1
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
2
|
Bai Z, Yan C, Chang D. Prediction and therapeutic targeting of the tumor microenvironment-associated gene CTSK in gastric cancer. Discov Oncol 2023; 14:200. [PMID: 37930479 PMCID: PMC10628060 DOI: 10.1007/s12672-023-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Cathepsin-K (CTSK) is overexpressed in Gastric cancer (GC) and the mechanism of its overexpression in GC is still unclear. The present work found CTSK as a potential predictive biomarker and immunotherapeutic target for GC based on the tumor microenvironment (TME). METHODS From public databases, gene expression profiles and clinical data of GC were downloaded to analyze the distribution of stromal and immune cells and tumor abundance in TME. Differentially expressed genes (DEGs) associated with TME were obtained by differential analysis, followed by cross-screening to obtain CTSK as a gene associated with TME. Next, a series of methods and tools were employed to explore the relationships between clinicopathological features of GC and CTSK expression as well as prognosis, tumor immune microenvironment, immune checkpoints and drug sensitivity. And GSEA was used to investigate the potential role of CTSK in the tumor microenvironment of GC. RESULTS From the dataset, we obtained a total of 656 DEGs associated with TME and the stromal component of TME was found to be closely involved in GC prognosis. CTSK was cross-screened as the key gene associated with TME by the PPI network and univariate Cox regression analysis. Pan-cancer analysis revealed significant high expression of CTSK in a variety of cancers. Subsequently, we hypothesized that high-expressed CTSK was closely correlated with poor prognosis and lymph node metastasis of tumors, and that CTSK, a GC TME-related gene, was largely involved in a range of biological behaviors of tumors, with a significant correlation between several immune cells. CONCLUSION CTSK was validated as a potential prognostic biomarker related to TME of GC and could be a promising next-generation immunotherapeutic target for GC.
Collapse
Affiliation(s)
- Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Chunyu Yan
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
3
|
Wang B, Huang L, Ye S, Zheng Z, Liao S. Identification of Novel Prognostic Biomarkers That are Associated with Immune Microenvironment Based on GABA-Related Molecular Subtypes in Gastric Cancer. Pharmgenomics Pers Med 2023; 16:665-679. [PMID: 37405024 PMCID: PMC10315139 DOI: 10.2147/pgpm.s411862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
Background Gamma-aminobutyric acid (GABA) plays an important role in tumorigenesis and progression. Despite this, the role of Reactome GABA receptor activation (RGRA) on gastric cancer (GC) remains unclear. This study was intended to screen RGRA-related genes in GC and investigate their prognostic value. Methods GSVA algorithm was used to assess the score of RGRA. GC patients were divided into two subtypes based on the median score of RGRA. GSEA, functional enrichment analysis, and immune infiltration analysis were performed between the two subgroups. Then, differentially expressed analysis, and weighted gene co-expression network analysis (WGCNA) were used to identify RGRA-related genes. The prognosis and expression of core genes were analyzed and validated in the TCGA database, GEO database, and clinical samples. ssGSEA and ESTIMATE algorithms were used to assess the immune cell infiltration in the low- and high-core genes subgroups. Results High-RGRA subtype had a poor prognosis and activated immune-related pathways, as well as an activated immune microenvironment. ATP1A2 was identified to be the core gene. The expression of ATP1A2 was associated with the overall survival rate and tumor stage, and its expression was down-regulated in GC patients. Furthermore, ATP1A2 expression was positively correlated with the level of immune cells, including B cells, CD8 T cells, cytotoxic cells, DC, eosinophils, macrophages, mast cells, NK cells, and T cells. Conclusion Two RGRA-related molecular subtypes were identified that could predict the outcome in GC patients. ATP1A2 was a core immunoregulatory gene and was associated with prognosis and immune cell infiltration in GC.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Linlin Huang
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Shanliang Ye
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Zhongwen Zheng
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Shanying Liao
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
4
|
Sun H, Wang X, Wang X, Xu M, Sheng W. The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death Dis 2022; 13:874. [PMID: 36244987 PMCID: PMC9573863 DOI: 10.1038/s41419-022-05320-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Despite advances in anticancer therapy, the prognosis of gastric cancer (GC) remains unsatisfactory. Research in recent years has shown that the malignant behavior of cancer is not only attributable to tumor cells but is partly mediated by the activity of the cancer stroma and controlled by various molecular networks in the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are one of the most abundant mesenchymal cell components of the stroma and extensively participate in the malignant development of GC malignancy. CAFs modulate the biological properties of tumor cells in multiple ways, including the secretion of various bioactive molecules that have effects through paracrine and autocrine signaling, the release of exosomes, and direct interactions, thereby affecting GC initiation and development. However, there is marked heterogeneity in the cellular origins, phenotypes, and functions of CAFs in the TME of GC. Furthermore, variations in factors, such as proteins, microRNAs, and lncRNAs, affect interactions between CAFs and GC cells, although, the potential molecular mechanisms are still poorly understood. In this review, we aim to describe the current knowledge of the cellular features and heterogeneity of CAFs and discuss how these factors are regulated in CAFs, with a focus on how they affect GC biology. This review provides mechanistic insight that could inform therapeutic strategies and improve the prognosis of GC patients.
Collapse
Affiliation(s)
- Hui Sun
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Xu Wang
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Xin Wang
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Midie Xu
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Weiqi Sheng
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| |
Collapse
|
5
|
Xiang Z, Cha G, Wang Y, Gao J, Jia J. Characterizing the Crosstalk of NCAPG with Tumor Microenvironment and Tumor Stemness in Stomach Adenocarcinoma. Stem Cells Int 2022; 2022:1888358. [PMID: 36238529 PMCID: PMC9551677 DOI: 10.1155/2022/1888358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Nonstructural maintenance of non-SMC condensin I complex subunit G (NCAPG) exerts critical effects on cancer progression. However, its biological roles in tumorigenesis and metastasis remain unclear. Thus, we aimed to assess the prognostic utility of NCAPG in stomach adenocarcinoma (STAD) and its potential as a tumor biomarker. Methods Pan-cancer expression profile dataset from public databases and corresponding clinical information were extracted. Single-sample gene set enrichment analysis (ssGSEA) was performed for the evaluation of immune correlations pan-cancer. Subsequently, we focused on STAD and evaluated the methylation profiles, copy number variants (CNVs), and single nucleotide variants (SNVs). Immune features were analyzed between high and low NCAPG expression groups. Differential analysis was performed between high and low expression groups to identify differentially expressed genes (DEGs). Prognostic DEGs were screened by univariate analysis, and an NCAPG-based risk model was constructed based on the prognostic DEGs and LASSO analysis. Results NCAPG expression in STAD was significantly and positively correlated with four immune checkpoints, namely, CTLA4, PDCD1, LAG3, and CD276, but was negatively correlated with the infiltration of most immune cells. High and low NCAPG expression groups had differential overall survival, tumor mutation burden, and differential enrichment of therapeutic-related pathways. An immune risk scoring model related to NCAPG expression and immune score was constructed which showed a favorable performance in predicting STAD prognosis as well as predicting the response to immunotherapy. In addition, we found a higher mRNA stemness index (mRNAsi) in the high-risk group and a positive correlation between NCAPG expression and mRNAsi. Conclusion NCAPG was suggested to be involved in the regulation of tumor microenvironment in STAD. High NCAPG expression was related to high tumor stemness and good prognosis. The immune risk model had a potential to predict STAD prognosis and help directing therapeutic treatment.
Collapse
Affiliation(s)
- Zheng Xiang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China 233000
| | - Genlan Cha
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China 233000
| | - Yihao Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China 233000
| | - Jikai Gao
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China 233000
| | - Jianguang Jia
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China 233000
| |
Collapse
|
6
|
Zhang J, Cai X, Cui W, Wei Z. Bioinformatics and Experimental Analyses Reveal MAP4K4 as a Potential Marker for Gastric Cancer. Genes (Basel) 2022; 13:genes13101786. [PMID: 36292671 PMCID: PMC9601900 DOI: 10.3390/genes13101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Gastric cancer remains the most prevalent and highly lethal disease worldwide. MAP4K4, a member of Ste20, plays an important role in various pathologies, including cancer. However, its role in gastric cancer is not yet fully elucidated. Therefore, this study aims to determine the tumor-promoting role of MAP4K4 in gastric cancer and whether it can be used as a new and reliable biomarker to predict the prognosis of gastric cancer. For this purpose, we divide the samples into high- and low-expression groups according to the expression level of MAP4K4. The association of MAP4K4 expression with prognosis is assessed using the Kaplan–Meier survival analysis. Furthermore, immune infiltration analysis using ESTIMATE is conducted to evaluate the tumor immune scores of the samples. Results: The findings reveal a significantly higher expression of MAP4K4 in tumor samples than in adjacent samples. The high-expression group was significantly enriched in tumor-related pathways, such as the PI3K-Akt signaling pathway. In addition, immune infiltration analysis revealed a positive correlation between immune scores and MAP4K4 expression. We also observed that miRNAs, such as miR-192-3p (R = −0.317, p-value 3.111 × 10−9), miR-33b-5p (R= −0.238, p-value 1.166 × 10−5), and miR-582-3p (R = −0.214, p-value 8.430 × 10−5), had potential negative regulatory effects on MAP4K4. Moreover, we identified several transcription factors, ubiquitinated proteins, and interacting proteins that might regulate MAP4K4. The relationship between MAP4K4 and DNA methylation was also identified. Finally, we verified the high expression of MAP4K4 and its effect on promoting cancer. Conclusion: MAP4K4 might be closely related to gastric cancer’s progression, invasion, and metastasis. Its high expression negatively impacts the prognosis of gastric cancer patients. This suggests MAP4K4 as an important prognostic factor for gastric cancer and could be regarded as a new potential prognostic detection and therapeutic target.
Collapse
Affiliation(s)
- Junping Zhang
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Xiaoping Cai
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Weifeng Cui
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Zheng Wei
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
- Correspondence:
| |
Collapse
|
7
|
Fan Z, Wang Y, Niu R. Identification of the three subtypes and the prognostic characteristics of stomach adenocarcinoma: analysis of the hypoxia-related long non-coding RNAs. Funct Integr Genomics 2022; 22:919-936. [PMID: 35665866 DOI: 10.1007/s10142-022-00867-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
Stomach adenocarcinoma (STAD) is one of the most commonly diagnosed cancers. This study analyzed the subtypes and characteristics of STAD subtypes by analyzing hypoxia pathway-related lncRNAs. Potential hub lncRNAs were found and a prognostic model was constructed. Expression profiling data and clinical information of STAD were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Metabolic pathway scores were calculated using single-sample gene set enrichment analysis (ssGSEA) method. Tumor immune microenvironment scores of the samples were assessed by ESTIMATE, MCP-counter, and ssGSEA. Functional analysis of lncRNAs, construction of risk models, and drug sensitivity analysis were performed. Pathway analysis revealed that the hypoxia pathway was a prognostic risk factor. Molecular subtypes were developed based on the hypoxia score-related lncRNAs. Three molecular subtypes (C1, C2, and C3) for gastric STAD were determined. The worst prognosis was in the C2, which was also characterized by the maximum hypoxia pathway-related scores and the maximum immune score. A majority of the immune checkpoints and chemokines were high-expressed in the C2 subtype. Mutations in the C2 subtype were significantly lower than the C1 and C3 subtypes. The subtypes differed in terms of functional and metabolic pathways. Eight hub indicator lncRNAs (MSC-AS1, AC037198.1, LINC00968, AL139393.3, LINC02544, BOLA3-AS1, MIR1915HG, and AC107021.2) capable of predicting patient prognosis were identified. Three hypoxia lncRNA-related molecular subtypes characterized by different prognostic and immune conditions were identified. The results maybe can provide a theoretical basis to improve the clinical diagnosis and treatment of STAD.
Collapse
Affiliation(s)
- Zehua Fan
- Information Institute, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan City, 420100, Hubei Province, China. .,School of Information Engineering, Tarim University, 705 Hongqiao Road, Alar City, 659002, Xinjiang Uygur Autonomous Region, China.
| | - Yanqun Wang
- Information Institute, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan City, 420100, Hubei Province, China.,School of Information Engineering, Tarim University, 705 Hongqiao Road, Alar City, 659002, Xinjiang Uygur Autonomous Region, China
| | - Rong Niu
- Information Institute, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan City, 420100, Hubei Province, China.,School of Information Engineering, Tarim University, 705 Hongqiao Road, Alar City, 659002, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
8
|
Mancini SJC, Balabanian K, Corre I, Gavard J, Lazennec G, Le Bousse-Kerdilès MC, Louache F, Maguer-Satta V, Mazure NM, Mechta-Grigoriou F, Peyron JF, Trichet V, Herault O. Deciphering Tumor Niches: Lessons From Solid and Hematological Malignancies. Front Immunol 2021; 12:766275. [PMID: 34858421 PMCID: PMC8631445 DOI: 10.3389/fimmu.2021.766275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge about the hematopoietic niche has evolved considerably in recent years, in particular through in vitro analyzes, mouse models and the use of xenografts. Its complexity in the human bone marrow, in particular in a context of hematological malignancy, is more difficult to decipher by these strategies and could benefit from the knowledge acquired on the niches of solid tumors. Indeed, some common features can be suspected, since the bone marrow is a frequent site of solid tumor metastases. Recent research on solid tumors has provided very interesting information on the interactions between tumoral cells and their microenvironment, composed notably of mesenchymal, endothelial and immune cells. This review thus focuses on recent discoveries on tumor niches that could help in understanding hematopoietic niches, with special attention to 4 particular points: i) the heterogeneity of carcinoma/cancer-associated fibroblasts (CAFs) and mesenchymal stem/stromal cells (MSCs), ii) niche cytokines and chemokines, iii) the energy/oxidative metabolism and communication, especially mitochondrial transfer, and iv) the vascular niche through angiogenesis and endothelial plasticity. This review highlights actors and/or pathways of the microenvironment broadly involved in cancer processes. This opens avenues for innovative therapeutic opportunities targeting not only cancer stem cells but also their regulatory tumor niche(s), in order to improve current antitumor therapies.
Collapse
Affiliation(s)
- Stéphane J C Mancini
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM UMR1236, Rennes 1 University, Etablissement Français du Sang Bretagne, Rennes, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France
| | - Karl Balabanian
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Saint-Louis Research Institute, University of Paris, EMiLy, INSERM U1160, Paris, France.,The Organization for Partnerships in Leukemia (OPALE) Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| | - Isabelle Corre
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), Signaling in Oncogenesis Angiogenesis and Permeability (SOAP), INSERM UMR1232, Centre National de la Recherche scientifique (CNRS) ERL600, Université de Nantes, Nantes, France
| | - Julie Gavard
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), Signaling in Oncogenesis Angiogenesis and Permeability (SOAP), INSERM UMR1232, Centre National de la Recherche scientifique (CNRS) ERL600, Université de Nantes, Nantes, France.,Integrated Center for Oncology, St. Herblain, France
| | - Gwendal Lazennec
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Centre National de la Recherche scientifique (CNRS) UMR9005, SYS2DIAG-ALCEDIAG, Montpellier, France
| | - Marie-Caroline Le Bousse-Kerdilès
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM UMRS-MD1197, Paris-Saclay University, Paul-Brousse Hospital, Villejuif, France
| | - Fawzia Louache
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM UMRS-MD1197, Paris-Saclay University, Paul-Brousse Hospital, Villejuif, France
| | - Véronique Maguer-Satta
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancer Research Center of Lyon (CRCL), CNRS UMR5286, INSERM U1052, Lyon 1 university, Lean Bérard Center, Lyon, France
| | - Nathalie M Mazure
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM U1065, C3M, University of Côte d'Azur (UCA), Nice, France
| | - Fatima Mechta-Grigoriou
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Stress and Cancer Laboratory, Institut Curie, INSERM U830, Paris Sciences et Lettres (PSL) Research University, Team Babelized Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Jean-François Peyron
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM U1065, C3M, University of Côte d'Azur (UCA), Nice, France
| | - Valérie Trichet
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,INSERM UMR1238 Phy-Os, Université de Nantes, Nantes, France
| | - Olivier Herault
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,The Organization for Partnerships in Leukemia (OPALE) Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.,Centre National de la Recherche scientifique (CNRS) ERL7001 LNOx, EA7501, Tours University, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| |
Collapse
|
9
|
Deng S, Li L, Xu S, Wang X, Han T. Promotion of gastric tumor initiating cells in a 3D collagen gel culture model via YBX1/SPP1/NF-κB signaling. Cancer Cell Int 2021; 21:599. [PMID: 34758833 PMCID: PMC8579534 DOI: 10.1186/s12935-021-02307-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 01/07/2023] Open
Abstract
Background The high potential for tumor recurrence and chemoresistance is a major challenge of clinical gastric cancer treatment. Increasing evidence suggests that the presence of tumor initiating cells (TICs) is the principal cause of tumor recurrence and chemoresistance. However, the underlying mechanism of TIC development remains controversial. Methods To identify novel molecular pathways in gastric cancer, we screened the genomic expression profile of 155 gastric cancer patients from the TCGA database. We then described an improved 3D collagen I gels and tested the effects of collagen on the TIC phenotype of gastric cells using colony formation assay, transwell assay, and nude mouse models. Additionally, cell apoptosis assay was performed to examine the cytotoxicity of 5-fluorine and paclitaxel on gastric cancer cells cultured in 3D collagen I gels. Results Elevated expression of type I collagen was observed in tumor tissues from high stage patients (stage T3–T4) when compared to the low stage group (n=10, stage T1–T2). Furthermore, tumor cells seeded in a low concentration of collagen gels acquired TIC-like phenotypes and revealed enhanced resistance to chemotherapeutic agents, which was dependent on an integrin β1 (ITGB1)/Y-box Binding Protein 1 (YBX1)/Secreted Phosphoprotein 1 (SPP1)/NF-κB signaling pathway. Importantly, inhibition of ITGB1/NF-κB signaling efficiently reversed the chemoresistance induced by collagen and promoted anticancer effects in vivo. Conclusions Our findings demonstrated that type I collagen promoted TIC-like phenotypes and chemoresistance through ITGB1/YBX1/SPP1/NF-κB pathway, which may provide novel insights into gastric cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02307-x.
Collapse
Affiliation(s)
- Shuangya Deng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lun Li
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shu Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaobo Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tong Han
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
10
|
Yasuda T, Ishimoto T, Baba H. Conflicting metabolic alterations in cancer stem cells and regulation by the stromal niche. Regen Ther 2021; 17:8-12. [PMID: 33598509 PMCID: PMC7851492 DOI: 10.1016/j.reth.2021.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Recent studies have revealed that cancer stem cells (CSCs) undergo metabolic alterations that differentiate them from non-CSCs. Inhibition of specific metabolic pathways in CSCs has been conducted to eliminate the CSC population in many types of cancer. However, there is conflicting evidence about whether CSCs depend on glycolysis or mitochondrial oxidative phosphorylation (OXPHOS) to maintain their stem cell properties. This review summarizes the latest knowledge regarding CSC-specific metabolic alterations and offers recent evidence that the surrounding microenvironments may play an important role in the maintenance of CSC properties.
Collapse
Key Words
- ALDH, aldehyde dehydrogenase
- ATP, adenosine triphosphate
- CD44v, CD44 variant isoform
- CSCs
- CSCs, cancer stem cells
- EMT, epithelial–mesenchymal transition
- EVs, extracellular vesicles
- FAO, fatty acid oxidation
- FBP1, fructose-1,6-biphosphatase 1
- GLUT1, glucose transporter 1
- GP6, glucose-6-phosphate
- Glycolysis
- HCC, hepatocellular carcinoma
- HIF1a, hypoxia inducible factor 1a
- IMP2, insulin-like growth factor 2
- IncRNAs, long noncoding RNAs
- LSCs, leukemia stem cells
- Mitochondrial OXPHOS
- NRF2, nuclear factor erythroid 2–related factor 2
- OXPHOS, oxidative phosphorylation
- PDK1, pyruvate dehydrogenase kinase 1
- PPP, pentose phosphate pathway
- ROS
- ROS, reactive oxygen species
- SOD2, superoxide dismutase 2
- Stromal niche
- TCA, tricarboxylic acid
- TICs, tumor initiating stem-like cells
- mTORC1, mammalian target of rapamycin complex 1
Collapse
Affiliation(s)
- Tadahito Yasuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
11
|
Lin T, Peng W, Mai P, Zhang E, Peng L. Human Gastric Cancer Stem Cell (GCSC) Markers Are Prognostic Factors Correlated With Immune Infiltration of Gastric Cancer. Front Mol Biosci 2021; 8:626966. [PMID: 34113647 PMCID: PMC8185345 DOI: 10.3389/fmolb.2021.626966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
The prognosis of patients with gastric cancer (GC) is still unsatisfying. Numerous markers of gastric cancer stem cells (GCSCs) have been identified and were thought to be related to cancer aggressiveness. However, the roles of GCSC markers in GC patients’ prognosis and immune infiltration remain unknown. Expression of GCSC markers was analyzed using Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA). Their associations with clinicopathological parameters were analyzed using UALCAN and LinkedOmics. Alternations and protein expression of GCSC markers were analyzed by cBioPortal and the Human Protein Atlas databases, respectively. The prognostic significance of GCSC markers was evaluated using Kaplan-Meier plotter. Correlations between the expression of GCSC markers and immune infiltration along with biomarkers of tumor-infiltrating immune cells (TIICs) were assessed combined Tumor Immune Estimation Resource and GEPIA. GeneMANIA was used to discover the interactive genes of GCSC markers, and enrichment analysis was performed using Database for Annotation, Visualization, and Integrated Discovery server. We identified six GCSC markers significantly up-expressed in GC, compared with normal stomach tissues. Among them, the overexpression of ICAM1, THY1, and CXCR4 significantly indicated adverse, while EPCAM indicated beneficial clinicopathological features of GC patients. The up-regulation of CXCR4 showed unfavorable prognostic significance, whereas EPCAM and TFRC showed the opposite. The six GCSC markers were all correlated with the infiltration and activation of distinct TIICs. Especially, ICAM1, THY1, and CXCR4 showed strongly positive correlations with tumor-associated macrophages. Besides, chemokine, Toll-like receptor, NF-kappa B, and HIF-1 signaling pathways might be involved in the regulation of GCSC markers on cancer development. This study proposed that GCSC markers might be promising targets of GC treatment to weaken cancer stem-like properties and strengthen anticancer immunity.
Collapse
Affiliation(s)
- Tong Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenya Peng
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Peipei Mai
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - E Zhang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lisheng Peng
- Department of Science and Education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
12
|
Kim J, Jang J, Cho DW. Controlling Cancer Cell Behavior by Improving the Stiffness of Gastric Tissue-Decellularized ECM Bioink With Cellulose Nanoparticles. Front Bioeng Biotechnol 2021; 9:605819. [PMID: 33816446 PMCID: PMC8009980 DOI: 10.3389/fbioe.2021.605819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
A physiologically relevant tumor microenvironment is favorable for the progression and growth of gastric cancer cells. To simulate the tumor-specific conditions of in vivo environments, several biomaterials engineering studies have investigated three-dimensional (3D) cultures. However, the implementation of such cultures remains limited because of challenges in outlining the biochemical and biophysical characteristics of the gastric cancer microenvironment. In this study, we developed a 3D cell printing-based gastric cancer model, using a combination of gastric tissue-specific bioinks and cellulose nanoparticles (CN) to provide adequate stiffness to gastric cancer cells. To create a 3D gastric tissue-specific microenvironment, we developed a decellularization process for a gastric tissue-derived decellularized extracellular matrix (g-dECM) bioink, and investigated the effect of the g-dECM bioink on promoting the aggressiveness of gastric cancer cells using histological and genetic validation methods. We found that incorporating CN in the matrix improves its mechanical properties, which supports the progression of gastric cancer. These mechanical properties are distinguishing characteristics that can facilitate the development of an in vitro gastric cancer model. Further, the CN-supplemented g-dECM bioink was used to print a variety of free-standing 3D shapes, including gastric rugae. These results indicate that the proposed model can be used to develop a physiologically relevant gastric cancer system that can be used in future preclinical trials.
Collapse
Affiliation(s)
- Jisoo Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Institute of Convergence Science, Yonsei University, Seoul, South Korea
| | - Dong-Woo Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Institute of Convergence Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
13
|
de Oliveira ÉA, Goding CR, Maria-Engler SS. Organotypic Models in Drug Development "Tumor Models and Cancer Systems Biology for the Investigation of Anticancer Drugs and Resistance Development". Handb Exp Pharmacol 2021; 265:269-301. [PMID: 32548785 DOI: 10.1007/164_2020_369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The landscape of cancer treatment has improved over the past decades, aiming to reduce systemic toxicity and enhance compatibility with the quality of life of the patient. However, at the therapeutic level, metastatic cancer remains hugely challenging, based on the almost inevitable emergence of therapy resistance. A small subpopulation of cells able to survive drug treatment termed the minimal residual disease may either harbor resistance-associated mutations or be phenotypically resistant, allowing them to regrow and become the dominant population in the therapy-resistant tumor. Characterization of the profile of minimal residual disease represents the key to the identification of resistance drivers that underpin cancer evolution. Therapeutic regimens must, therefore, be dynamic and tailored to take into account the emergence of resistance as tumors evolve within a complex microenvironment in vivo. This requires the adoption of new technologies based on the culture of cancer cells in ways that more accurately reflect the intratumor microenvironment, and their analysis using omics and system-based technologies to enable a new era in the diagnostics, classification, and treatment of many cancer types by applying the concept "from the cell plate to the patient." In this chapter, we will present and discuss 3D model building and use, and provide comprehensive information on new genomic techniques that are increasing our understanding of drug action and the emergence of resistance.
Collapse
Affiliation(s)
- Érica Aparecida de Oliveira
- Skin Biology and Melanoma Lab, Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Silvya Stuchi Maria-Engler
- Skin Biology and Melanoma Lab, Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Identification of prognosis-related genes in the tumor microenvironment of stomach adenocarcinoma by TCGA and GEO datasets. Biosci Rep 2020; 40:226576. [PMID: 33015704 PMCID: PMC7560520 DOI: 10.1042/bsr20200980] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has demonstrated that tumor microenvironment (TME) plays a crucial role in stomach adenocarcinoma (STAD) development, progression, prognosis and immunotherapeutic responses. How the genes in TME interact and behave is extremely crucial for tumor investigation. In the present study, we used gene expression data of STAD available from TCGA and GEO datasets to infer tumor purity using ESTIMATE algorithms, and predicted the associations between tumor purity and clinical features and clinical outcomes. Next, we calculated the differentially expressed genes (DEGs) from the comparisons of immune and stromal scores, and postulated key biological processes and pathways that the DEGs mainly involved in. Then, we analyzed the prognostic values of DEGs in TCGA dataset, and validated the results by GEO dataset. Finally, we used CIBERSORT computational algorithm to estimate the 22 tumor infiltrating immune cells (TIICs) subsets in STAD tissues. We found that stromal and immune scores were significantly correlated with STAD subtypes, clinical stages, Helicobacter polyri infection, and stromal scores could predict the clinical outcomes in STAD patients. Moreover, we screened 307 common DEGs in TCGA and GSE51105 datasets. In the prognosis analyses, we only found OGN, JAM2, RERG, OLFML2B, and ADAMTS1 genes were significantly associated with overall survival in TCGA and GSE84437 datasets, and these genes were correlated with the fractions of T cells, B cells, macrophages, monocytes, NK cells and DC cells, respectively. Our comprehensive analyses for transcriptional data not only improved the understanding of characteristics of TME, but also provided the targets for individual therapy in STAD.
Collapse
|
15
|
Long-Term Helicobacter pylori Infection Switches Gastric Epithelium Reprogramming Towards Cancer Stem Cell-Related Differentiation Program in Hp-Activated Gastric Fibroblast-TGFβ Dependent Manner. Microorganisms 2020; 8:microorganisms8101519. [PMID: 33023180 PMCID: PMC7599721 DOI: 10.3390/microorganisms8101519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (Hp)-induced inflammatory reaction leads to a persistent disturbance of gastric mucosa and chronic gastritis evidenced by deregulation of tissue self-renewal and local fibrosis with the crucial role of epithelial–mesenchymal transition (EMT) in this process. As we reported before, Hp activated gastric fibroblasts into cells possessing cancer-associated fibroblast properties (CAFs), which secreted factors responsible for EMT process initiation in normal gastric epithelial RGM1 cells. Here, we showed that the long-term incubation of RGM1 cells in the presence of Hp-activated gastric fibroblast (Hp-AGF) secretome induced their shift towards plastic LGR5+/Oct4high/Sox-2high/c-Mychigh/Klf4low phenotype (l.t.EMT+RGM1 cells), while Hp-non-infected gastric fibroblast (GF) secretome prompted a permanent epithelial–myofibroblast transition (EMyoT) of RGM1 cells favoring LGR−/Oct4high/Sox2low/c-Myclow/Klf4high phenotype (l.t.EMT−RGM1 cells). TGFβ1 rich secretome from Hp-reprogrammed fibroblasts prompted phenotypic plasticity and EMT of gastric epithelium, inducing pro-neoplastic expansion of post-EMT cells in the presence of low TGFβR1 and TGFβR2 activity. In turn, TGFβR1 activity along with GF-induced TGFβR2 activation in l.t.EMT−RGM1 cells prompted their stromal phenotype. Collectively, our data show that infected and non-infected gastric fibroblast secretome induces alternative differentiation programs in gastric epithelium at least partially dependent on TGFβ signaling. Hp infection-activated fibroblasts can switch gastric epithelium microevolution towards cancer stem cell-related differentiation program that can potentially initiate gastric neoplasm.
Collapse
|
16
|
Nienhüser H, Crnovrsanin N, Nerz D, Heckler M, Sisic L, Lasitschka F, Schneider M, Schmidt T. Expression of Angiogenic Proteins in Tumor and Stroma Affects Survival in Patients With Gastric Cancer. J Surg Res 2020; 255:172-180. [PMID: 32563757 DOI: 10.1016/j.jss.2020.05.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer is one of the most frequent malignancies worldwide. Angiogenic growth factors play a crucial role in mediating the crosstalk between cancer cells and the surrounding microenvironment. In this exploratory study, we investigate the impact of angiogenic proteins within the tumor cell or stroma compartment on survival of patients with gastric cancer. MATERIALS AND METHODS In 29 patients, tumor and stromal compartments were separated using laser capture microdissection. Angiogenic protein expression was measured using a bead-based immunoassay and correlated with tumor stage and overall survival. RESULTS Overall survival was significantly shorter in patients with a high stroma concentration of vascular endothelial growth factor (VEGF)-A (23.5 (±17.6) versus 33.6 (±21.0) mo; P = 0.009) and stem cell factor (22.2 (±18.5) versus 33.6 (±21.8) mo; P = 0.01) compared with patients with a low stroma concentration. High stromal VEGF-D showed a trend toward worse survival (26.8 (±22.0) versus 37.2 (±19.0) mo; P = 0.09). We did not observe any significant correlation between tumor-specific expression of angiogenic cytokines and survival. CONCLUSIONS This translational study highlights the difference in clinical impact between tumor and stromal expression of angiogenic proteins. Compartment-specific concentrations of VEGF-A and stem cell factor affect the clinical prognosis and help to identify the best therapy for patients with gastric cancer.
Collapse
Affiliation(s)
- Henrik Nienhüser
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Nerma Crnovrsanin
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Daniel Nerz
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Max Heckler
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Leila Sisic
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Martin Schneider
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
17
|
Pádua D, Figueira P, Ribeiro I, Almeida R, Mesquita P. The Relevance of Transcription Factors in Gastric and Colorectal Cancer Stem Cells Identification and Eradication. Front Cell Dev Biol 2020; 8:442. [PMID: 32626705 PMCID: PMC7314965 DOI: 10.3389/fcell.2020.00442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric and colorectal cancers have a high incidence and mortality worldwide. The presence of cancer stem cells (CSCs) within the tumor mass has been indicated as the main reason for tumor relapse, metastasis and therapy resistance, leading to poor overall survival. Thus, the elimination of CSCs became a crucial goal for cancer treatment. The identification of these cells has been performed by using cell-surface markers, a reliable approach, however it lacks specificity and usually differs among tumor type and in some cases even within the same type. In theory, the ideal CSC markers are those that are required to maintain their stemness features. The knowledge that CSCs exhibit characteristics comparable to normal stem cells that could be associated with the expression of similar transcription factors (TFs) including SOX2, OCT4, NANOG, KLF4 and c-Myc, and signaling pathways such as the Wnt/β-catenin, Hedgehog (Hh), Notch and PI3K/AKT/mTOR directed the attention to the use of these similarities to identify and target CSCs in different tumor types. Several studies have demonstrated that the abnormal expression of some TFs and the dysregulation of signaling pathways are associated with tumorigenesis and CSC phenotype. The disclosure of common and appropriate biomarkers for CSCs will provide an incredible tool for cancer prognosis and treatment. Therefore, this review aims to gather the new insights in gastric and colorectal CSC identification specially by using TFs as biomarkers and divulge promising drugs that have been found and tested for targeting these cells.
Collapse
Affiliation(s)
- Diana Pádua
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Paula Figueira
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Inês Ribeiro
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Patrícia Mesquita
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Gastric Cancer Stem Cells: Current Insights into the Immune Microenvironment and Therapeutic Targets. Biomedicines 2020; 8:biomedicines8010007. [PMID: 31935894 PMCID: PMC7168269 DOI: 10.3390/biomedicines8010007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related death worldwide. Cancer stem cells (CSCs) are known to be involved in chemotherapy resistance and the development of metastases. Although CSCs harbor self-renewal and tumorigenic abilities, the immune microenvironment surrounding CSCs provides various factors and supports the maintenance of CSC properties. The current review summarizes the accumulating findings regarding the relationship between the immune microenvironment and gastric CSCs (GCSCs), which will support the possibility of developing novel therapeutic strategies for targeting GCSCs.
Collapse
|
19
|
Ran A, Guan L, Wang J, Wang Y. GREM2 maintains stem cell-like phenotypes in gastric cancer cells by regulating the JNK signaling pathway. Cell Cycle 2019; 18:2414-2431. [PMID: 31345097 DOI: 10.1080/15384101.2019.1646561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the major malignancies worldwide. This study was conducted to explore the mechanism by which GREM2 maintains biological properties of GC stem cells (GCSCs), and proved that GREM2 could potentially regulate the proliferation, apoptosis, invasion, migration and tumorigenic ability of GCSCs through the regulation of the JNK signaling pathway. In silico analysis was utilized to retrieve expression microarray related to GC, and differential analysis was conducted. The cell line with the highest GREM2 expression was overexpressed with GREM2 mimic, silencing GREM2 by siRNA, or treated with activator or inhibitor of the JNK signaling pathway. Subsequently, expression of GREM2, JNK signaling pathway-, apoptosis- or migration and invasion-associated factors were determined. Proliferation, migration, invasion, apoptosis of GCSCs in vitro and tumorigenic ability and lymph node metastasis of GCSCs in vivo were determined. Based on the in silico analysis of GSE49051, GREM2 was determined to be overexpressed in GC and its expression was the highest in the MKN-45 cell line, which was selected for the subsequent experiments. Silencing of GREM2 or inhibition of the JNK signaling pathway suppressed the proliferation, migration and invasion, while promoting apoptosis of GCSCs in vitro as well as inhibiting tumorigenesis and lymph node metastasis in vivo. In conclusion, the aforementioned findings suggest that the silencing of GREM2 suppresses the activation of the JNK signaling pathway, thereby inhibiting tumor progression. Therefore, GREM2-mediated JNK signaling pathway was expected to be a new therapeutic strategy for GC.
Collapse
Affiliation(s)
- Ao Ran
- The First Affiliated Hospital of China Medical University , Shenyang , P.R. China
| | - Lin Guan
- The First Affiliated Hospital of China Medical University , Shenyang , P.R. China
| | - Jiani Wang
- The First Affiliated Hospital of China Medical University , Shenyang , P.R. China
| | - Ying Wang
- The First Affiliated Hospital of China Medical University , Shenyang , P.R. China
| |
Collapse
|
20
|
Stoichiogenomics reveal oxygen usage bias, key proteins and pathways associated with stomach cancer. Sci Rep 2019; 9:11344. [PMID: 31383879 PMCID: PMC6683168 DOI: 10.1038/s41598-019-47533-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Stomach cancer involves hypoxia-specific microenvironments. Stoichiogenomics explores environmental resource limitation on biological macromolecules in terms of element usages. However, the patterns of oxygen usage by proteins and the ways that proteins adapt to a cancer hypoxia microenvironment are still unknown. Here we compared the oxygen and carbon contents ([C]) between proteomes of stomach cancer (hypoxia) and two stomach glandular cells (normal). Key proteins, genome locations, pathways, and functional dissection associated with stomach cancer were also studied. An association of oxygen content ([O]) and protein expression level was revealed in stomach cancer and stomach glandular cells. For differentially expressed proteins (DEPs), oxygen contents in the up regulated proteins were3.2%higherthan that in the down regulated proteins in stomach cancer. A total of 1,062 DEPs were identified; interestingly none of these proteins were coded on Y chromosome. The up regulated proteins were significantly enriched in pathways including regulation of actin cytoskeleton, cardiac muscle contraction, pathway of progesterone-mediated oocyte maturation, etc. Functional dissection of the up regulated proteins with high oxygen contents showed that most of them were cytoskeleton, cytoskeleton associated proteins, cyclins and signaling proteins in cell cycle progression. Element signature of resource limitation could not be detected in stomach cancer for oxygen, just as what happened in plants and microbes. Unsaved use of oxygen by the highly expressed proteins was adapted to the rapid growth and fast division of the stomach cancer cells. In addition, oxygen usage bias, key proteins and pathways identified in this paper laid a foundation for application of stoichiogenomics in precision medicine.
Collapse
|
21
|
Role of Cancer-Associated Fibroblast in Gastric Cancer Progression and Resistance to Treatments. JOURNAL OF ONCOLOGY 2019; 2019:6270784. [PMID: 31281359 PMCID: PMC6590541 DOI: 10.1155/2019/6270784] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Although the survival of gastric cancer (GC) patients has gradually improved, the outcomes of advanced GC patients remain unsatisfactory despite standard treatment with conventional chemotherapy or targeted agents. Several studies have shown that cancer-associated fibroblasts (CAFs), a major component of tumor stroma in GC, may have significant roles in GC progression and resistance to treatments. CAFs are a major source of various secreted molecules in the tumor microenvironment, which stimulate cancer cells and other noncancerous components of GC. Surprisingly, these factors could be involved in gastric carcinogenesis. Cytokines, including interleukin-6 and interleukin-11, or growth factors, such as fibroblast growth factor produced from CAFs, can directly activate GC cells and consequently lead to the development of an aggressive phenotype. Galectin-1 or hepatocyte growth factor can be involved in CAF-derived neovascularization in GC. In addition, recent studies showed that CAFs can affect tumor immunity through M2 polarization of tumor-associated macrophages. Finally, the current study aimed to introduce several inhibitory agents and evaluate their suppressive effects on CAFs in patients with GC progression. However, further studies are required to evaluate their safety and select appropriate patients for application in clinical settings.
Collapse
|
22
|
Takeda K, Mizushima T, Yokoyama Y, Hirose H, Wu X, Qian Y, Ikehata K, Miyoshi N, Takahashi H, Haraguchi N, Hata T, Matsuda C, Doki Y, Mori M, Yamamoto H. Sox2 is associated with cancer stem-like properties in colorectal cancer. Sci Rep 2018; 8:17639. [PMID: 30518951 PMCID: PMC6281572 DOI: 10.1038/s41598-018-36251-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/13/2018] [Indexed: 01/28/2023] Open
Abstract
Sox2 is known as the undifferentiated cell marker. Recent studies have shown that Sox2 may also be involved in the maintenance of cancer stem cells (CSCs) in skin and bladder cancers. In this study, we aimed to clarify the role of Sox2 in colorectal CSCs. Sox2 expression was measured in colon cancer cells and colorectal clinical samples by qRT-PCR and western blot analysis. To visualize the active Sox2 mRNA production, we generated a Sox2 promoter-dependent DsRed fluorescence emission system. Colon cancer cell lines and colorectal tumor tissues generally expressed the Sox2 protein. Knockdown of Sox2 by siRNA led to increased proliferative activity in Caco2 cells. Kaplan-Meier survival curves showed that the group with high Sox2 mRNA expression had a worse prognosis for relapse-free survival (RFS) than the low expression group (P = 0.045, median follow-up 60.0 months). Time-lapse image analysis revealed that most DsRed+ cells exhibited typical asymmetric cell division and had higher CSC marker expressions. The DsRed+ cells exhibited chemoresistance and they grew slower in vitro, yet they established rather larger tumors in vivo. Our data suggest that Sox2 may be a potential biomarker for colorectal CSCs.
Collapse
Affiliation(s)
- Koki Takeda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Haruka Hirose
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Yamin Qian
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Katsuya Ikehata
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Naotsugu Haraguchi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Taishi Hata
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Chu Matsuda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Masaki Mori
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan. .,Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
23
|
miR-135a inhibits tumor metastasis and angiogenesis by targeting FAK pathway. Oncotarget 2018; 8:31153-31168. [PMID: 28415713 PMCID: PMC5458197 DOI: 10.18632/oncotarget.16098] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/01/2017] [Indexed: 01/28/2023] Open
Abstract
Tumor metastasis has been the major cause of recurrence and death in patients with gastric cancer. Here, we find miR-135a has a decreased expression in the metastatic cell lines compared with its parental cell lines by analyzing microRNA array. Further results show that miR-135a is downregulated in the majority of human gastric cancer tissues and cell lines. Decreased expression of miR-135a is associated with TNM stage and poor survival. Besides, regaining miR-135a in gastric cancer cells obviously inhibits tumor growth, migration, invasion and angiogenesis by targeting focal adhesion kinase (FAK) pathway. Bioinformatics analysis and molecular experiments further prove that miR-135a is a novel downstream gene of tumor suppressor p53. Blocking FAK with its inhibitor can also enhance miR-135a expression through inducing p53. In summary, this study reveals the expression and function of miR-135a in gastric cancer and uncovers a novel regulatory mechanism of miR-135a.
Collapse
|
24
|
Zhou YY, Kang YT, Chen C, Xu FF, Wang HN, Jin R. Combination of TNM staging and pathway based risk score models in patients with gastric cancer. J Cell Biochem 2018; 119:3608-3617. [PMID: 29231991 DOI: 10.1002/jcb.26563] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
Due to the complexity and heterogeneity of gastric cancer (GC) in individual patient, current staging system is inadequate for predicting outcome of GC. Comprehensive computational and bioinformatics approach may triumph for the prediction. In this study, GC patients were devided according to stage and treatment: curative surgery plus chemoradiotherapy in stage II, curative surgery plus chemoradiotherapy in stages III, and IV, unresectable metastatic gastric cancer. The training sets were downloaded from GEO datasets (GSE26253 and GSE14208). Gene set enrichment analysis (GSEA) was performed to explore enriched difference between recurrence and nonrecurrence. The core enrichment genes of enriched pathways significantly associated with recurrence or progression were identified using Cox proportional hazards analysis. Thereafter, the risk score models were externally validated in independent datasets-GSE15081 and The Cancer Genome Atlas (TCGA). We generated respective risk score models of patients in different stages and treatment. A five-gene signature comprising FARP1, SGCE, SGCA, LAMA4, and COL9A2 was strongly associated with recurrence of patients with curative surgery plus chemoradiotherapy in stage II. A six-gene signature consisting of SHH, NF1, AP4B1, COMP, MATN3, and CCL8 was correlated with recurrence of patients with curative surgery plus chemoradiotherapy in stages III and IV. And a four-gene signature composing of ABCC2, AHNAK2, RNF43, and GSPT2 was highly related to progression of patients with unresectable metastatic GC. Taking into consideration TNM stage and gene signature reflecting recurrence or progression, the risk score models significantly improved the accuracy in predicting outcome of GC.
Collapse
Affiliation(s)
- Yang-Yang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan-Ting Kang
- Department of Ultrasonography, Yichun people's hospital, Yichun, Jiangxi, China
| | - Chao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan-Fan Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao-Nan Wang
- School of Pharmaceutical sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Prieto-Vila M, Takahashi RU, Usuba W, Kohama I, Ochiya T. Drug Resistance Driven by Cancer Stem Cells and Their Niche. Int J Mol Sci 2017; 18:ijms18122574. [PMID: 29194401 PMCID: PMC5751177 DOI: 10.3390/ijms18122574] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022] Open
Abstract
Drug resistance represents one of the greatest challenges in cancer treatment. Cancer stem cells (CSCs), a subset of cells within the tumor with the potential for self-renewal, differentiation and tumorigenicity, are thought to be the major cause of cancer therapy failure due to their considerable chemo- and radioresistance, resulting in tumor recurrence and eventually metastasis. CSCs are situated in a specialized microenvironment termed the niche, mainly composed of fibroblasts and endothelial, mesenchymal and immune cells, which also play pivotal roles in drug resistance. These neighboring cells promote the molecular signaling pathways required for CSC maintenance and survival and also trigger endogenous drug resistance in CSCs. In addition, tumor niche components such as the extracellular matrix also physically shelter CSCs from therapeutic agents. Interestingly, CSCs contribute directly to the niche in a bilateral feedback loop manner. Here, we review the recent advances in the study of CSCs, the niche and especially their collective contribution to resistance, since increasingly studies suggest that this interaction should be considered as a target for therapeutic strategies.
Collapse
Affiliation(s)
- Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Ryou-U Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Wataru Usuba
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Isaku Kohama
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| |
Collapse
|
26
|
Sakitani K, Hayakawa Y, Deng H, Ariyama H, Kinoshita H, Konishi M, Ono S, Suzuki N, Ihara S, Niu Z, Kim W, Tanaka T, Liu H, Chen X, Tailor Y, Fox JG, Konieczny SF, Onodera H, Sepulveda AR, Asfaha S, Hirata Y, Worthley DL, Koike K, Wang TC. CXCR4-expressing Mist1+ progenitors in the gastric antrum contribute to gastric cancer development. Oncotarget 2017; 8:111012-111025. [PMID: 29340033 PMCID: PMC5762301 DOI: 10.18632/oncotarget.22451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Mist1 was recently shown to identify a discrete population of stem cells within the isthmus of the oxyntic gland within the gastric corpus. Chief cells at the base of the gastric corpus also express Mist1. The relevance of Mist1 expression as a marker of specific cell populations within the antral glands of the distal stomach, however, is unknown. Using Mist1-CreERT mice, we revealed that Mist1+ antral cells, distinct from the Mist1+ population in the corpus, comprise long-lived progenitors that reside within the antral isthmus above Lgr5+ or CCK2R+ cells. Mist1+ antral progenitors can serve as an origin of antral tumors induced by loss of Apc or MNU treatment. Mist1+ antral progenitors, as well as other antral stem/progenitor population, express Cxcr4, and are located in close proximity to Cxcl12 (the Cxcr4 ligand)-expressing endothelium. During antral carcinogenesis, there is an expansion of Cxcr4+ epithelial cells as well as the Cxcl12+ perivascular niche. Deletion of Cxcl12 in endothelial cells or pharmacological blockade of Cxcr4 inhibits antral tumor growth. Cxcl12/Cxcr4 signaling may be a potential therapeutic target.
Collapse
Affiliation(s)
- Kosuke Sakitani
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA.,Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Yoku Hayakawa
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA.,Graduate School of Medicine, The University of Tokyo, Department of Gastroenterology, Tokyo, Japan
| | - Huan Deng
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA.,Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hiroshi Ariyama
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Hiroto Kinoshita
- Graduate School of Medicine, The University of Tokyo, Department of Gastroenterology, Tokyo, Japan
| | - Mitsuru Konishi
- Graduate School of Medicine, The University of Tokyo, Department of Gastroenterology, Tokyo, Japan
| | - Satoshi Ono
- Graduate School of Medicine, The University of Tokyo, Department of Gastroenterology, Tokyo, Japan
| | - Nobumi Suzuki
- Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Sozaburo Ihara
- Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Zhengchuan Niu
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA.,Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Woosook Kim
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Takayuki Tanaka
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Haibo Liu
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Xiaowei Chen
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Yagnesh Tailor
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Boston, MA, USA
| | - Stephen F Konieczny
- Department of Biological Sciences, The Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Hiroshi Onodera
- Department of Electrical and Electronic Engineering, The University of Tokyo, Tokyo, Japan
| | - Antonia R Sepulveda
- Division of Clinical Pathology and Cell Biology, Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Samuel Asfaha
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Yoshihiro Hirata
- Graduate School of Medicine, The University of Tokyo, Department of Gastroenterology, Tokyo, Japan
| | - Daniel L Worthley
- Cancer theme, SAHMRI and Department of Medicine, University of Adelaide, SA, Australia
| | - Kazuhiko Koike
- Graduate School of Medicine, The University of Tokyo, Department of Gastroenterology, Tokyo, Japan
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
27
|
Different Genotype of rs3130932 Single Nucleotide Polymorphism Between Gastric Cancer Patients and Normal Subjects. J Gastrointest Cancer 2017; 48:38-41. [PMID: 27573011 DOI: 10.1007/s12029-016-9869-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Octamer binding transcription factor B gene (OCT4) is responsible for development and self-renewal maintenance of embryonic stem cells. The rs3130932 single nucleotide polymorphism (SNP) may play a role in tumor genesis. Because of high prevalence of gastric cancer in north of Iran, this study was investigated role of rs3130932 polymorphism and stomach cancer. METHODS Blood samples were collected from 100 informed gastric cancer patients and 100 age and sex-matched healthy individuals, and were genotyped for the presence of rs3130932G allele by ssp PCR. RESULTS The mean age of participant (n = 200) was 67.83 ± 10.878 years. In genotyping and allelic analysis, TG genotype increased 66.147 times more likely to develop stomach cancer than the TT genotype, and disease risk increases 140.496 times more in GG genotype in comparison with TT genotype. CONCLUSION This study clearly emphasis on different genetic profile in this population and show that the rs3130932G allele and odds of gastric cancer are related to each other in northern of Iran.
Collapse
|
28
|
Wessler S, Krisch LM, Elmer DP, Aberger F. From inflammation to gastric cancer - the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. Cell Commun Signal 2017; 15:15. [PMID: 28427431 PMCID: PMC5397778 DOI: 10.1186/s12964-017-0171-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023] Open
Abstract
Infections with the human pathogen Helicobacter pylori (H. pylori) are closely associated with the development of inflammatory disorders and neoplastic transformation of the gastric epithelium. Drastic changes in the micromilieu involve a complex network of H. pylori-regulated signal transduction pathways leading to the release of proinflammatory cytokines, gut hormones and a wide range of signaling molecules. Besides controlling embryonic development, the Hedgehog/GLI signaling pathway also plays important roles in epithelial proliferation, differentiation, and regeneration of the gastric physiology, but also in the induction and progression of inflammation and neoplastic transformation in H. pylori infections. Here, we summarize recent findings of H. pylori-associated Hedgehog/GLI signaling in gastric homeostasis, malignant development and the modulation of the gastric tumor microenvironment.
Collapse
Affiliation(s)
- Silja Wessler
- Division of Microbiology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Strasse 11, A-5020, Salzburg, Austria.
| | - Linda M Krisch
- Division of Microbiology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Strasse 11, A-5020, Salzburg, Austria
| | - Dominik P Elmer
- Division of Molecular Tumor Biology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| | - Fritz Aberger
- Division of Molecular Tumor Biology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, A-5020, Salzburg, Austria.
| |
Collapse
|
29
|
Fu Y, Li H, Hao X. The self-renewal signaling pathways utilized by gastric cancer stem cells. Tumour Biol 2017; 39:1010428317697577. [DOI: 10.1177/1010428317697577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of cancer-related mortality worldwide. Cancer stem cells are the source of tumor recurrence and metastasis. Self-renewal is a marker of cancer stem cells and also the basis of long-lasting survival and tumor progression. Although the mechanism of gastric cancer stem cell self-renewal is not clear, there are several signaling pathways and environmental factors known to be involved. This mini review describes recent developments in the self-renewal signaling pathway of gastric cancer stem cell research. Advancements made in this field of research will likely support the development of novel therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Ying Fu
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Xishan Hao
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| |
Collapse
|
30
|
Chong Y, Tang D, Xiong Q, Jiang X, Xu C, Huang Y, Wang J, Zhou H, Shi Y, Wu X, Wang D. Galectin-1 from cancer-associated fibroblasts induces epithelial-mesenchymal transition through β1 integrin-mediated upregulation of Gli1 in gastric cancer. J Exp Clin Cancer Res 2016; 35:175. [PMID: 27836001 PMCID: PMC5106768 DOI: 10.1186/s13046-016-0449-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is characterized by the excessive deposition of extracellular matrix, which is thought to contribute to this tumor's malignant behavior. Epithelial-mesenchymal transition (EMT) is regarded as a crucial contributing factor to cancer progression. Galectin-1 (Gal-1), a β-galactoside-binding protein abundantly expressed in activated cancer-associated fibroblasts (CAFs), has been reported to be involved in GC progression and metastasis by binding to β1 integrin, which, in turn, can bind to matrix proteins and activate intracellular cascades that mediate EMT. Increasing evidence suggests that abnormal activation of the hedgehog (Hh) signaling pathway enhances GC cell migration and invasion. The purpose of our study is to explore the role of Gal-1 in the GC progression and metastasis as well as the regulatory mechanism. METHODS We hypothesized that Gal-1 binding to β1 integrin would lead to paracrine signaling between CAFs and GC cells, mediating EMT by upregulating Gli1. Invasion and metastasis effects of the Gal-1 and Gli1 were evaluated using wound healing and invasion assay following transfection with mimics. Additionally, to facilitate the delineation of the role of the Hh signaling in GC, we monitored the expression level of associated proteins. We also evaluated the effects of β1 integrin on these processes. Furthermore, Gal-1 and Gli1 expression in GC patient samples were examined by immunohistochemistry and western blot to determine the correlation between their expression and clinicopathologic characteristics. The Kaplan-Meier method and Cox proportional hazards model were used to analyze the relationship of expression with clinical outcomes. RESULTS Gal-1 was found to induce EMT, GC cell migration and invasion. Further data showed that Gal-1 up-regulated Gli1 expression. β1 integrin was responsible for Gal-1-induced Gli1 expression and EMT. In clinical GC tissue, it confirmed a positive relationship between Gal-1 and Gli1 expression. Importantly, their high expression is correlated to poor prognosis. CONCLUSION Gal-1 from CAFs binds to a carbohydrate structure in β1 integrin and plays an important role in the development of GC by inducing GC metastasis and EMT through targeting Gli1. This study highlights the potential therapeutic value of Gal-1 for suppression of GC metastasis.
Collapse
Affiliation(s)
- Yang Chong
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Dong Tang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Qingquan Xiong
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Xuetong Jiang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Chuanqi Xu
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Yuqin Huang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Jie Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Huaicheng Zhou
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Youquan Shi
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Xiaoqing Wu
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Daorong Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| |
Collapse
|
31
|
Strategies and Advancements in Harnessing the Immune System for Gastric Cancer Immunotherapy. J Immunol Res 2015; 2015:308574. [PMID: 26579545 PMCID: PMC4633567 DOI: 10.1155/2015/308574] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
In cancer biology, cells and molecules that form the fundamental components of the tumor microenvironment play a major role in tumor initiation, and progression as well as responses to therapy. Therapeutic approaches that would enable and harness the immune system to target tumor cells mark the future of anticancer therapy as it could induce an immunological memory specific to the tumor type and further enhance tumor regression and relapse-free survival in cancer patients. Gastric cancer is one of the leading causes of cancer-related mortalities that has a modest survival benefit from existing treatment options. The advent of immunotherapy presents us with new approaches in gastric cancer treatment where adaptive cell therapies, cancer vaccines, and antibody therapies have all been used with promising outcomes. In this paper, we review the current advances and prospects in the gastric cancer immunotherapy. Special focus is laid on new strategies and clinical trials that attempt to enhance the efficacy of various immunotherapeutic modalities in gastric cancer.
Collapse
|
32
|
Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, Yasuda T, Kiyozumi Y, Kaida T, Kurashige J, Imamura Y, Hiyoshi Y, Iwatsuki M, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Watanabe M, Takamori H, Araki N, Tan P, Baba H. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer 2015; 138:1207-19. [PMID: 26414794 DOI: 10.1002/ijc.29864] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are reportedly involved in invasion and metastasis in several types of cancer, including gastric cancer (GC), through the stimulation of CXCL12/CXCR4 signaling. However, the mechanisms underlying these tumor-promoting effects are not well understood, which limits the potential to develop therapeutic targets against CAF-mediated CXCL12/CXCR4 signaling. CXCL12 expression was analyzed in resected GC tissues from 110 patients by immunohistochemistry (IHC). We established primary cultures of normal fibroblasts (NFs) and CAFs from the GC tissues and examined the functional differences between these primary fibroblasts using co-culture assays with GC cell lines. We evaluated the efficacy of a CXCR4 antagonist (AMD3100) and a FAK inhibitor (PF-573,228) on the invasive ability of GC cells. High CXCL12 expression levels were significantly associated with larger tumor size, increased tumor depth, lymphatic invasion and poor prognosis in GC. CXCL12/CXCR4 activation by CAFs mediated integrin β1 clustering at the cell surface and promoted the invasive ability of GC cells. Notably, AMD3100 was more efficient than PF-573,228 at inhibiting GC cell invasion through the suppression of integrin β1/FAK signaling. These results suggest that CXCL12 derived from CAFs promotes GC cell invasion by enhancing the clustering of integrin β1 in GC cells, resulting in GC progression. Taken together, the inhibition of CXCL12/CXCR4 signaling in GC cells may be a promising therapeutic strategy against GC cell invasion.
Collapse
Affiliation(s)
- Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetaka Sugihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kojiro Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayoshi Kaida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Takamori
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
33
|
Current Status on Stem Cells and Cancers of the Gastric Epithelium. Int J Mol Sci 2015; 16:19153-69. [PMID: 26287172 PMCID: PMC4581291 DOI: 10.3390/ijms160819153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is still a leading cause of cancer-related mortality worldwide in spite of declining incidence. Gastric cancers are, essentially, adenocarcinomas and one of the strongest risk factors is still infection with Helicobacter pylori. Within the last years, it became clear that gastric self-renewal and carcinogenesis are intimately linked, particularly during chronic inflammatory conditions. Generally, gastric cancer is now regarded as a disease resulting from dysregulated differentiation of stem and progenitor cells, mainly due to an inflammatory environment. However, the situation in the stomach is rather complex, consisting of two types of gastric units which show bidirectional self-renewal from an unexpectedly large variety of progenitor/stem cell populations. As in many other tumors, cancer stem cells have also been characterized for gastric cancer. This review focuses on the various gastric epithelial stem cells, how they contribute to self-renewal and which routes are known to gastric adenocarcinomas, including their stem cells.
Collapse
|