1
|
Yang AYP, Wistuba-Hamprecht K, Greten TF, Ruf B. Innate-like T cells in liver disease. Trends Immunol 2024; 45:535-548. [PMID: 38879436 DOI: 10.1016/j.it.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024]
Abstract
Mammalian innate-like T cells (ILTCs), including mucosal-associated invariant T (MAIT), natural killer T (NKT), and γδ T cells, are abundant tissue-resident lymphocytes that have recently emerged as orchestrators of hepatic inflammation, tissue repair, and immune homeostasis. This review explores the involvement of different ILTC subsets in liver diseases. We explore the mechanisms underlying the pro- and anti-inflammatory effector functions of ILTCs in a context-dependent manner. We highlight latest findings regarding the dynamic interplay between ILTC functional subsets and other immune and parenchymal cells which may inform candidate immunomodulatory strategies to achieve improved clinical outcomes in liver diseases. We present new insights into how distinct gene expression programs in hepatic ILTCs are induced, maintained, and reprogrammed in a context- and disease stage-dependent manner.
Collapse
Affiliation(s)
- Albert Ying-Po Yang
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Center for Cancer Research (CCR) Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Zhang Y, Zhang D, Chen L, Zhou J, Ren B, Chen H. The progress of autoimmune hepatitis research and future challenges. Open Med (Wars) 2023; 18:20230823. [PMID: 38025543 PMCID: PMC10655690 DOI: 10.1515/med-2023-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease with various immune system manifestations, showing a global trend of increased prevalence. AIH is diagnosed through histological abnormalities, clinical manifestations, and biochemical indicators. The biochemical markers involve interfacial hepatitis, transaminase abnormalities, positive autoantibodies, etc. Although AIH pathogenesis is unclear, gene mutations and immunological factors could be the leading factors. AIH usually presents as a chronic liver disease and sometimes as acute hepatitis, making it challenging to distinguish it from drug-related hepatitis due to similar clinical symptoms. Normalizing transaminases and serum IgG levels is essential in assessing the remission status of AIH treatment. Glucocorticoids and azathioprine are the first-line AIH treatment, with lifelong maintenance therapy in some patients. The quality of life and survival can be improved after appropriate treatment. However, certain limitations jeopardize the quality of treatment, including long treatment cycles, side effects, poor patient compliance, and inability to inhibit liver fibrosis and cirrhosis. Accurate AIH animal models will help us understand the pathophysiology of the disease while providing fresh perspectives for avoiding and treating AIH. This review will help us understand AIH better, from the cellular and molecular causes to the clinical features, and will provide insight into new therapy techniques with fewer side effects.
Collapse
Affiliation(s)
- Yang Zhang
- Graduate Department of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dehe Zhang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ling Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Binbin Ren
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haijun Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
3
|
He Q, Lu Y, Tian W, Jiang R, Yu W, Liu Y, Sun M, Wang F, Zhang H, Wu N, Dong Z, Sun B. TOX deficiency facilitates the differentiation of IL-17A-producing γδ T cells to drive autoimmune hepatitis. Cell Mol Immunol 2022; 19:1102-1116. [PMID: 35986136 PMCID: PMC9508111 DOI: 10.1038/s41423-022-00912-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
The specification of the αβ/γδ lineage and the maturation of medullary thymic epithelial cells (mTECs) coordinate central tolerance to self-antigens. However, the mechanisms underlying this biological process remain poorly clarified. Here, we report that dual-stage loss of TOX in thymocytes hierarchically impaired mTEC maturation, promoted thymic IL-17A-producing γδ T-cell (Tγδ17) lineage commitment, and led to the development of fatal autoimmune hepatitis (AIH) via different mechanisms. Transfer of γδ T cells from TOX-deficient mice reproduced AIH. TOX interacted with and stabilized the TCF1 protein to maintain the balance of γδ T-cell development in thymic progenitors, and overexpression of TCF1 normalized αβ/γδ lineage specification and activation. In addition, TOX expression was downregulated in γδ T cells from AIH patients and was inversely correlated with the AIH diagnostic score. Our findings suggest multifaceted roles of TOX in autoimmune control involving mTEC and Tγδ17 development and provide a potential diagnostic marker for AIH.
Collapse
Affiliation(s)
- Qifeng He
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenfang Tian
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiwei Yu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meiling Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fei Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haitian Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ning Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongjun Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Characterization of the immune cell landscape of patients with NAFLD. PLoS One 2020; 15:e0230307. [PMID: 32168345 PMCID: PMC7069622 DOI: 10.1371/journal.pone.0230307] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple factors are involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), but the exact immunological mechanisms that cause inflammation and fibrosis of the liver remain enigmatic. In this current study, cellular samples of a cohort of NAFLD patients (peripheral blood mononuclear cells (PBMC): n = 27, liver samples: n = 15) and healthy individuals (PBMC: n = 26, liver samples: n = 3) were analyzed using 16-color flow cytometry, and the frequency and phenotype of 23 immune cell subtypes was assessed. PBMC of NAFLD patients showed decreased frequencies of total CD3+, CD8+ T cells, CD56dim NK cells and MAIT cells, but elevated frequencies of CD4+ T cells and Th2 cells compared to healthy controls. Intrahepatic lymphocytes (IHL) of NAFLD patients showed decreased frequencies of total T cells, total CD8+ T cells, Vd2+γδ T cells, and CD56bright NK cells, but elevated frequencies of Vδ2-γδ T cells and CD56dim NK cells compared to healthy controls. The activating receptor NKG2D was significantly less frequently expressed among iNKT cells, total NK cells and CD56dim NK cells of PBMC of NAFLD patients compared to healthy controls. More strikingly, hepatic fibrosis as measured by fibroscan elastography negatively correlated with the intrahepatic frequency of total NK cells (r2 = 0,3737, p = 0,02). Hepatic steatosis as measured by controlled attenuation parameter (CAP) value negatively correlated with the frequency of circulating NKG2D+ iNKT cells (r2 = 0,3365, p = 0,0047). Our data provide an overview of the circulating and intrahepatic immune cell composition of NAFLD patients, and point towards a potential role of NK cells and iNKT cells for the regulation of hepatic fibrosis and steatosis in NAFLD.
Collapse
|
5
|
Sebode M, Wigger J, Filpe P, Fischer L, Weidemann S, Krech T, Weiler-Normann C, Peiseler M, Hartl J, Tolosa E, Herkel J, Schramm C, Lohse AW, Arrenberg P. Inflammatory Phenotype of Intrahepatic Sulfatide-Reactive Type II NKT Cells in Humans With Autoimmune Hepatitis. Front Immunol 2019; 10:1065. [PMID: 31191516 PMCID: PMC6546815 DOI: 10.3389/fimmu.2019.01065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/25/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Natural Killer T (NKT) cells are CD1d-restricted innate-like T cells that can rapidly release stored cytokines upon recognition of lipid antigens. In mice, type I NKT cells seem to promote liver inflammation, whereas type II NKT cells seem to restrict hepatitis. Here, we aimed at characterizing the role of human type I and type II NKT in patients with autoimmune hepatitis (AIH). Methods: NKT cells were analyzed by flow cytometry in peripheral blood and liver of AIH patients and control groups. α-galactosylceramide-loaded or sulfatide-loaded tetramers were used to detect type I or II NKT cells, respectively. Hepatic CD1d was stained by in situ-hybridization of liver biopsies. Results and Conclusions: Type II NKT cells were more prevalent in human peripheral blood and liver than type I NKT cells. In AIH patients, the frequency of sulfatide-reactive type II NKT cells was significantly increased in peripheral blood (0.11% of peripheral blood leukocytes) and liver (3.78% of intrahepatic leukocytes) compared to healthy individuals (0.05% and 1.82%) and patients with drug-induced liver injury (0.06% and 2.03%; p < 0.05). Intrahepatic type II NKT cells of AIH patients had a different cytokine profile than healthy subjects with an increased frequency of TNFα (77.8% vs. 59.1%, p < 0.05), decreased IFNγ (32.7% vs. 63.0%, p < 0.05) and a complete lack of IL-4 expressing cells (0% vs. 2.1%, p < 0.05). T cells in portal tracts expressed significantly more CD1d-RNA in AIH livers compared to controls. This study supports that in contrast to their assumed protective role in mice, human intrahepatic, sulfatide-reactive type II NKT cells displayed a proinflammatory cytokine profile in patients with AIH. Infiltrating T cells in portal areas of AIH patients overexpressed CD1d and could thereby activate type II NKT cells.
Collapse
Affiliation(s)
- Marcial Sebode
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Jennifer Wigger
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pamela Filpe
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lutz Fischer
- Department of Hepatobiliary Surgery and Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Weiler-Normann
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Peiseler
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Johannes Hartl
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Herkel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Philomena Arrenberg
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Aono S, Tatsumi T, Yoshioka T, Tawara S, Nishio A, Onishi Y, Fukutomi K, Nakabori T, Kodama T, Shigekawa M, Hikita H, Sakamori R, Takahashi T, Suemizu H, Takehara T. Immunological responses against hepatitis B virus in human peripheral blood mononuclear cell-engrafted mice. Biochem Biophys Res Commun 2018; 503:1457-1464. [PMID: 30033102 DOI: 10.1016/j.bbrc.2018.07.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023]
Abstract
It is well known that immune-mediated virus elimination is necessary for the treatment of HBV infection. Reconstitution of human immune cells in liver chimeric mice is warranted to understand the immunopathogenesis of HBV infection. Here, we report a new immunologically humanized mouse model with a human immune system via reconstitution of immunodeficient NOG-Iaβ/β2 m double KO mice, which are NOG mice that are deficient in both MHC class I and II (DKO-NOG mice), with human HLA-A2-positive peripheral blood mononuclear cells (PBMCs). After injection of PBMCs, the xenogeneic graft-versus-host disease observed in PBMC-engrafted NOG mice was prevented in PBMC-engrafted DKO-NOG mice. Liver damage was reduced, and the survival time was prolonged in human PBMC-engrafted DKO-NOG mice compared to those in the NOG mice. The expression levels of PD-1 and Tim-3 on human T cells from PBMC-engrafted DKO-NOG mice were lower than those from NOG mice. By induction of HBV-specific T cell responses, such as vaccination with HBc-derived, peptide-pulsed DCs, hydrodynamic injection of HBV vector and intrasplenic injection of HepG2.2.15, the number of HBc-derived, peptide-specific CTLs increased in PBMC-engrafted DKO-NOG mice. Moreover, the recombinant HBV vaccine resulted in the production of hepatitis B surface antibody in 50% of the vaccinated mice. The induction of HBV-specific immune responses could be established in the immunologically humanized mice.
Collapse
Affiliation(s)
- Satoshi Aono
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Teppei Yoshioka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Seiichi Tawara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Akira Nishio
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Yoshiki Onishi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Keisuke Fukutomi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Tasuku Nakabori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Takeshi Takahashi
- Department of Laboratory Animal Research, Central Institute for Experimental Animals, Kawasaki, 210-0821, Japan.
| | - Hiroshi Suemizu
- Department of Laboratory Animal Research, Central Institute for Experimental Animals, Kawasaki, 210-0821, Japan.
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
|
8
|
Clancy-Thompson E, Ali L, Bruck PT, Exley MA, Blumberg RS, Dranoff G, Dougan M, Dougan SK. IAP Antagonists Enhance Cytokine Production from Mouse and Human iNKT Cells. Cancer Immunol Res 2018; 6:25-35. [PMID: 29187357 PMCID: PMC5754232 DOI: 10.1158/2326-6066.cir-17-0490] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 01/05/2023]
Abstract
Inhibitor of apoptosis protein (IAP) antagonists are in clinical trials for a variety of cancers, and mouse models show synergism between IAP antagonists and anti-PD-1 immunotherapy. Although IAP antagonists affect the intrinsic signaling of tumor cells, their most pronounced effects are on immune cells and the generation of antitumor immunity. Here, we examined the effects of IAP antagonism on T-cell development using mouse fetal thymic organ culture and observed a selective loss of iNKT cells, an effector cell type of potential importance for cancer immunotherapy. Thymic iNKT-cell development probably failed due to increased strength of TCR signal leading to negative selection, given that mature iNKT cells treated with IAP antagonists were not depleted, but had enhanced cytokine production in both mouse and human ex vivo cultures. Consistent with this, mature mouse primary iNKT cells and iNKT hybridomas increased production of effector cytokines in the presence of IAP antagonists. In vivo administration of IAP antagonists and α-GalCer resulted in increased IFNγ and IL-2 production from iNKT cells and decreased tumor burden in a mouse model of melanoma lung metastasis. Human iNKT cells also proliferated and increased IFNγ production dramatically in the presence of IAP antagonists, demonstrating the utility of these compounds in adoptive therapy of iNKT cells. Cancer Immunol Res; 6(1); 25-35. ©2017 AACR.
Collapse
Affiliation(s)
- Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lestat Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick T Bruck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark A Exley
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Richard S Blumberg
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Glenn Dranoff
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Dougan
- Harvard Medical School, Boston, Massachusetts.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Noto Llana M, Sarnacki SH, Morales AL, Aya Castañeda MDR, Giacomodonato MN, Blanco G, Cerquetti MC. Activation of iNKT Cells Prevents Salmonella-Enterocolitis and Salmonella-Induced Reactive Arthritis by Downregulating IL-17-Producing γδT Cells. Front Cell Infect Microbiol 2017; 7:398. [PMID: 28944217 PMCID: PMC5596086 DOI: 10.3389/fcimb.2017.00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Reactive arthritis (ReA) is an inflammatory condition of the joints that arises following an infection. Salmonella enterocolitis is one of the most common infections leading to ReA. Although the pathogenesis remains unclear, it is known that IL-17 plays a pivotal role in the development of ReA. IL-17-producers cells are mainly Th17, iNKT, and γδT lymphocytes. It is known that iNKT cells regulate the development of Th17 lineage. Whether iNKT cells also regulate γδT lymphocytes differentiation is unknown. We found that iNKT cells play a protective role in ReA. BALB/c Jα18−/− mice suffered a severe Salmonella enterocolitis, a 3.5-fold increase in IL-17 expression and aggravated inflammation of the synovial membrane. On the other hand, activation of iNKT cells with α-GalCer abrogated IL-17 response to Salmonella enterocolitis and prevented intestinal and joint tissue damage. Moreover, the anti-inflammatory effect of α-GalCer was related to a drop in the proportion of IL-17-producing γδT lymphocytes (IL17-γδTcells) rather than to a decrease in Th17 cells. In summary, we here show that iNKT cells play a protective role against Salmonella-enterocolitis and Salmonella-induced ReA by downregulating IL17-γδTcells.
Collapse
Affiliation(s)
- Mariángeles Noto Llana
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Sebastián H Sarnacki
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Andrea L Morales
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - María Del R Aya Castañeda
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Mónica N Giacomodonato
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Guillermo Blanco
- Departamento de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| | - María C Cerquetti
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|