1
|
Balakin E, Yurku K, Fomina T, Butkova T, Nakhod V, Izotov A, Kaysheva A, Pustovoyt V. A Systematic Review of Traumatic Brain Injury in Modern Rodent Models: Current Status and Future Prospects. BIOLOGY 2024; 13:813. [PMID: 39452122 PMCID: PMC11504108 DOI: 10.3390/biology13100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
According to the Centers for Disease Control and Prevention (CDC), the national public health agency of the United States, traumatic brain injury is among the leading causes of mortality and disability worldwide. The consequences of TBI include diffuse brain atrophy, local post-traumatic atrophy, arachnoiditis, pachymeningitis, meningocerebral cicatrices, cranial nerve lesions, and cranial defects. In 2019, the economic cost of injuries in the USA alone was USD 4.2 trillion, which included USD 327 billion for medical care, USD 69 billion for work loss, and USD 3.8 trillion for the value of statistical life and quality of life losses. More than half of this cost (USD 2.4 trillion) was among working-age adults (25-64 years old). Currently, the development of new diagnostic approaches and the improvement of treatment techniques require further experimental studies focused on modeling TBI of varying severity.
Collapse
Affiliation(s)
- Evgenii Balakin
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Ksenia Yurku
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Tatiana Fomina
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | | | | | | | - Anna Kaysheva
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Vasiliy Pustovoyt
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| |
Collapse
|
2
|
Kamli H, Shaikh A, Bappi MH, Raposo A, Ahmad MF, Sonia FA, Akbor MS, Prottay AAS, Gonçalves SA, Araújo IM, Coutinho HDM, Elbendary EY, Lho LH, Han H, Islam MT. Sclareol exerts synergistic antidepressant effects with quercetin and caffeine, possibly suppressing GABAergic transmission in chicks. Biomed Pharmacother 2023; 168:115768. [PMID: 37866001 DOI: 10.1016/j.biopha.2023.115768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
This study evaluated the effects of sclareol (SCL) with or without caffeine (CAF) and quercetin (QUR) using in-vivo and in-silico studies. For this, 5-day-old chicks weighing between 45 and 48 g were randomly divided into five groups and treated accordingly. The chicks were monitored to compare the occurrence, latency, and duration of sleep as well as the loss and gain of righting reflex in response to SCL-10 mg/kg, CAF-10 mg/kg, and QUR-50 mg/kg using a thiopental sodium (TS)-induced sleeping model. Data were analyzed by one-way ANOVA followed by t-Student-Newman-Keuls' as a posthoc test at 95% confidence intervals with multiple comparisons. An in-silico study was also performed to investigate the possible antidepressant mechanisms of the test and/or standard drugs with different subunits of GABAA receptors. In comparison to the SCL, CAF, and QUR individual groups, SCL+CAF+QUR significantly increased the latency while decreasing the length of sleep. The incidence of loss and gain of the righting reflex was also modulated in the combination group. SCL showed better interaction with GABAA (α2 and α5) subunits than QUR with α2, α3, and α5. All these compounds showed stronger interactions with the GABAA receptor subunits than the standard CAF. Taken together, SCL, CAF, and QUR reduced the TS-induced righting reflex and sleeping time in the combination group more than in the individual treatments. SCL may show its antidepressant effects, possibly through interactions with GABAA receptor subunits.
Collapse
Affiliation(s)
- Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Sheila Alves Gonçalves
- Department of Biological Chemistry, Laboratory of Microbiology and Molecular Biology, Program of Post-Graduation in Molecular Bioprospection, Regional University of Cariri, Crato, CE 63105-000, Brazil
| | - Isaac Moura Araújo
- Department of Biological Chemistry, Laboratory of Microbiology and Molecular Biology, Program of Post-Graduation in Molecular Bioprospection, Regional University of Cariri, Crato, CE 63105-000, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Laboratory of Microbiology and Molecular Biology, Program of Post-Graduation in Molecular Bioprospection, Regional University of Cariri, Crato, CE 63105-000, Brazil
| | - Ehab Y Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Linda Heejung Lho
- College of Business Division of Tourism and Hotel Management, Cheongju University, 298 Daesung-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28503, Republic of Korea.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, Republic of Korea.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
3
|
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022; 23:11193. [PMID: 36232495 PMCID: PMC9570205 DOI: 10.3390/ijms231911193] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.
Collapse
Affiliation(s)
- Alice Jacquens
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Edward J. Needham
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Vincent Degos
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Pierre Gressens
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - David Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
4
|
Narayan SK, Grace Cherian S, Babu Phaniti P, Babu Chidambaram S, Rachel Vasanthi AH, Arumugam M. Preclinical animal studies in ischemic stroke: Challenges and some solutions. Animal Model Exp Med 2021; 4:104-115. [PMID: 34179718 PMCID: PMC8212819 DOI: 10.1002/ame2.12166] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Despite the impressive efficacies demonstrated in preclinical research, hundreds of potentially neuroprotective drugs have failed to provide effective neuroprotection for ischemic stroke in human clinical trials. Lack of a powerful animal model for human ischemic stroke could be a major reason for the failure to develop successful neuroprotective drugs for ischemic stroke. This review recapitulates the available cerebral ischemia animal models, provides an anatomical comparison of the circle of Willis of each species, and describes the functional assessment tests used in these ischemic stroke models. The distinct differences between human ischemic stroke and experimental stroke in available animal models is explored. Innovative animal models more closely resembling human strokes, better techniques in functional outcome assessment and better experimental designs generating clearer and stronger evidence may help realise the development of truly neuroprotective drugs that will benefit human ischemic stroke patients. This may involve use of newer molecules or revisiting earlier studies with new experimental designs. Translation of any resultant successes may then be tested in human clinical trials with greater confidence and optimism.
Collapse
Affiliation(s)
- Sunil K. Narayan
- Comprehensive Stroke Care and Neurobiology Centre, Department of NeurologyJawaharlal Institute of Postgraduate Medical Education and ResearchPuducherryIndia
| | - Simy Grace Cherian
- Comprehensive Stroke Care and Neurobiology Centre, Department of NeurologyJawaharlal Institute of Postgraduate Medical Education and ResearchPuducherryIndia
| | - Prakash Babu Phaniti
- Department of Biotechnology & School of Medical SciencesUniversity of HyderabadHyderabadIndia
| | | | | | - Murugesan Arumugam
- Comprehensive Stroke Care and Neurobiology Centre, Department of NeurologyJawaharlal Institute of Postgraduate Medical Education and ResearchPuducherryIndia
| |
Collapse
|
5
|
Kim BG, Jeon YT, Han J, Bae YK, Lee SU, Ryu JH, Koo CH. The Neuroprotective Effect of Thiopental on the Postoperative Neurological Complications in Patients Undergoing Surgical Clipping of Unruptured Intracranial Aneurysm: A Retrospective Analysis. J Clin Med 2021; 10:jcm10061197. [PMID: 33809302 PMCID: PMC7999640 DOI: 10.3390/jcm10061197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Although thiopental improved neurological outcomes in several animal studies, there are still insufficient clinical data examining the efficacy of thiopental for patients undergoing surgical clipping of unruptured intracranial aneurysm (UIA). This study validated the effect of thiopental and investigated risk factors associated with postoperative neurological complications in patients undergoing surgical clipping of UIA. In total, 491 patients who underwent aneurysm clipping were included in this retrospective cohort study. Data regarding demographics, aneurysm characteristics, and use of thiopental were collected from electronic medical records. Propensity score matching and logistic regression analysis were used. After propensity score matching, the thiopental group showed a lower incidence of the postoperative neurological complications than non-thiopental group (5.5% vs. 17.1%, p = 0.001). In multivariate analysis, thiopental reduced the risk of postoperative neurological complications (odds ratio (OR) 0.26, 95% confidence interval (CI) 0.13 to 0.51, p < 0.001) while aneurysm size ≥ 10 mm (OR 4.48, 95% CI 1.69 to 11.87, p = 0.003), and hyperlipidemia (OR 2.24, 95% CI 1.16 to 4.32, p = 0.02) increased the risk of postoperative neurological complications. This study showed that thiopental was associated with the lower risk of neurological complications after clipping of UIA.
Collapse
Affiliation(s)
- Byung-Gun Kim
- Department of Anesthesiology and Pain Medicine, Inha University School of Medicine, Inha University Hospital, Incheon 22332, Korea;
| | - Young-Tae Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-T.J.); (J.-H.R.)
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (J.H.); (Y.K.B.)
| | - Jiwon Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (J.H.); (Y.K.B.)
| | - Yu Kyung Bae
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (J.H.); (Y.K.B.)
| | - Si Un Lee
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Jung-Hee Ryu
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-T.J.); (J.-H.R.)
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (J.H.); (Y.K.B.)
| | - Chang-Hoon Koo
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (J.H.); (Y.K.B.)
- Correspondence: ; Tel.: +82-31-787-7497; Fax: +82-31-787-4063
| |
Collapse
|
6
|
Isoflurane versus sevoflurane for early brain injury and expression of sphingosine kinase 1 after experimental subarachnoid hemorrhage. Neurosci Lett 2020; 733:135142. [PMID: 32522601 DOI: 10.1016/j.neulet.2020.135142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
The first step to treat aneurysmal subarachnoid hemorrhage (SAH) is aneurysmal obliteration under general anesthesia but not treat the SAH itself and the secondary effects. However, the identification of anesthetics with properties that help to attenuate post-SAH brain injury can be useful for improving outcomes of SAH patients. We examined whether 2% isoflurane and 3% sevoflurane posttreatment are protective against early brain injury (EBI) after SAH. This study used 87 8-week-old male CD-1 mice. We induced SAH by endovascular perforation in mice. Animals were randomly divided into 4 groups: sham-operated (n = 16), SAH + vehicle-medical air (n = 26), SAH + 2% isoflurane (n = 22), and SAH + 3% sevoflurane (n = 23). Neurobehavioral function, brain water content and Western blotting were evaluated at 24 h. The expression of sphingosine kinase (SphK), cleaved caspase-3 and cyclooxygenase-2 (COX2) was determined by Western blotting. Cell death was examined by terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. Both 2% isoflurane and 3% sevoflurane significantly improved neurobehavioral function, and brain edema at 24 h after SAH and attenuated cell death, associated with an increase in SphK1, a decrease in cleaved caspase-3 and COX2. The neuroprotective effects were similar between 2% isoflurane and 3% sevoflurane. These findings suggest that both 2% isoflurane and 3% sevoflurane significantly inhibited EBI by suppressing post-SAH apoptosis and brain inflammation possibly via the SphK1-related pathway.
Collapse
|
7
|
Soni N, Vegh V, To XV, Mohamed AZ, Borges K, Nasrallah FA. Combined Diffusion Tensor Imaging and Quantitative Susceptibility Mapping Discern Discrete Facets of White Matter Pathology Post-injury in the Rodent Brain. Front Neurol 2020; 11:153. [PMID: 32210907 PMCID: PMC7067826 DOI: 10.3389/fneur.2020.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Early loss of white matter microstructure integrity is a significant cause of long-term neurological disorders following traumatic brain injury (TBI). White matter abnormalities typically involve axonal loss and demyelination. In-vivo imaging tools to detect and differentiate such microstructural changes are not well-explored. This work utilizes the conjoint potential offered by advanced magnetic resonance imaging techniques, including quantitative susceptibility mapping (QSM) and diffusion tensor imaging (DTI), to discern the underlying white matter pathology at specific time points (5 h, 1, 3, 7, 14, and 30 days) post-injury in the controlled cortical impact mouse model. A total of 42 animals were randomized into six TBI groups (n = 6 per group) and one sham group (n = 6). Histopathology was performed to validate in-vivo findings by performing myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) immunostaining for the assessment of changes to myelin and astrocytes. After 5 h of injury radial diffusivity (RD) was increased in white matter without a significant change in axial diffusivity (AxD) and susceptibility values. After 1 day post-injury RD was decreased. AxD and susceptibility changes were seen after 3 days post-injury. Susceptibility increases in white matter were observed in both ipsilateral and contralateral regions and persisted for 30 days. In histology, an increase in GFAP immunoreactivity was observed after 3 days post-injury and remained high for 30 days in both ipsilateral and contralateral white matter regions. A loss in MBP signal was noted after 3 days post-injury that continued up to 30 days. In conclusion, these results demonstrate the complementary ability of DTI and QSM in discerning the micro-pathological processes triggered following TBI. While DTI revealed acute and focal white matter changes, QSM mirrored the temporal demyelination in the white matter tracts and diffuse regions at the chronic state.
Collapse
Affiliation(s)
- Neha Soni
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Viktor Vegh
- Center for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Borges
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Effect of thermal preconditioning on Hsp70 expression in the medulla oblongata and on hemodynamics during passive hyperthermia. Brain Res 2019; 1723:146404. [PMID: 31454515 DOI: 10.1016/j.brainres.2019.146404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022]
Abstract
A short-term episode of elevated core body temperature that induces Hsp70 expression (thermal preconditioning) may protect against heatstroke during subsequent hyperthermia. The protective effects of thermal preconditioning may involve several cellular and immunological mechanisms and improvements in baroreflex sensitivity. To substantiate the hypothesis that the protective effect of thermal preconditioning also occurs in conditions with intact thermoregulation, we examined the evolution of spontaneous cardiovagal baroreflex sensitivity and the protective effect of Hsp70 expression after thermal preconditioning in nonanesthetized Wistar-Kyoto rats with implanted telemetric transmitters. In the baroreflex centers of the medulla oblongata, thermal preconditioning induced Hsp70 in perineuronal and perivascular oligodendrocytes, microglia, and endothelial cells but not in neurons. The maximal Hsp70 expression was detected 4 h after preconditioning, but a significant number of Hsp70-positive cells was still present 72 h after preconditioning. Increased c-Fos expression in the neurons of baroreflex centers was detectable only 4 h after preconditioning. The mean values of cardiovagal baroreflex sensitivity did not show significant differences during the 72-hour follow-up period after thermal preconditioning. Similarly, cardiovascular variability measures of the autonomic nervous system activity were also not significantly affected by thermal preconditioning. During passive hyperthermia, thermal preconditioning had no statistically significant effect on thermoregulation and the onset of arterial pressure decline. Our data suggest that thermal preconditioning induces a glial type of Hsp70 expression in the baroreflex centers of the medulla oblongata. However, this response was not associated with cardiovagal baroreflex sensitization and protection against hemodynamic instability during passive hyperthermia.
Collapse
|
9
|
Jang JS, Kwon Y, Hwang SM, Lee JJ, Lee JS, Lee SK, Lee HS. Comparison of the effect of propofol and desflurane on S-100β and GFAP levels during controlled hypotension for functional endoscopic sinus surgery: A randomized controlled trial. Medicine (Baltimore) 2019; 98:e17957. [PMID: 31725655 PMCID: PMC6867762 DOI: 10.1097/md.0000000000017957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although surgical field visualization is important in functional endoscopic sinus surgery (FESS), the complications associated with controlled hypotension for surgery should be considered. Intraoperative hypotension is associated with postoperative stroke, leading to subsequent hypoxia with potential neurologic injury. We investigated the effect of propofol and desflurane anesthesia on S-100β and glial fibrillary acidic protein (GFAP) levels which are early biomarkers for cerebral ischemic change during controlled hypotension for FESS. METHODS For controlled hypotension during FESS, anesthesia was maintained with propofol/remifentanil in propofol group (n = 30) and with desflurane/remifentanil in desflurane group (n = 30). For S-100β and GFAP assay, blood samples were taken at base, 20 and 60 minutes after achieving the target range of mean arterial pressure, and at 60 minutes after surgery. RESULTS The base levels of S-100β were 98.04 ± 78.57 and 112.61 ± 66.38 pg/mL in the propofol and desflurane groups, respectively. The base levels of GFAP were 0.997 ± 0.486 and 0.898 ± 0.472 ng/mL in the propofol and desflurane groups, respectively. The S-100β and GFAP levels were significantly increased in the study period compared to the base levels in both groups (P ≤ .001). There was no significant difference at each time point between the 2 groups. CONCLUSION On comparing the effects of propofol and desflurane anesthesia for controlled hypotension on the levels of S-100β and GFAP, we noted that there was no significant difference in S-100β and GFAP levels between the 2 study groups. CLINICAL TRIAL REGISTRATION Available at: http://cris.nih.go.kr, KCT0002698.
Collapse
Affiliation(s)
- Ji Su Jang
- Department of Anesthesiology and Pain medicine, Hallym University School of Medicine, Chuncheon Sacred Heart Hospital
| | - Youngsuk Kwon
- Department of Anesthesiology and Pain medicine, College of Medicine, Kangwon National University, Chuncheon
| | - Sung Mi Hwang
- Department of Anesthesiology and Pain medicine, Hallym University School of Medicine, Chuncheon Sacred Heart Hospital
| | - Jae Jun Lee
- Department of Anesthesiology and Pain medicine, Hallym University School of Medicine, Chuncheon Sacred Heart Hospital
| | - Jun Suck Lee
- Department of Anesthesiology and Pain medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Soo Kyoung Lee
- Department of Anesthesiology and Pain medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Ho Seok Lee
- Department of Anesthesiology and Pain medicine, Hallym University School of Medicine, Chuncheon Sacred Heart Hospital
| |
Collapse
|
10
|
Choi ES, Jeon YT, Sohn HM, Kim DW, Choi SJ, In CB. Comparison of the effects of desflurane and total intravenous anesthesia on the optic nerve sheath diameter in robot assisted laparoscopic radical prostatectomy: A randomized controlled trial. Medicine (Baltimore) 2018; 97:e12772. [PMID: 30313092 PMCID: PMC6203556 DOI: 10.1097/md.0000000000012772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Optic nerve sheath diameter (ONSD) is a well-known surrogate marker for intracranial pressure during robot-assisted laparoscopic radical prostatectomies (RALP). ONSD during RALP is known to increase due to elevated intracranial pressure as a result of the steep Trendelenburg position and carbon dioxide pneumoperitoneum. We aimed to compare the effects of total intravenous anesthesia (TIVA) and desflurane anesthesia (DES) on ONSD during RALP. METHODS Patients scheduled for RALP were enrolled and randomly assigned to the TIVA (propofol and remifentanil) or DES (desflurane and remifentanil) group in this randomized trial. Ultrasonographic measurements of ONSD were conducted before administration of anesthesia (T0), 10 minutes after the Trendelenburg position (T1), 1 hour after the Trendelenburg position (T2), 2 hours after the Trendelenburg position (T3), 10 minutes after resuming the supine position (T4), and at the time of arrival in the post-anaesthetic care unit (T5). The primary outcome measure was the mean ONSD at T2 of the TIVA and DES group during RALP. RESULTS A total of 56 patients were analysed in this study. The mean ONSD at T1, T2, T3, and T4 were significantly lower for patients in the TIVA group compared with those in the DES group (P = .023, .000, .000, and .003, respectively). CONCLUSION The mean ONSD for patients in the TIVA group was significantly lower than that in the DES group during the RALP procedure. Our findings suggest that TIVA may be a more suitable anesthetic option for patients at risk of cerebral hypoperfusion.
Collapse
Affiliation(s)
- Eun-Su Choi
- Department of Anesthesiology and Pain Medicine, Nowon Eulji Medical Center, Eulji University, Seoul
| | - Young-Tae Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul
| | - Hye-Min Sohn
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam
| | - Dong-Woo Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam
| | - Seok-Jun Choi
- Department of Anesthesiology and Pain Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Chi-Bum In
- Department of Anesthesiology and Pain Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Intravenous xenogeneic human cardiosphere-derived cell extracellular vesicles (exosomes) improves behavioral function in small-clot embolized rabbits. Exp Neurol 2018; 307:109-117. [DOI: 10.1016/j.expneurol.2018.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
|
12
|
|
13
|
Hansen KR, DeWalt GJ, Mohammed AI, Tseng HA, Abdulkerim ME, Bensussen S, Saligrama V, Nazer B, Eldred WD, Han X. Mild Blast Injury Produces Acute Changes in Basal Intracellular Calcium Levels and Activity Patterns in Mouse Hippocampal Neurons. J Neurotrauma 2018; 35:1523-1536. [PMID: 29343209 PMCID: PMC5998839 DOI: 10.1089/neu.2017.5029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) represents a serious public health concern. Although much is understood about long-term changes in cell signaling and anatomical pathologies associated with mTBI, little is known about acute changes in neuronal function. Using large scale Ca2+ imaging in vivo, we characterized the intracellular Ca2+ dynamics in thousands of individual hippocampal neurons using a repetitive mild blast injury model in which blasts were directed onto the cranium of unanesthetized mice on two consecutive days. Immediately following each blast event, neurons exhibited two types of changes in Ca2+ dynamics at different time scales. One was a reduction in slow Ca2+ dynamics that corresponded to shifts in basal intracellular Ca2+ levels at a time scale of minutes, suggesting a disruption of biochemical signaling. The second was a reduction in the rates of fast transient Ca2+ fluctuations at the sub-second time scale, which are known to be closely linked to neural activity. Interestingly, the blast-induced changes in basal Ca2+ levels were independent of the changes in the rates of fast Ca2+ transients, suggesting that blasts had heterogeneous effects on different cell populations. Both types of changes recovered after ∼1 h. Together, our results demonstrate that mTBI induced acute, heterogeneous changes in neuronal function, altering intracellular Ca2+ dynamics across different time scales, which may contribute to the initiation of longer-term pathologies.
Collapse
Affiliation(s)
- Kyle R. Hansen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Ali I. Mohammed
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Moona E. Abdulkerim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Seth Bensussen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Venkatesh Saligrama
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | - Bobak Nazer
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | | | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
14
|
Abstract
Deciding on proper medication administration for the traumatic brain injury (TBI) patient undergoing intubation can be daunting and confusing. Pretreatment with lidocaine and/or vecuronium is no longer recommended; however, high-dose fentanyl can be utilized to help blunt the sympathetic stimulation of intubation. Induction with etomidate is recommended; however, ketamine can be considered in the proper patient population, such as those with hypotension. Paralysis can be performed with either succinylcholine or rocuronium, with the caveat that rocuronium can lead to delays in proper neurological examinations due to prolonged paralysis. Recommendations for post-intubation continuous sedation medications include a combination propofol and fentanyl in the normotensive/hypertensive patient population. A combination midazolam and fentanyl or ketamine alone can be considered in the hypotensive patient.
Collapse
Affiliation(s)
- Nicholas Kramer
- Emergency Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - David Lebowitz
- Office of Faculty and Academic Affairs, University of Central Florida College of Medicine, Orlando, USA
| | - Michael Walsh
- Emergency Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Latha Ganti
- Clinical Sciences, University of Central Florida College of Medicine, Orlando, USA
| |
Collapse
|
15
|
Tobalem S, Schutz JS, Chronopoulos A. Central retinal artery occlusion - rethinking retinal survival time. BMC Ophthalmol 2018; 18:101. [PMID: 29669523 PMCID: PMC5907384 DOI: 10.1186/s12886-018-0768-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/03/2018] [Indexed: 01/05/2023] Open
Abstract
Background The critical time from onset of complete occlusion of the central retinal artery (CRA) to functionally significant inner retinal infarction represents a window of opportunity for treatment and also has medical-legal implications, particularly when central retinal artery occlusion (CRAO) complicates therapeutic interventions. Here, we review the evidence for time to infarction from complete CRAO and discuss the implications of our findings. Methods A Medline search was performed using each of the terms “central retinal artery occlusion”, “retinal infarction”, “retinal ischemia”, and “cherry red spot” from 1970 to the present including articles in French and German. All retrieved references as well as their reference lists were screened for relevance. An Internet search using these terms was also performed to look for additional references. Results We find that the experimental evidence showing that inner retinal infarction occurs after 90–240 min of total CRAO, which is the interval generally accepted in the medical literature and practice guidelines, is flawed in important ways. Moreover, the retinal ganglion cells, supplied by the CRA, are part of the central nervous system which undergoes infarction after non-perfusion of 12–15 min or less. Conclusions Retinal infarction is most likely to occur after only 12–15 min of complete CRAO. This helps to explain why therapeutic maneuvers for CRAO are often ineffective. Nevertheless, many CRAOs are incomplete and may benefit from therapy after longer intervals. To try to avoid retinal infarcton from inadvertent ocular compression by a headrest during prone anesthesia, the eyes should be checked at intervals of less than 15′.
Collapse
Affiliation(s)
- Stephan Tobalem
- Department of Ophthalmology, University Hospitals and School of Medicine, Geneva, Switzerland
| | - James S Schutz
- Department of Ophthalmology, University Hospitals and School of Medicine, Geneva, Switzerland
| | - Argyrios Chronopoulos
- Department of Ophthalmology, University Hospitals and School of Medicine, Geneva, Switzerland. .,Department of Ophthalmology, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Box 41, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
16
|
Tasbihgou SR, Netkova M, Kalmar AF, Doorduin J, Struys MMRF, Schoemaker RG, Absalom AR. Brain changes due to hypoxia during light anaesthesia can be prevented by deepening anaesthesia; a study in rats. PLoS One 2018; 13:e0193062. [PMID: 29451906 PMCID: PMC5815614 DOI: 10.1371/journal.pone.0193062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/02/2018] [Indexed: 01/13/2023] Open
Abstract
In anaesthetic practice the risk of cerebral ischemic/hypoxic damage is thought to be attenuated by deep anaesthesia. The rationale is that deeper anaesthesia reduces cerebral oxygen demand more than light anaesthesia, thereby increasing the tolerance to ischemia or hypoxia. However, evidence to support this is scarce. We thus investigated the influence of light versus deep anaesthesia on the responses of rat brains to a period of hypoxia. In the first experiment we exposed adult male Wistar rats to deep or light propofol anaesthesia and then performed [18F]- Fludeoxyglucose (FDG) Positron Emission Tomography (PET) scans to verify the extent of cerebral metabolic suppression. In subsequent experiments, rats were subjected to light/deep propofol anaesthesia and then exposed to a period of hypoxia or ongoing normoxia (n = 9-11 per group). A further 5 rats, not exposed to anaesthesia or hypoxia, served as controls. Four days later a Novel Object Recognition (NOR) test was performed to assess mood and cognition. After another 4 days, the animals were sacrificed for later immunohistochemical analyses of neurogenesis/neuroplasticity (Doublecortin; DCX), Brain Derived Neurotrophic Factor (BDNF) expression and neuroinflammation (Ionized calcium-binding adaptor protein-1; Iba-1) in hippocampal and piriform cortex slices. The hippocampi of rats subjected to hypoxia during light anaesthesia showed lower DCX positivity, and therefore lower neurogenesis, but higher BDNF levels and microglia hyper-ramification. Exploration was reduced, but no significant effect on NOR was observed. In the piriform cortex, higher DCX positivity was observed, associated with neuroplasticity. All these effects were attenuated by deep anaesthesia. Deepening anaesthesia attenuated the brain changes associated with hypoxia. Hypoxia during light anaesthesia had a prolonged effect on the brain, but no impairment in cognitive function was observed. Although reduced hippocampal neurogenesis may be considered unfavourable, higher BDNF expression, associated with microglia hyper-ramification may suggest activation of repair mechanisms. Increased neuroplasticity observed in the piriform cortex supports this, and might reflect a prolonged state of alertness rather than damage.
Collapse
Affiliation(s)
- Setayesh R. Tasbihgou
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Mina Netkova
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Alain F. Kalmar
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, the Netherlands
| | - Michel M. R. F. Struys
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
- Department of Anaesthesia, Ghent University, Gent, Belgium
| | - Regien G. Schoemaker
- Department of Molecular Neurobiology, GELIFES, University of Groningen, Groningen, the Netherlands
| | - Anthony R. Absalom
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
17
|
Foerster K, Benk C, Beyersdorf F, Cristina Schmitz H, Wittmann K, Taunyane I, Heilmann C, Trummer G. Twenty minutes of normothermic cardiac arrest in a pig model: the role of short-term hypothermia for neurological outcome. Perfusion 2017; 33:270-277. [PMID: 29125053 DOI: 10.1177/0267659117742478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cardiopulmonary resuscitation restores circulation, but with inconsistent blood-flow and pressures. Our recent approach using an extracorporeal life support system, named "controlled integrated resuscitation device" (CIRD), may lead to improved survival and neurological recovery after cardiac arrest (CA). The basic idea is to provide a reperfusion tailored to the individual patient by control of the conditions of reperfusion and the composition of the reperfusate. Hypothermia is one aspect of this concept. Here, we investigated the role of immediate short-term blood cooling after experimental CA and its influence on survival and neurological recovery. METHODS Twenty-one pigs were exposed to 20 minutes of normothermic CA. Afterwards, CIRD was immediately started for 60 minutes in all animals and the heart was converted to a sinus rhythm. The pigs either received normothermic reperfusion (37°C, n=11) or the temperature was maintained at 32°C for the first 30 minutes (n=10). Thermometric, hemodynamic and serologic data were collected during the experiment. After weaning from CIRD, neurological recovery was assessed daily by a species-specific neurological deficit score (NDS; 0: normal; 500: brain death). RESULTS One pig in each group could not be successfully resuscitated. Due to severe neurological deficits, only 6/11 animals in the normothermic group finished the observation time of seven days with an NDS of 37±34. In the hypothermic group, all nine surviving animals reached day seven with an NDS of 16±13. Analogous to the lower NDS, animals in the hypothermic group also showed lower neuron-specific enolase end values as a marker of brain injury. CONCLUSIONS Within this experimental setting, immediate moderate and short-term hypothermia after CA improves survival and seems to result in statistically non-significant better neurological recovery.
Collapse
Affiliation(s)
- Katharina Foerster
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Freiburg, Germany
| | - Christoph Benk
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Freiburg, Germany
| | - Friedhelm Beyersdorf
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Freiburg, Germany
| | - Heidi Cristina Schmitz
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Freiburg, Germany
| | - Karin Wittmann
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Freiburg, Germany
| | - Itumeleng Taunyane
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Freiburg, Germany
| | - Claudia Heilmann
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Freiburg, Germany
| |
Collapse
|
18
|
Satomi S, Kasai A, Hamaguchi E, Tsutsumi YM, Tanaka K. Normothermic Cardiopulmonary Bypass in Patient With Waldenström’s Macroglobulinemia and Cryoglobulinemia. ACTA ACUST UNITED AC 2017; 9:162-163. [DOI: 10.1213/xaa.0000000000000555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Effects of Dimeric PSD-95 Inhibition on Excitotoxic Cell Death and Outcome After Controlled Cortical Impact in Rats. Neurochem Res 2017; 42:3401-3413. [PMID: 28828633 DOI: 10.1007/s11064-017-2381-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022]
Abstract
Therapeutic effects of PSD-95 inhibition have been demonstrated in numerous studies of stroke; however only few studies have assessed the effects of PSD-95 inhibitors in traumatic brain injury (TBI). As the pathophysiology of TBI partially overlaps with that of stroke, PSD-95 inhibition may also be an effective therapeutic strategy in TBI. The objectives of the present study were to assess the effects of a dimeric inhibitor of PSD-95, UCCB01-144, on excitotoxic cell death in vitro and outcome after experimental TBI in rats in vivo. In addition, the pharmacokinetic parameters of UCCB01-144 were investigated in order to assess uptake of the drug into the central nervous system of rats. After a controlled cortical impact rats were randomized to receive a single injection of either saline or two different doses of UCCB01-144 (10 or 20 mg/kg IV) immediately after injury. Spatial learning and memory were assessed in a water maze at 2 weeks post-trauma, and at 4 weeks lesion volumes were estimated. Overall, UCCB01-144 did not protect against NMDA-toxicity in neuronal cultures or experimental TBI in rats. Important factors that should be investigated further in future studies assessing the effects of PSD-95 inhibitors in TBI are discussed.
Collapse
|
20
|
Thygesen MM, Rasmussen MM, Madsen JG, Pedersen M, Lauridsen H. Propofol (2,6-diisopropylphenol) is an applicable immersion anesthetic in the axolotl with potential uses in hemodynamic and neurophysiological experiments. ACTA ACUST UNITED AC 2017; 4:124-131. [PMID: 28975032 PMCID: PMC5617899 DOI: 10.1002/reg2.80] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
The Mexican axolotl (Ambystoma mexicanum) is an important model species in regenerative biology. Traditionally, axolotls are anesthetized using benzocaine or MS-222, both of which act to inhibit voltage gated sodium channels thereby preventing action potential propagation. In some neurophysiological experiments this is not desirable; therefore we tested propofol as an alternative anesthetic in the axolotl. We evaluated benzocaine, MS-222, and propofol's cardiovascular effects, effects on action potential propagation in the spinal cord, and gross limb regenerative effects. We found that propofol is applicable as a general anesthetic in the axolotl allowing for neurophysiological experiments and yielding a stable anesthesia with significantly less cardiovascular effect than both benzocaine and MS-222. Additionally, propofol did not affect gross limb regeneration. In conclusion we suggest the consideration of propofol as an alternative immersion anesthetic to benzocaine and MS-222.
Collapse
Affiliation(s)
- Mathias Møller Thygesen
- Comparative Medicine Laboratory Department of Clinical Medicine, Aarhus University Palle Juul-Jensens Boulevard 998200 Aarhus N Denmark
| | | | - Jesper Guldsmed Madsen
- Comparative Medicine Laboratory Department of Clinical Medicine, Aarhus University Palle Juul-Jensens Boulevard 998200 Aarhus N Denmark
| | - Michael Pedersen
- Comparative Medicine Laboratory Department of Clinical Medicine, Aarhus University Palle Juul-Jensens Boulevard 998200 Aarhus N Denmark
| | - Henrik Lauridsen
- Comparative Medicine Laboratory Department of Clinical Medicine, Aarhus University Palle Juul-Jensens Boulevard 998200 Aarhus N Denmark.,Cardiovascular Developmental Bioengineering Laboratory, Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University 304 Weill HallIthaca NY 14853-7202 USA
| |
Collapse
|
21
|
A clinical review of inhalation anesthesia with sevoflurane: from early research to emerging topics. J Anesth 2017; 31:764-778. [PMID: 28585095 PMCID: PMC5640726 DOI: 10.1007/s00540-017-2375-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/20/2017] [Indexed: 12/20/2022]
Abstract
A large number of studies during the past two decades have demonstrated the efficacy and safety of sevoflurane across patient populations. Clinical researchers have also investigated the effects of sevoflurane, its hemodynamic characteristics, its potential protective effects on several organ systems, and the incidence of delirium and cognitive deficiency. This review examines the clinical profiles of sevoflurane and other anesthetic agents, and focuses upon emerging topics such as organ protection, postoperative cognitive deficiency and delirium, and novel ways to improve postanesthesia outcomes.
Collapse
|
22
|
Neuroprotective effects of gabaergic phenols correlated with their pharmacological and antioxidant properties. Life Sci 2017; 175:11-15. [DOI: 10.1016/j.lfs.2017.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 01/07/2023]
|
23
|
Thomas A, Detilleux J, Flecknell P, Sandersen C. Impact of Stroke Therapy Academic Industry Roundtable (STAIR) Guidelines on Peri-Anesthesia Care for Rat Models of Stroke: A Meta-Analysis Comparing the Years 2005 and 2015. PLoS One 2017; 12:e0170243. [PMID: 28122007 PMCID: PMC5266292 DOI: 10.1371/journal.pone.0170243] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/30/2016] [Indexed: 11/19/2022] Open
Abstract
Numerous studies using rats in stroke models have failed to translate into successful clinical trials in humans. The Stroke Therapy Academic Industry Roundtable (STAIR) has produced guidelines on the rodent stroke model for preclinical trials in order to promote the successful translation of animal to human studies. These guidelines also underline the importance of anaesthetic and monitoring techniques. The aim of this literature review is to document whether anaesthesia protocols (i.e., choice of agents, mode of ventilation, physiological support and monitoring) have been amended since the publication of the STAIR guidelines in 2009. A number of articles describing the use of a stroke model in adult rats from the years 2005 and 2015 were randomly selected from the PubMed database and analysed for the following parameters: country where the study was performed, strain of rats used, technique of stroke induction, anaesthetic agent for induction and maintenance, mode of intubation and ventilation, monitoring techniques, control of body temperature, vascular accesses, and administration of intravenous fluids and analgesics. For each parameter (stroke, induction, maintenance, monitoring), exact chi-square tests were used to determine whether or not proportions were significantly different across year and p values were corrected for multiple comparisons. An exact p-test was used for each parameter to compare the frequency distribution of each value followed by a Bonferroni test. The level of significant set at < 0.05. Results show that there were very few differences in the anaesthetic and monitoring techniques used between 2005 and 2015. In 2015, significantly more studies were performed in China and significantly fewer studies used isoflurane and nitrous oxide. The most striking finding is that the vast majority of all the studies from both 2005 and 2015 did not report the use of ventilation; measurement of blood gases, end-tidal carbon dioxide concentration, or blood pressure; or administration of intravenous fluids or analgesics. The review of articles published in 2015 showed that the STAIR guidelines appear to have had no effect on the anaesthetic and monitoring techniques in rats undergoing experimental stroke induction, despite the publication of said guidelines in 2009.
Collapse
MESH Headings
- Analgesics/administration & dosage
- Anesthesia/methods
- Anesthesia/standards
- Anesthesia/veterinary
- Anesthetics/administration & dosage
- Anesthetics/classification
- Animals
- Guideline Adherence
- Infarction, Middle Cerebral Artery
- Infusions, Intravenous/methods
- Infusions, Intravenous/standards
- Infusions, Intravenous/veterinary
- Intubation, Intratracheal/methods
- Intubation, Intratracheal/standards
- Intubation, Intratracheal/veterinary
- Models, Animal
- Monitoring, Intraoperative/methods
- Monitoring, Intraoperative/standards
- Monitoring, Intraoperative/veterinary
- Perioperative Care/methods
- Perioperative Care/standards
- Perioperative Care/veterinary
- Practice Guidelines as Topic
- Rats
- Respiration, Artificial/methods
- Respiration, Artificial/standards
- Respiration, Artificial/veterinary
- Sampling Studies
- Species Specificity
- Stroke
Collapse
Affiliation(s)
- Aurelie Thomas
- University of Liège, Faculty of Veterinary Medicine, Liege, Belgium
| | - Johann Detilleux
- University of Liège, Faculty of Veterinary Medicine, Liege, Belgium
| | - Paul Flecknell
- University of Newcastle, Comparative Biology Centre, Newcastle, United Kingdom
| | | |
Collapse
|
24
|
Sommer JB, Bach A, Malá H, Strømgaard K, Mogensen J, Pickering DS. In vitro and in vivo effects of a novel dimeric inhibitor of PSD-95 on excitotoxicity and functional recovery after experimental traumatic brain injury. Eur J Neurosci 2016; 45:238-248. [PMID: 27859797 DOI: 10.1111/ejn.13483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
PSD-95 inhibitors have been shown to be neuroprotective in stroke, but have only to a very limited extent been evaluated in the treatment of traumatic brain injury (TBI) that has pathophysiological mechanisms in common with stroke. The aims of the current study were to assess the effects of a novel dimeric inhibitor of PSD-95, UCCB01-147, on histopathology and long-term cognitive outcome after controlled cortical impact (CCI) in rats. As excitotoxic cell death is thought to be a prominent part of the pathophysiology of TBI, we also investigated the neuroprotective effects of UCCB01-147 and related compounds on NMDA-induced cell death in cultured cortical neurons. Anesthetized rats were given a CCI or sham injury, and were randomized to receive an injection of either UCCB01-147 (10 mg/kg), the non-competitive NMDAR-receptor antagonist MK-801 (1 mg/kg) or saline immediately after injury. At 2 and 4 weeks post-trauma, spatial learning and memory were assessed in a water maze, and at 3 months, brains were removed for estimation of lesion volumes. Overall, neither treatment with UCCB01-147 nor MK-801 resulted in significant improvements of cognition and histopathology after CCI. Although MK-801 provided robust neuroprotection against NMDA-induced toxicity in cultured cortical neurons, UCCB01-147 failed to reduce cell death and became neurotoxic at high doses. The data suggest potential differential effects of PSD-95 inhibition in stroke and TBI that should be investigated further in future studies taking important experimental factors such as timing of treatment, dosage, and anesthesia into consideration.
Collapse
Affiliation(s)
- Jens Bak Sommer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark.,The Unit for Cognitive Neuroscience (UCN), Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark
| | - Hana Malá
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark
| |
Collapse
|
25
|
Kaur J, Flores Gutiérrez J, Nistri A. Neuroprotective effect of propofol against excitotoxic injury to locomotor networks of the rat spinal cord in vitro. Eur J Neurosci 2016; 44:2418-2430. [PMID: 27468970 DOI: 10.1111/ejn.13353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Although neuroprotection to contain the initial damage of spinal cord injury (SCI) is difficult, multicentre studies show that early neurosurgery under general anaesthesia confers positive benefits. An interesting hypothesis is that the general anaesthetic itself might largely contribute to neuroprotection, although in vivo clinical settings hamper studying this possibility directly. To further test neuroprotective effects of a widely used general anaesthetic, we studied if propofol could change the outcome of a rat isolated spinal cord SCI model involving excitotoxicity evoked by 1 h application of kainate with delayed consequences on neurons and locomotor network activity. Propofol (5 μm; 4-8 h) enhanced responses to GABA and depressed those to NMDA together with decrease in polysynaptic reflexes that partly recovered after 1 day washout. Fictive locomotion induced by dorsal root stimuli or NMDA and serotonin was weaker the day after propofol application. Kainate elicited a significant loss of spinal neurons, especially motoneurons, whose number was halved. When propofol was applied for 4-8 h after kainate washout, strong neuroprotection was observed in all spinal areas, including attenuation of motoneuron loss. Although propofol had minimal impact on recovery of electrophysiological characteristics 24 h later, it did not further depress network activity. A significant improvement in disinhibited burst periodicity suggested potential to ameliorate neuronal excitability in analogy to histological data. Functional recovery of locomotor networks perhaps required longer time due to the combined action of excitotoxicity and anaesthetic depression at 24 h. These results suggest propofol could confer good neuroprotection to spinal circuits during experimental SCI.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Javier Flores Gutiérrez
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy. .,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione, Udine, Italy.
| |
Collapse
|
26
|
Williams GD, Ramamoorthy C. Brain Monitoring and Protection During Pediatric Cardiac Surgery. Semin Cardiothorac Vasc Anesth 2016; 11:23-33. [PMID: 17484171 DOI: 10.1177/1089253206297412] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
With advances in medical care, survival after cardiac surgery for congenital heart disease has dramatically improved, and attention is increasingly focused on longterm functional morbidities, especially neurodevelopmental outcomes, with their profound consequences to patients and society. There are multiple reasons for concern about brain injury. Some cardiac defects are associated with brain anomalies and altered cerebral blood flow regulation. Brain imaging studies have demonstrated that injury to gray and white matter is quite frequent before heart surgery in neonates. Cardiopulmonary bypass and deep hypothermic circulatory arrest are associated with shortand longer-term adverse neurologic outcome. Additional brain injury can occur during the patient's recovery from surgery. Strategies to optimize neurologic outcome continue to evolve. With new technological developments, perioperative neurologic monitoring of small children has become easier, and data suggest these modalities usefully identify adverse neurologic events and might predict outcome. Monitoring methods to be discussed include processed electroencephalography, near infrared spectroscopy, and transcranial Doppler ultrasound. Alternative perfusion techniques to deep hypothermic circulatory arrest have been developed, such as regional antegrade cerebral perfusion during cardiopulmonary bypass. Other neuroprotective strategies employed during open-heart surgery include temperature regulation, acid-base management, degree of hemodilution, blood glucose control and anti-inflammatory therapies. Evidence of the impact of these measures on neurologic outcome is examined, and deficiencies in our current understanding of neurologic function in children with congenital heart disease are identified.
Collapse
Affiliation(s)
- Glyn D Williams
- Department of Anesthesia, Stanford University Medical School, California 94305, USA.
| | | |
Collapse
|
27
|
Wang Y, Wu C, Han B, Xu F, Mao M, Guo X, Wang J. Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3β signaling disruption, and juvenile cognitive deficits in neonatal rats. Mol Med Rep 2016; 14:769-75. [PMID: 27222147 PMCID: PMC4918603 DOI: 10.3892/mmr.2016.5321] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
Propofol is one of the most widely used intravenous anesthetics. However, repeated exposure to propofol may cause neurodegeneration in the developing brain. Dexmedetomidine (Dex), an α2 adrenoceptor agonist, has been previously demonstrated to provide neuroprotection against neuroapoptosis and neurocognitive impairments induced by several anesthetics. Thus, the current study aimed to investigate the effect of Dex on neonatal propofol-induced neuroapoptosis and juvenile spatial learning/memory deficits. Propofol (30 mg/kg) was intraperiotoneally administered to 7‑day‑old Sprague Dawley rats (n=75) three times each day at 90 min intervals for seven consecutive days with or without Dex (75 µg/kg) treatment 20 min prior to propofol injection. Following repeated propofol exposure, reduced Akt and GSK‑3β phosphorylation, increased cleaved caspase‑3 expression levels, an increased Bax/Bcl‑2 ratio, and increased terminal deoxynucleotidyl transferase‑mediated dUTP nick‑end labeling (TUNEL)‑positive cells in the CA1 hippocampal subregion were observed. Morris Water Maze testing at postnatal day 29 also demonstrated spatial learning and memory deficits following propofol treatment compared with the control group. Notably, these changes were significantly attenuated by Dex pretreatment. The results of the current study demonstrated that Dex ameliorates the neurocognitive impairment induced by repeated neonatal propofol challenge in rats, partially via its anti‑apoptotic action and normalization of the disruption to the PI3K/Akt/GSK‑3β signaling pathway. The present study provides preliminary evidence demonstrating the safety of propofol on the neonatal brain and the potential use of dexmedetomidine pretreatment in pediatric patients.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Changyi Wu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Bin Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Fei Xu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Mingfeng Mao
- Department of Otolaryngology, 316 Hospital of People's Liberation Army, Beijing 100093, P.R. China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jun Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
28
|
Lapchak PA, Boitano PD. A novel method to promote behavioral improvement and enhance mitochondrial function following an embolic stroke. Brain Res 2016; 1646:125-131. [PMID: 27180104 DOI: 10.1016/j.brainres.2016.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
Abstract
Tissue plasminogen activator (tPA) is the only FDA-approved treatment for stroke; tPA increases cerebral reperfusion, blood flow and improved behavior. Novel transcranial laser therapy (TLT) also enhances cerebral blood flow and activates mitochondrial function. Using the rabbit small clot embolic stroke model (RSCEM), we studied the effects of continuous wave TLT (7.5mW/cm(2)) alone or in combination with standardized intravenous (IV) tPA (3.3mg/kg) applied 1h post-embolization on 3 endpoints: 1) behavioral function measured 2 days [effective stroke dose (P50 in mg) producing neurological deficits in 50% of embolized rabbits], 2) intracerebral hemorrhage (ICH) rate, and 3) cortical adenosine-5'-triphosphate (ATP) content was measured 6h following embolization. TLT and tPA significantly (p<0.05) increased P50 values by 95% and 56% (p<0.05), respectively over control. TLT-tPA increased P50 by 136% over control (p<0.05). Embolization reduced cortical ATP content by 39%; decreases that were attenuated by either TLT or tPA treatment (p<0.05). TLT-tPA further enhanced cortical ATP levels 22% above that measured in naïve control. TLT and tPA both effectively and safely, without affecting ICH rate, improved behavioral outcome in embolized rabbits; and there was a trend (p>0.05) for the TLT-tPA combination to further increase P50. TLT and tPA both attenuated stroke-induced ATP deficits, and the combination of tPA and TLT produced an additive effect on ATP levels. This study demonstrates that the combination of TLT-tPA enhances ATP production, and suggests that tPA-induced reperfusion in combination with TLT neuroprotection therapy may optimally protect viable cells in the cortex measured using ATP levels as a marker.
Collapse
Affiliation(s)
- Paul A Lapchak
- Cedars-Sinai Medical Center Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion Suite 8305, 127 South San Vicente Blvd, Los Angeles 90048, United States.
| | - Paul D Boitano
- Cedars-Sinai Medical Center Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion Suite 8305, 127 South San Vicente Blvd, Los Angeles 90048, United States.
| |
Collapse
|
29
|
Delayed application of the anesthetic propofol contrasts the neurotoxic effects of kainate on rat organotypic spinal slice cultures. Neurotoxicology 2016; 54:1-10. [PMID: 26947011 DOI: 10.1016/j.neuro.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
Abstract
Excitotoxicity due to hyperactivation of glutamate receptors is thought to underlie acute spinal injury with subsequent strong deficit in spinal network function. Devising an efficacious protocol of neuroprotection to arrest excitotoxicity might, therefore, spare a substantial number of neurons and allow later recovery. In vitro preparations of the spinal cord enable detailed measurement of spinal damage evoked by the potent glutamate analogue kainate. Any clinically-relevant neuroprotective treatment should start after the initial lesion and spare networks for at least 24h when cell damage plateaus. Using this strategy, we have observed that the gas anesthetic methoxyflurane provided strong, delayed neuroprotection. It is unclear if this beneficial effect was due to the mechanism of action by methoxyflurane, or it was the consequence of anesthetic depression. To test this hypothesis, we investigated the effect by propofol (commonly injected i.v. for general anesthesia) after kainate excitotoxicity induced on organotypic spinal slices. At 5μM concentration, propofol significantly attenuated cell death, including neuronal losses and, especially, damage to the highly vulnerable motoneurons. The action by propofol was fully prevented when co-applied with the GABAA antagonist bicuculline, indicating that neuroprotection required intact GABAA receptor function. Although bicuculline per se was not neurotoxic, it largely enhanced the lesional effects of kainate, suggesting that GABAA receptor activity could limit excitotoxicity. Our data might offer an explanation for the beneficial clinical outcome of neurosurgery performed as soon as possible after spinal lesion: we posit that general anesthesia contributes to this outcome, regardless of the type of anesthetic used.
Collapse
|
30
|
Selective impairment of attention networks during propofol anesthesia after gynecological surgery in middle-aged women. J Neurol Sci 2016; 363:126-31. [PMID: 27000237 DOI: 10.1016/j.jns.2016.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Postoperative cognitive dysfunction is a common complication of anesthesia and surgery. Attention networks are essential components of cognitive function and are subject to impairment after anesthesia and surgery. It is not known whether such impairment represents a global attention deficit or relates to a specific attention network. We used an Attention Network Task (ANT) to examine the efficiency of the alerting, orienting, and executive control attention networks in middle-aged women (40-60 years) undergoing gynecologic surgery. A matched group of medical inpatients were recruited as a control. METHODS Fifty female patients undergoing gynecologic surgery (observation group) and 50 female medical inpatients (control group) participated in this study. Preoperatively patients were administered a mini-mental state examination as a screening method. The preoperative efficiencies of three attention networks in an attention network test were compared to the 1st and 5th post-operative days. RESULTS The control group did not have any significant attention network impairments. On the 1st postoperative day, significant impairment was shown in the alerting (p=0.003 vs. control group, p=0.015 vs. baseline), orienting (p<0.001 vs. both baseline level and control group), and executive control networks (p=0.007 vs. control group, p=0.002 vs. baseline) of the observation group. By the 5th postoperative day, the alerting network efficiency had recovered to preoperative levels (p=0.464 vs. baseline) and the orienting network efficiency had recovered partially (p=0.031 vs. 1st post-operative day), but not to preoperative levels (p=0.01 vs. baseline). The executive control network did not recover by the 5th postoperative day (p=0.001 vs. baseline, p=0.680 vs. 1st post-operative day). CONCLUSIONS Attention networks of middle-aged women show a varying degree of significant impairment and differing levels of recovery after surgery and propofol anesthetic.
Collapse
|
31
|
Abstract
Fluid percussion was first conceptualized in the 1940s and has evolved into one of the leading laboratory methods for studying experimental traumatic brain injury (TBI). Over the decades, fluid percussion has been used in numerous species and today is predominantly applied to the rat. The fluid percussion technique rapidly injects a small volume of fluid, such as isotonic saline, through a circular craniotomy onto the intact dura overlying the brain cortex. In brief, the methods involve surgical production of a circular craniotomy, attachment of a fluid-filled conduit between the dura overlying the cortex and the outlet port of the fluid percussion device. A fluid pulse is then generated by the free-fall of a pendulum striking a piston on the fluid-filled cylinder of the device. The fluid enters the cranium, producing a compression and displacement of the brain parenchyma resulting in a sharp, high magnitude elevation of intracranial pressure that is propagated diffusely through the brain. This results in an immediate and transient period of traumatic unconsciousness as well as a combination of focal and diffuse damage to the brain, which is evident upon histological and behavioral analysis. Numerous studies have demonstrated that the rat fluid percussion model reproduces a wide range of pathological features associated with human TBI.
Collapse
Affiliation(s)
- Ken C Van
- Department of Neurological Surgery, University of California at Davis, 1515 Newton Court, One Shields Avenue, Davis, CA, 95616-8797, USA
| | - Bruce G Lyeth
- Department of Neurological Surgery, University of California at Davis, 1515 Newton Court, One Shields Avenue, Davis, CA, 95616-8797, USA.
| |
Collapse
|
32
|
Anwar MA, Eid AH. Determination of Vascular Reactivity of Middle Cerebral Arteries from Stroke and Spinal Cord Injury Animal Models Using Pressure Myography. Methods Mol Biol 2016; 1462:611-24. [PMID: 27604741 DOI: 10.1007/978-1-4939-3816-2_33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stroke and other neurovascular derangements are main causes of global death. They, along with spinal cord injuries, are responsible for being the principal cause of disability due to neurological and cognitive problems. These problems then lead to a burden on scarce financial resources and societal care facilities as well as have a profound effect on patients' families. The mechanism of action in these debilitating diseases is complex and unclear. An important component of these problems arises from derangement of blood vessels, such as blockage due to clotting/embolism, endothelial dysfunction, and overreactivity to contractile agents, as well as alteration in endothelial permeability. Moreover, the cerebro-vasculature (large vessels and arterioles) is involved in regulating blood flow by facilitating auto-regulatory processes. Moreover, the anterior (middle cerebral artery and the surrounding region) and posterior (basilar artery and its immediate locality) regions of the brain play a significant role in triggering the pathological progression of ischemic stroke particularly due to inflammatory activity and oxidative stress. Interestingly, modifiable and non-modifiable cardiovascular risk factors are responsible for driving ischemic and hemorrhagic stroke and spinal cord injury. There are different stroke animal models to examine the pathophysiology of middle cerebral and basilar arteries. In this context, arterial myography offers an opportunity to determine the etiology of vascular dysfunction in these diseases. Herein, we describe the technique of pressure myography to examine the reactivity of cerebral vessels to contractile and vasodilator agents and a prelude to stroke and spinal cord injury.
Collapse
Affiliation(s)
- Mohammad A Anwar
- Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar. .,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, 11-0236, Beirut, 1107-2020, Lebanon.
| |
Collapse
|
33
|
Novel Interventions for Stroke: Nervous System Cooling. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
General Anesthesia versus Conscious Sedation for the Endovascular Treatment of Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2015; 24:1957-60. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 11/18/2022] Open
|
35
|
Thiopental protects human neuroblastoma cells from apoptotic cell death - Potential role of heat shock protein 70. Life Sci 2015; 139:40-5. [PMID: 26297444 DOI: 10.1016/j.lfs.2015.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 11/23/2022]
|
36
|
Preischemic Administration of Sevoflurane Does not Exert Dose-dependent Effects on the Outcome of Severe Forebrain Ischemia in Rats. J Neurosurg Anesthesiol 2015; 27:216-21. [DOI: 10.1097/ana.0000000000000141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Bruce ED, Konda S, Dean DD, Wang EW, Huang JH, Little DM. Neuroimaging and traumatic brain injury: State of the field and voids in translational knowledge. Mol Cell Neurosci 2015; 66:103-13. [DOI: 10.1016/j.mcn.2015.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/07/2023] Open
|
38
|
Lapchak PA. A cost-effective rabbit embolic stroke bioassay: insight into the development of acute ischemic stroke therapy. Transl Stroke Res 2015; 6:99-103. [PMID: 25637174 PMCID: PMC4359071 DOI: 10.1007/s12975-015-0386-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Paul A Lapchak
- Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion Suite 8305, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA,
| |
Collapse
|
39
|
Lapchak PA, Daley JT, Boitano PD. A blinded, randomized study of L-arginine in small clot embolized rabbits. Exp Neurol 2015; 266:143-6. [PMID: 25708986 PMCID: PMC4382386 DOI: 10.1016/j.expneurol.2015.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Tissue plasminogen activator (tPA) is administered to acute ischemic stroke victims in a vehicle formulation containing high concentrations of L-arginine (3.5g/100mg vial), a well-known nitric oxide synthase (NOS) substrate and precursor to nitric oxide (NO), as well as an enhancer of cerebral blood flow. METHODS We studied the effects of tPA vehicle compared to tPA (3.3mg/kg) formulated in the same vehicle containing L-arginine, normal saline or normal saline containing L-arginine, on behavioral function following small clot embolic strokes in rabbits using clinical rating scores and quantal analysis curves as the primary end point. Treatments were administered intravenously (1ml/kg; 20% bolus/80% infused over 30min) starting 1h following the injection of small-sized blood clots into the brain vasculature and terminal behavior was measured 2days following embolization. Behavioral rating scores were used to calculate the effective stroke dose (P50 in mg) that produces neurological deficits in 50% of the rabbits. RESULTS In this study, tPA significantly (p=0.001) improved behavior compared to all other treatments including tPA vehicle, saline and saline-L-arginine, increasing the P50 by 141% over tPA vehicle. Saline-L-arginine was not significantly different from either saline or tPA vehicle (p>0.05). CONCLUSION This study demonstrates that the L-arginine component of the tPA vehicle does not contribute to the reproducible clinical improvement observed following tPA administration in rabbits. Moreover, the administration of L-arginine was not an effective method to promote behavioral recovery following embolic strokes in the stringent rabbit small clot stroke model, nor did L-arginine exacerbate behavioral deficits or intracerebral hemorrhage in embolized rabbits.
Collapse
Affiliation(s)
- Paul A Lapchak
- Cedars-Sinai Medical Center, Department of Neurology & Neurosurgery.
| | | | | |
Collapse
|
40
|
Peng J, Drobish JK, Liang G, Wu Z, Liu C, Joseph DJ, Abdou H, Eckenhoff MF, Wei H. Anesthetic preconditioning inhibits isoflurane-mediated apoptosis in the developing rat brain. Anesth Analg 2014; 119:939-946. [PMID: 25099925 DOI: 10.1213/ane.0000000000000380] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND We hypothesized that preconditioning (PC) with a short exposure to isoflurane (ISO) would reduce neurodegeneration induced by prolonged exposure to ISO in neonatal rats, as previously shown in neuronal cell culture. METHODS We randomly divided 7-day-old Sprague-Dawley rats into 3 groups: control, 1.5% ISO, and PC + 1.5% ISO. The control group was exposed to carrier gas (30% oxygen balanced in nitrogen) for 30 minutes and then to carrier gas again for 6 hours the following day. The 1.5% ISO group was exposed to carrier gas for 30 minutes and then to 1.5% ISO for 6 hours the following day. The PC + 1.5% ISO group was preconditioned with a 30-minute 1.5% ISO exposure and then exposed to 1.5% ISO for 6 hours the following day. Blood and brain samples were collected 2 hours after the exposures for determination of neurodegenerative biomarkers, including caspase-3, S100β, caspase-12, and an autophagy biomarker Beclin-1. RESULTS Prolonged exposure to ISO significantly increased cleaved caspase-3 expression in the cerebral cortex of 7-day-old rats compared with the group preconditioned with ISO and the controls using Western blot assays. However, significant differences were not detected for other markers of neuronal injury. CONCLUSIONS The ISO-mediated increase in cleaved caspase-3 in the postnatal day 7 rat brain is ameliorated by PC with a brief anesthetic exposure, and differences were not detected in other markers of neuronal injury.
Collapse
Affiliation(s)
- Jun Peng
- From the Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Colton K, Yang S, Hu PF, Chen HH, Bonds B, Stansbury LG, Scalea TM, Stein DM. Pharmacologic Treatment Reduces Pressure Times Time Dose and Relative Duration of Intracranial Hypertension. J Intensive Care Med 2014; 31:263-9. [PMID: 25320157 DOI: 10.1177/0885066614555692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Past work has shown the importance of the "pressure times time dose" (PTD) of intracranial hypertension (intracranial pressure [ICP] > 19 mm Hg) in predicting outcome after severe traumatic brain injury. We used automated data collection to measure the effect of common medications on the duration and dose of intracranial hypertension. METHODS Patients >17 years old, admitted and requiring ICP monitoring between 2008 and 2010 at a single, large urban tertiary care facility, were retrospectively enrolled. Timing and dose of ICP-directed therapy were recorded from paper and electronic medical records. The ICP data were collected automatically at 6-second intervals and averaged over 5 minutes. The percentage of time of intracranial hypertension (PTI) and PTD (mm Hg h) were calculated. RESULTS A total of 98 patients with 664 treatment instances were identified. Baseline PTD ranged from 27 (before administration of propofol and fentanyl) to 150 mm Hg h (before mannitol). A "small" dose of hypertonic saline (HTS; ≤250 mL 3%) reduced PTD by 38% in the first hour and 37% in the second hour and reduced the time with ICP >19 by 38% and 39% after 1 and 2 hours, respectively. A "large" dose of HTS reduced PTD by 40% in the first hour and 63% in the second (PTI reduction of 36% and 50%, respectively). An increased dose of propofol or fentanyl infusion failed to decrease PTD but reduced PTI between 14% (propofol alone) and 30% (combined increase in propofol and fentanyl, after 2 hours). Barbiturates failed to decrease PTD but decreased PTI by 30% up to 2 hours after administration. All reductions reported are significantly changed from baseline, P < .05. CONCLUSION Baseline PTD values before drug administration reflects varied patient criticality, with much higher values seen before the use of mannitol or barbiturates. Treatment with HTS reduced PTD and PTI burden significantly more than escalation of sedation or pain management, and this effect remained significant at 2 hours after administration.
Collapse
Affiliation(s)
- Katharine Colton
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA Duke University School of Medicine, Durham, NC, USA
| | - S Yang
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - P F Hu
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - H H Chen
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - B Bonds
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - L G Stansbury
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - T M Scalea
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - D M Stein
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| |
Collapse
|
42
|
Zuckerman SL, Forbes JA, Mistry AM, Krishnamoorthi H, Weaver S, Mathews L, Cheng JS, McGirt MJ. Electrophysiologic deterioration in surgery for thoracic disc herniation: impact of mean arterial pressures on surgical outcome. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:2279-90. [DOI: 10.1007/s00586-014-3390-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/05/2014] [Accepted: 05/18/2014] [Indexed: 11/30/2022]
|
43
|
Combes RD. A critical review of anaesthetised animal models and alternatives for military research, testing and training, with a focus on blast damage, haemorrhage and resuscitation. Altern Lab Anim 2014; 41:385-415. [PMID: 24329746 DOI: 10.1177/026119291304100508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Military research, testing, and surgical and resuscitation training, are aimed at mitigating the consequences of warfare and terrorism to armed forces and civilians. Traumatisation and tissue damage due to explosions, and acute loss of blood due to haemorrhage, remain crucial, potentially preventable, causes of battlefield casualties and mortalities. There is also the additional threat from inhalation of chemical and aerosolised biological weapons. The use of anaesthetised animal models, and their respective replacement alternatives, for military purposes -- particularly for blast injury, haemorrhaging and resuscitation training -- is critically reviewed. Scientific problems with the animal models include the use of crude, uncontrolled and non-standardised methods for traumatisation, an inability to model all key trauma mechanisms, and complex modulating effects of general anaesthesia on target organ physiology. Such effects depend on the anaesthetic and influence the cardiovascular system, respiration, breathing, cerebral haemodynamics, neuroprotection, and the integrity of the blood-brain barrier. Some anaesthetics also bind to the NMDA brain receptor with possible differential consequences in control and anaesthetised animals. There is also some evidence for gender-specific effects. Despite the fact that these issues are widely known, there is little published information on their potential, at best, to complicate data interpretation and, at worst, to invalidate animal models. There is also a paucity of detail on the anaesthesiology used in studies, and this can hinder correct data evaluation. Welfare issues relate mainly to the possibility of acute pain as a side-effect of traumatisation in recovered animals. Moreover, there is the increased potential for animals to suffer when anaesthesia is temporary, and the procedures invasive. These dilemmas can be addressed, however, as a diverse range of replacement approaches exist, including computer and mathematical dynamic modelling of the human body, cadavers, interactive human patient simulators for training, in vitro techniques involving organotypic cultures of target organs, and epidemiological and clinical studies. While the first four of these have long proven useful for developing protective measures and predicting the consequences of trauma, and although many phenomena and their sequelae arising from different forms of trauma in vivo can be induced and reproduced in vitro, non-animal approaches require further development, and their validation and use need to be coordinated and harmonised. Recommendations to these ends are proposed, and the scientific and welfare problems associated with animal models are addressed, with the future focus being on the use of batteries of complementary replacement methods deployed in integrated strategies, and on greater transparency and scientific cooperation.
Collapse
|
44
|
Affiliation(s)
- Vinodkumar Singh
- Department of Anaesthesia and Intensive care, West Suffolk Hospital, NHS Foundation Trust, Bury St Edmunds, UK
| |
Collapse
|
45
|
Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim (NY) 2014; 42:286-91. [PMID: 23877609 DOI: 10.1038/laban.257] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/25/2013] [Indexed: 01/06/2023]
Abstract
Valid modeling of traumatic brain injury (TBI) requires accurate replication of both the mechanical forces that cause the primary injury and the conditions that lead to secondary injuries observed in human patients. The use of animals in TBI research is justified by the lack of in vitro or computer models that can sufficiently replicate the complex pathological processes involved. Measures to reduce nociception and distress must be implemented, but the administration of anesthetics and analgesics can influence TBI outcomes, threatening the validity of the research. In this review, the authors present evidence for the interference of anesthetics and analgesics in the natural course of brain injury in animal models of TBI. They suggest that drugs should be selected for or excluded from experimental TBI protocols on the basis of IACUC-approved experimental objectives in order to protect animal welfare and preserve the validity of TBI models.
Collapse
|
46
|
Denes A, Pradillo JM, Drake C, Buggey H, Rothwell NJ, Allan SM. Surgical manipulation compromises leukocyte mobilization responses and inflammation after experimental cerebral ischemia in mice. Front Neurosci 2014; 7:271. [PMID: 24478617 PMCID: PMC3894778 DOI: 10.3389/fnins.2013.00271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/21/2013] [Indexed: 12/11/2022] Open
Abstract
Acute brain injury results in peripheral inflammatory changes, although the impact of these processes on neuronal death and neuroinflammation is currently unclear. To facilitate the translation of experimental studies to clinical benefit, it is vital to characterize the mechanisms by which acute brain injury induces peripheral inflammatory changes, and how these are affected by surgical manipulation in experimental models. Here we show that in mice, even mild surgical manipulation of extracranial tissues induced marked granulocyte mobilization (300%) and systemic induction of cytokines. However, intracranial changes induced by craniotomy, or subsequent induction of focal cerebral ischemia were required to induce egress of CXCR2-positive granulocytes from the bone marrow. CXCR2 blockade resulted in reduced mobilization of granulocytes from the bone marrow, caused an unexpected increase in circulating granulocytes, but failed to affect brain injury induced by cerebral ischemia. We also demonstrate that isoflurane anaesthesia interferes with circulating leukocyte responses, which could contribute to the reported vascular and neuroprotective effects of isoflurane. In addition, no immunosuppression develops in the bone marrow after experimental stroke. Thus, experimental models of cerebral ischemia are compromised by surgery and anaesthesia in proportion to the severity of surgical intervention and overall tissue injury. Understanding the inherent confounding effects of surgical manipulation and development of new models of cerebral ischemia with minimal surgical intervention could facilitate better understanding of interactions between inflammation and brain injury.
Collapse
Affiliation(s)
- Adam Denes
- Faculty of Life Sciences, University of Manchester Manchester, UK ; Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Budapest, Hungary
| | - Jesus M Pradillo
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Caroline Drake
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Hannah Buggey
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Nancy J Rothwell
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Stuart M Allan
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
47
|
Lapchak PA. Emerging Therapies: Pleiotropic Multi-target Drugs to Treat Stroke Victims. Transl Stroke Res 2013; 2:129-35. [PMID: 21666853 DOI: 10.1007/s12975-011-0074-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Paul A Lapchak
- Translational Research, Cedars-Sinai Medical Center, Department of Neurology, Burns and Allen Research Institute, Davis Research Building, Room D-2091, 110 N. George Burns Road, Los Angeles, CA 90048, USA
| |
Collapse
|
48
|
Wei H, Inan S. Dual effects of neuroprotection and neurotoxicity by general anesthetics: role of intracellular calcium homeostasis. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47:156-61. [PMID: 23721657 PMCID: PMC3791176 DOI: 10.1016/j.pnpbp.2013.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/18/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022]
Abstract
Although general anesthetics have long been considered neuroprotective, there are growing concerns about neurotoxicity. Preclinical studies clearly demonstrated that commonly used general anesthetics are both neuroprotective and neurotoxic, with unclear mechanisms. Recent studies suggest that differential activation of inositol 1,4,5-trisphosphate receptors, a calcium release channel located on the membrane of endoplasmic reticulum (ER), play important role on determining the fate of neuroprotection or neurotoxicity by general anesthetics. General anesthetics at low concentrations for short duration are sublethal stress factors which induce endogenous neuroprotective mechanisms and provide neuroprotection via adequate activation of InsP3R and moderate calcium release from ER. On the other hand, general anesthetics at high concentrations for prolonged duration are lethal stress factors which induce neuronal damage by over activation of InsP3R and excessive and abnormal Ca(2+) release from ER. This review emphasizes the dual effects of both neuroprotection and neurotoxicity via differential regulation of intracellular Ca(2+) homeostasis by commonly used general anesthetics and recommends strategy to maximize neuroprotective but minimize neurotoxic effects of general anesthetics.
Collapse
Affiliation(s)
- Huafeng Wei
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
49
|
Li J, Yu W, Li XT, Qi SH, Li B. The effects of propofol on mitochondrial dysfunction following focal cerebral ischemia-reperfusion in rats. Neuropharmacology 2013; 77:358-68. [PMID: 24035920 DOI: 10.1016/j.neuropharm.2013.08.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/29/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022]
Abstract
Propofol has been shown to attenuate brain injury in experimental ischemia models, but few studies have focused on the direct effect of propofol on mitochondrial dysfunction. In this study, we observed the effects of propofol on multiple aspects of mitochondrial dysfunction by studying the mitochondria isolated from rat brains subjected to focal cerebral ischemia-reperfusion. The mitochondria of the cortical tissue were isolated by the Percoll density gradient centrifugation. The isolated mitochondria were fixed and examined with electron microscopy. The calcium-induced mitochondrial swelling was quantified by measuring the decrease in light transmission at 540 nm with a spectrometer. Fluorescent probes were used to selectively stain mitochondria. Flow cytometry was used to measure the membrane potential and the production of reactive oxidative species. Propofol improved the signs of injury in the cortical mitochondria that were exposed to reperfusion following 2 h of focal ischemia. Propofol prevented calcium-induced mitochondrial swelling in a concentration-dependent manner. It did not affect the reperfusion-induced reduction in mitochondrial membrane potential. However, it decreased the production of the mitochondrial reactive oxidative species, which are generated during reperfusion. These results demonstrate that propofol may protect against mitochondrial dysfunction by preventing the ultrastructural change to the mitochondria and the calcium-induced mitochondrial swelling. This protective effect may be mediated by inhibiting the mitochondrial membrane permeability transition and reducing the production of reactive oxidative species in mitochondria.
Collapse
Affiliation(s)
- Jun Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001 Harbin, China
| | - Wei Yu
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001 Harbin, China
| | - Xue-Ting Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001 Harbin, China
| | - Si-Hua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001 Harbin, China.
| | - Bing Li
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
50
|
Trummer G, Foerster K, Buckberg GD, Benk C, Mader I, Heilmann C, Liakopoulos O, Beyersdorf F. Superior neurologic recovery after 15 minutes of normothermic cardiac arrest using an extracorporeal life support system for optimized blood pressure and flow. Perfusion 2013; 29:130-8. [PMID: 23885022 DOI: 10.1177/0267659113497776] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Sudden cardiac arrest is one of the leading causes of death. Conventional CPR techniques after cardiac arrest provide circulation with reduced and varying blood flow and pressure. We hypothesize that using pressure- and flow-controlled reperfusion of the whole body improves neurological recovery and survival after 15 min of normothermic cardiac arrest. METHODS Pigs were randomized in two experimental groups and exposed to 15 min of ventricular fibrillation (VF). After this period, the animals in the control group received conventional CPR with open chest compression (n=6), while circulation in the treatment group (n=6) was established with an extracorporeal life support system (ECLS) to control blood pressure and flow. Follow-up included the assessment of neurological recovery and magnetic resonance imaging (MRI) for up to 7 days. RESULTS Five of the six animals in the control group died, one animal was resuscitated successfully. In the treatment group, 1/6 could not be separated from ECLS. Five out of the six pigs survived and were transferred to the animal facility. One animal was unable to walk and had to be sacrificed 30 hours after ECLS. The remaining 4 animals of the treatment group and the surviving pig from the control group showed complete neurological recovery. Brain MRI revealed no pathological changes. CONCLUSION We were able to demonstrate a significant improvement in survival after 15 minutes of normothermic cardiac arrest. These results support our hypothesis that using an ECLS for pressure- and flow-controlled circulation after circulatory arrest is superior to conventional CPR.
Collapse
Affiliation(s)
- G Trummer
- 1Department of Cardiovascular Surgery, Heart Center Freiburg University, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|