four groups. The 1st Group (G1) was the negative control group, the remaining rats were injected with CCl4 (1 ml/kg body weight) with equal amount of olive oil on the 1st and 4th day of every week for 4 weeks. The 2nd group (G2) was the positive control, the 3rd group (G3) and the fourth group (G4) were treated orally with N. sativa oil and olive oils using stomach tube. RESULTS The positive control group showed an increase in hepatic enzymes, total bilirubin, creatinine, uric acid, lipid peroxide total cholesterol, triglyceride, low density lipoprotein, very low density lipoproteins, interleukin-6, and a decrease in antioxidant enzymes, high density lipoprotein cholesterol, a decrease in total protein and albumin an when compared with negative control group. Histology of the CCl4 treated group revealed inflammation and damage of liver cells. Treating the hepatotoxic rats with olive oil and N. sativa oil showed a significant improvement in all biochemical tests compared with the positive CCl4 control group. In addition, the liver tissues of olive oil treated group showed mild improvement in inflammatory infiltration and in N. sativa oil treated group showed normal hepatocytes with no evidence of inflammation. CONCLUSION This study revealed that olive oil and N. sativa oil have a protective effect against CCl4-induced hepatotoxicity in male rats. Nigella sativa oil was more effective than olive oil.
Collapse
Affiliation(s)
- Madeha N. Al-Seeni
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haddad A. El Rabey
- Bioinformatics Department, Genetic Engineering and Biotechnology Institute, Sadat City University, Sadat City, Minufiya Egypt
| | - Mazin A. Zamzami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer M. Alnefayee
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Beam J, Botta A, Ye J, Soliman H, Matier BJ, Forrest M, MacLeod KM, Ghosh S. Excess Linoleic Acid Increases Collagen I/III Ratio and "Stiffens" the Heart Muscle Following High Fat Diets. J Biol Chem 2015; 290:23371-84. [PMID: 26240151 DOI: 10.1074/jbc.m115.682195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 12/14/2022] Open
Abstract
Controversy exists on the benefits versus harms of n-6 polyunsaturated fatty acids (n-6 PUFA). Although n-6 PUFA demonstrates anti-atherosclerotic properties, survival following cardiac remodeling may be compromised. We hypothesized that n-6 PUFA like linoleic acid (LA) or other downstream PUFAs like γ-linolenic acid or arachidonic acid alter the transforming growth factor-β (TGFβ)-collagen axis in the heart. Excess dietary LA increased the collagen I/III ratio in the mouse myocardium, leading to cardiac "stiffening" characterized by impaired transmitral flow indicative of early diastolic dysfunction within 5 weeks. In vitro, LA under TGFβ1 stimulation increased collagen I and lysyl oxidase (LOX), the enzyme that cross-links soluble collagen resulting in deposited collagen. Overexpression of fatty acid desaturase 2 (fads2), which metabolizes LA to downstream PUFAs, reduced collagen deposits, LOX maturation, and activity with LA, whereas overexpressing fads1, unrelated to LA desaturation, did not. Furthermore, fads2 knockdown by RNAi elevated LOX activity and collagen deposits in fibroblasts with LA but not oleic acid, implying a buildup of LA for aggravating such pro-fibrotic effects. As direct incubation with γ-linolenic acid or arachidonic acid also attenuated collagen deposits and LOX activity, we concluded that LA itself, independent of other downstream PUFAs, promotes the pro-fibrotic effects of n-6 PUFA. Overall, these results attempt to reconcile opposing views of n-6 PUFA on the cardiovascular system and present evidence supporting a cardiac muscle-specific effect of n-6 PUFAs. Therefore, aggravation of the collagen I/III ratio and cardiac stiffening by excess n-6 PUFA represent a novel pathway of cardiac lipotoxicity caused by high n-6 PUFA diets.
Collapse
Affiliation(s)
- Julianne Beam
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Amy Botta
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Jiayu Ye
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Hesham Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, British Columbia-Okanagan, Kelowna, British Columbia BC V1V 1V7, Canada, and the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Main Road, Minia 11432, Egypt
| | - Brieanne J Matier
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Mary Forrest
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Kathleen M MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, British Columbia-Okanagan, Kelowna, British Columbia BC V1V 1V7, Canada, and
| | - Sanjoy Ghosh
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| |
Collapse
|
9
|
Wang H, Sit WH, Tipoe GL, Wan JMF. Differential protective effects of extra virgin olive oil and corn oil in liver injury: a proteomic study. Food Chem Toxicol 2014; 74:131-8. [PMID: 25303780 DOI: 10.1016/j.fct.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Extra virgin olive oil (EVOO) presents benefits against chronic liver injury induced by hepatotoxins such as carbon tetrachloride (CCl4); however, the protective mechanisms remain unclear. In the present study, a two-dimensional gel based proteomic approach was constructed to explore the mechanisms. Rats are injected with CCl4 twice a week for 4 weeks to induce liver fibrosis, and were fed laboratory chow plus 20% (w/w) of either corn oil or EVOO over the entire experimental period. Histological staining, MDA assay and fibrogenesis marker gene analysis illustrate that the CCl4-treated animals fed EVOO have a lower fibrosis and lipid peroxidation level in the liver than the corn oil fed group. The proteomic study indicates that the protein expression of thioredoxin domain-containing protein 12, peroxiredoxin-1, thiosulphate sulphurtransferase, calcium-binding protein 1, Annexin A2 and heat shock cognate 71 kDa protein are higher in livers from EVOO-fed rats with the CCl4 treatment compared with those from rats fed with corn oil, whereas the expression of COQ9, cAMP-dependent protein kinase type I-alpha regulatory subunit, phenylalanine hydroxylase and glycerate kinase are lower. Our findings confirmed the benefits of EVOO against chronic liver injury, which may be attributable to the antioxidant effects, hepatocellular function regulation and hepatic metabolism modification effects of EVOO.
Collapse
Affiliation(s)
- Hualin Wang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China; Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wat-Hung Sit
- Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - George Lim Tipoe
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jennifer Man-Fan Wan
- Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Lee KW, Thiyagarajan V, Sie HW, Cheng MF, Tsai MJ, Chia YC, Weng CF. Synergistic effect of natural compounds on the fatty acid-induced autophagy of activated hepatic stellate cells. J Nutr Biochem 2014; 25:903-13. [DOI: 10.1016/j.jnutbio.2014.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/23/2014] [Accepted: 04/06/2014] [Indexed: 01/22/2023]
|
11
|
Interleukin-17A plays a pivotal role in cholestatic liver fibrosis in mice. J Surg Res 2013; 183:574-82. [PMID: 23578751 DOI: 10.1016/j.jss.2013.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/20/2013] [Accepted: 03/07/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND It was recently reported that serum interleukin (IL)-17 levels increased in liver fibrosis associated with human alcoholic liver disease. However, the role of IL-17 in liver fibrosis has not yet been elucidated. Therefore, the aim of this study was to evaluate the role of IL-17 on cholestatic liver fibrosis. MATERIALS AND METHODS IL-17A knockout (KO) and wild-type (WT) mice were subjected to bile duct ligation. Animals were sacrificed at designated times, and serum and liver tissues were collected. The mRNA expression of hepatic fibrotic markers was assessed, and distribution of activated hepatic stellate cells (HSCs) was determined by immunohistochemical staining. In an in vitro study, Kupffer cells (KCs) and HSCs were isolated from WT mice. KCs were cultured with IL-17A or IL-17F, and production of tumor necrosis factor α (TNF-α) and transforming growth factor β1 (TGF-β1) was measured. HSCs were cultured with IL-17A or IL-17F, and morphologic changes were assessed by immunohistochemical staining. RESULTS Liver damage observed in the WT mice was significantly improved in the KO mice. Serum TNF-α and TGF-β1 levels were significantly decreased in the KO compared with the WT mice. The hepatic mRNA expression of TNF-α, TGF-β1, and collagen 1α1, which increased in the WT mice, also significantly decreased in the KO mice. Increased hepatic fibrosis in the WT mice was significantly improved in the KO mice. Cytokine production was increased in IL-17A-treated KCs. The most remarkable myofibroblast-like changes were observed in isolated HSCs in the presence of IL-17A. CONCLUSIONS IL-17A was involved in the pathogenesis of cholestatic liver fibrosis by activation of both the KCs and HSCs.
Collapse
|
12
|
Borkham-Kamphorst E, Drews F, Weiskirchen R. Induction of lipocalin-2 expression in acute and chronic experimental liver injury moderated by pro-inflammatory cytokines interleukin-1β through nuclear factor-κB activation. Liver Int 2011; 31:656-65. [PMID: 21457438 DOI: 10.1111/j.1478-3231.2011.02495.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lipocalin-2 (LCN2) belongs to the lipocalin superfamily, sharing a barrel-shaped tertiary structure with a hydrophobic pocket and an ability to bind lipophilic molecules. LCN2 has recently emerged as an important modulator of cellular homeostasis in several organs, i.e. heart, lung and kidney, but little is known about the expression of LCN2 in acute and chronic liver injury. AIMS In this study, we wanted to analyse the expression and regulation of LCN2 in models of acute and chronic experimental liver injury. MATERIALS AND METHODS We analysed LCN2 expression in livers of rats subjected to bile duct ligation or repeated doses of carbon tetrachloride and tested the impact of various pro-inflammatory cytokines in cultured primary liver cells. RESULTS By using primary cultures of hepatic stellate cells and hepatocytes isolated from normal and injured rat livers, we found a significant LCN2 expression in early hepatic stellate cell cultures, a lower expression in fully transdifferentiated myofibroblasts and no expression in freshly isolated hepatocytes. However, LCN2 expression and secretion in hepatocytes increased dramatically during culturing. In addition, chronic in vivo liver injury resulting from both bile duct ligation and repeated application of carbon tetrachloride resulted in rapid and well-sustained induction of LCN2 expression. Immunohistochemistry and primary liver cell isolation identified injured hepatocytes as the main source of LCN2 production. LCN2 is strongly induced in both primary hepatocytes and immortalized hepatocellular carcinoma cell line HepG2 by the pro-inflammatory cytokine interleukin-1β via nuclear factor-κB activation, but not by the profibrotic cytokines platelet-derived growth factor and transforming growth factor-β. CONCLUSION LCN2 expression shows clear correlation to liver damage and resulting inflammatory responses, rather than to the degree of liver fibrosis, which in fact may imply a distinct diagnostic value as an early biomarker of liver inflammation.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen University Hospital, Aachen, Germany
| | | | | |
Collapse
|
13
|
Yamane T, Kobayashi-Hattori K, Oishi Y, Takita T. High-fat diet reduces levels of type I tropocollagen and hyaluronan in rat skin. Mol Nutr Food Res 2010; 54 Suppl 1:S53-61. [PMID: 20397200 DOI: 10.1002/mnfr.201000022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although it is known that nutritional conditions affect the skin function, little information is available on the effect of a high-fat (HF) diet on skin. In this study, Sprague-Dawley rats were fed HF diets for 28 days, and we investigated the effect of this diet on type I tropocollagen and hyaluronan in rat skin. The HF diets reduced the levels of type I tropocollagen, COL1A1 mRNA, hyaluronan, and rat hyaluronan synthase (rhas)2 mRNA, which play a primary role in hyaluronan synthase in the dermis. However, rhas3 mRNA level in the skin was increased. The HF diets also decreased the skin mRNA expression of transforming growth factor (TGF)-beta1, which enhances the expression of COL1A1 and rhas2 mRNA and decreases rhas3 mRNA expression, and decreased the hepatic mRNA expression of insulin-like growth factor (IGF)-I, which enhances COL1A1, rhas2, and TGF-beta1 mRNA expression. The serum level of adiponectin, which promotes the syntheses of type I collagen and hyaluronan, was decreased in the HF diet groups. These findings suggest that an HF diet reduces the levels of type I tropocollagen and hyaluronan in the skin by suppressing the action of TGF-beta1, IGF-I and adiponectin, and these effects are deleterious for skin function.
Collapse
Affiliation(s)
- Takumi Yamane
- Department of Nutritional Sciences, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | | | | | | |
Collapse
|