1
|
Stead WW, Lewis A, Giuse NB, Williams AM, Biaggioni I, Bastarache L. Disentangling the phenotypic patterns of hypertension and chronic hypotension. J Biomed Inform 2024; 159:104743. [PMID: 39486471 PMCID: PMC11722018 DOI: 10.1016/j.jbi.2024.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE 2017 blood pressure (BP) categories focus on cardiac risk. We hypothesize that studying the balance between mechanisms that increase or decrease BP across the medical phenome will lead to new insights. We devised a classifier that uses BP measures to assign individuals to mutually exclusive categories centered in the upper (Htn), lower (Hotn) and middle (Naf) zones of the BP spectrum; and examined the epidemiologic and phenotypic patterns of these BP-categories. METHODS We classified a cohort of 832,560 deidentified electronic health records by BP-category; compared the frequency of BP-categories and four subtypes of Htn and Hotn by sex and age-decade; visualized the distributions of systolic, diastolic, mean arterial and pulse pressures stratified by BP-category; and ran Phenome-wide Association Studies (PheWAS) for Htn and Hotn. We paired knowledgebases for hypertension and hypotension and computed aggregate knowledgebase status (KB-status) indicating known associations. We assessed alignment of PheWAS results with KB-status for phecodes in the knowledgebase, and paired PheWAS correlations with KB-status to surface phenotypic patterns. RESULTS BP-categories represent distinct distributions within the multimodal distributions of systolic and diastolic pressure. They are centered in the upper, lower, and middle zones of mean arterial pressure and provide a different signal than pulse pressure. For phecodes in the knowledgebase, 85% of positive correlations align with KB-status. Phenotypic patterns for Htn and Hotn overlap for several phecodes and are separate for others. Our analysis suggests five candidates for hypothesis testing research, two where the prevalence of the association with Htn or Hotn may be under appreciated, three where mechanisms that increase and decrease blood pressure may be affecting one another's expression. CONCLUSION PairedPheWAS methods may open a phenome-wide path to disentangling hypertension and chronic hypotension. Our classifier provides a starting point for assigning individuals to BP-categories representing the upper, lower, and middle zones of the BP spectrum. 4.7 % of individuals matching 2017 BP categories for normal, elevated BP or isolated hypertension, have diastolic pressure < 60. Research is needed to fine-tune the classifier, provide external validation, evaluate the clinical significance of diastolic pressure < 60, and test the candidate hypotheses.
Collapse
Affiliation(s)
- William W Stead
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Adam Lewis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nunzia B Giuse
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Knowledge Management, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annette M Williams
- Center for Knowledge Management, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Italo Biaggioni
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Zavadskis S, Shiganyan A, Müllebner A, Oesterreicher J, Holnthoner W, Duvigneau JC, Kozlov AV. Endoplasmic Reticulum Stress Induces Vasodilation in Liver Vessels That Is Not Mediated by Unfolded Protein Response. Int J Mol Sci 2024; 25:3865. [PMID: 38612675 PMCID: PMC11012071 DOI: 10.3390/ijms25073865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
There is a growing body of evidence that ER stress and the unfolded protein response (UPR) play a key role in numerous diseases. Impaired liver perfusion and ER stress often accompany each other in liver diseases. However, the exact impact of ER stress and UPR on the hepatic perfusion is not fully understood. The aim of this study was to disclose the effect of ER stress and UPR on the size of liver vessels and on the levels of Ca2+ and nitric oxide (NO), critical regulators of vascular tonus. This study was carried out in precisely cut liver tissue slices. Confocal microscopy was used to create 3D images of vessels. NO levels were determined either using either laser scan microscopy (LSM) in cells or by NO-analyser in medium. Ca2+ levels were analysed by LSM. We show that tunicamycin, an inducer of ER stress, acts similarly with vasodilator acetylcholine. Both exert a similar effect on the NO and Ca2+ levels; both induce significant vasodilation. Notably, this vasodilative effect persisted despite individual inhibition of UPR pathways-ATF-6, PERK, and IRE1-despite confirming the activation of UPR. Experiments with HUVEC cells showed that elevated NO levels did not result from endothelial NO synthase (eNOS) activation. Our study suggests that tunicamycin-mediated ER stress induces liver vessel vasodilation in an NO-dependent manner, which is mediated by intracellular nitrodilator-activatable NO store (NANOS) in smooth muscle cells rather than by eNOS.
Collapse
Affiliation(s)
- Sergejs Zavadskis
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria; (S.Z.)
| | - Anna Shiganyan
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria; (S.Z.)
| | - Andrea Müllebner
- Department of Biological Sciences and Pathobiology, Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Johannes Oesterreicher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria; (S.Z.)
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria; (S.Z.)
| | - Johanna Catharina Duvigneau
- Department of Biological Sciences and Pathobiology, Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria; (S.Z.)
| |
Collapse
|
3
|
Simovic MO, Bynum J, Liu B, Dalle Lucca JJ, Li Y. Impact of Immunopathy and Coagulopathy on Multi-Organ Failure and Mortality in a Lethal Porcine Model of Controlled and Uncontrolled Hemorrhage. Int J Mol Sci 2024; 25:2500. [PMID: 38473750 DOI: 10.3390/ijms25052500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Uncontrolled hemorrhage is a major preventable cause of death in patients with trauma. However, the majority of large animal models of hemorrhage have utilized controlled hemorrhage rather than uncontrolled hemorrhage to investigate the impact of immunopathy and coagulopathy on multi-organ failure (MOF) and mortality. This study evaluates these alterations in a severe porcine controlled and uncontrolled hemorrhagic shock (HS) model. Anesthetized female swine underwent controlled hemorrhage and uncontrolled hemorrhage by partial splenic resection followed with or without lactated Ringer solution (LR) or Voluven® resuscitation. Swine were surveyed 6 h after completion of splenic hemorrhage or until death. Blood chemistry, physiologic variables, systemic and tissue levels of complement proteins and cytokines, coagulation parameters, organ function, and damage were recorded and assessed. HS resulted in systemic and local complement activation, cytokine release, hypocoagulopathy, metabolic acidosis, MOF, and no animal survival. Resuscitation with LR and Voluven® after HS improved hemodynamic parameters (MAP and SI), metabolic acidosis, hyperkalemia, and survival but resulted in increased complement activation and worse coagulopathy. Compared with the LR group, the animals with hemorrhagic shock treated with Voluven® had worse dilutional anemia, coagulopathy, renal and hepatic dysfunction, increased myocardial complement activation and renal damage, and decreased survival rate. Hemorrhagic shock triggers early immunopathy and coagulopathy and appears associated with MOF and death. This study indicates that immunopathy and coagulopathy are therapeutic targets that may be addressed with a high-impact adjunctive treatment to conventional resuscitation.
Collapse
Affiliation(s)
- Milomir O Simovic
- US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - James Bynum
- US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bin Liu
- US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | | | - Yansong Li
- US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Intraoperative Hemorrhagic Shock in Cancer Surgical Patients: Short and Long-Term Mortality and Associated Factors. Shock 2020; 54:659-666. [PMID: 32205792 DOI: 10.1097/shk.0000000000001537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Management of hemorrhagic shock is well codified by international guidelines. These guidelines are predominantly based on trauma patients. We aimed to evaluate factors associated with 30-day mortality and long-term survival after intraoperative hemorrhagic shock during major oncological surgery. METHODS This retrospective study was conducted in a cancer referral center from January 2013 to February 2018. All adult cancer patients admitted in the operative room for scheduled or emergency oncological surgery associated with an intraoperative hemorrhagic shock were included. RESULTS Eighty-four patients were included in this study. The 30-day mortality rate was 26% (n = 22), the mean follow-up from the time of ICU admission was 20 months (95% CI, 15-25 months), 39 (46%) patients died during this period. Using logistic regression for multivariate analysis, factors independently associated with 30-day mortality were SAPS II score (odds ratio (OR) =1.056, 95% confident interval (CI) =1.010-1.1041), delta SOFA (SOFA score at day 3 - SOFA score at day 1) (OR= 1.780, 95% CI 1.184-2.677) and ISTH-DIC score (OR = 2.705, 95% CI 1.108-6.606). Using Cox multivariate analysis, factors associated with long-term mortality were delta SOFA (hazard ratio (HR) =1.558, 95% CI 1.298-1.870), ISTH-DIC score (HR = 1.381, 95% CI 1.049-1.817), hepatic dysfunction (HR = 7.653, 95% CI 2.031-28.842), and Charlson comorbidity index (HR = 1.330, 95% CI 1.041-1.699). CONCLUSION The worsening of organ dysfunctions during the first 3 days of ICU admission as well as intraoperative coagulation disturbances (increased ISTH-DIC score) are independently associated with short and long-term mortality. Comorbidities (Charlson comorbidity index) and postoperative hepatic dysfunction were independently associated with long-term mortality. Early perioperative bundle strategies should be evaluated in order to improve patient's survival in this specific situation.
Collapse
|
5
|
Kimura Y, Iwaki S, Kameshima S, Itoh N. A case of canine hypoadrenocorticism needing blood transfusion for severe acute anemia due to gastrointestinal hemorrhage. J Vet Med Sci 2019; 82:31-34. [PMID: 31748437 PMCID: PMC6983671 DOI: 10.1292/jvms.19-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A 3-year-old male Rottweiler presented with the chief complaint of recurrent vomiting, diarrhea, hypothermia, and lethargy. Hypovolemic shock was noted with abnormal electrolytes (Na/K ratio, 27.9) and anemia (hematocrit, 17.3%). Since the hematocrit was 49.2% four days earlier when the primary veterinarian examined the dog, acute anemia was diagnosed. Melena was observed on the next day. The general condition and hydration improved with treatment, and an adrenocorticotropic hormone stimulation test identified hypoadrenocorticism. However, the hematocrit decreased further to 9%, necessitating blood transfusion. The cause of severe acute anemia was thought to be gastrointestinal hemorrhage. It should be noted that hypoadrenocorticism can lead to potentially fatal anemia with gastrointestinal tract bleeding, and blood transfusion may be required.
Collapse
Affiliation(s)
- Yuya Kimura
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Sayuri Iwaki
- Misawa Veterinary Treatment Facility, Public Health Activity-Japan, Bldg. 1370 Misawa AB, Misawa, Aomori 033-0022, Japan
| | - Satoshi Kameshima
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Naoyuki Itoh
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| |
Collapse
|
6
|
Gasdermin D protects against noninfectious liver injury by regulating apoptosis and necroptosis. Cell Death Dis 2019; 10:481. [PMID: 31209224 PMCID: PMC6579760 DOI: 10.1038/s41419-019-1719-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Gasdermin D (GsdmD) was recently identified as the executioner of pyroptotic inflammatory cell death, and is a substrate for caspases-1 and 11. GsdmD is detrimental in lethal endotoxemia but protective in bacterial sepsis. However, little is known about its role during noninfectious/sterile injuries. In this study, we examined the contribution of GsdmD using WT and GsdmD−/− mice in two models of noninfectious liver injury: hemorrhagic shock with resuscitation (HS/R) and acetaminophen (APAP) overdose. GsdmD−/− mice had significantly increased liver damage at 6 h after HS/R or APAP vs WT, shown by significantly elevated ALT level and extended areas of cell death in liver. Caspase-8, a mediator of multiple cell death pathways, was highly elevated in GsdmD−/− mice after injury. Significantly increased cleavage of caspase-8 and subsequent high levels of apoptosis were found in livers of GsdmD−/− mice after HS/R, a relatively mild ROS-induced liver injury. However, during more severe APAP-mediated ROS-induced liver injury, caspase-8 cleavage in GsdmD−/− liver was inhibited compared with WT, resulting in accumulation of pro-caspase-8 and increased levels of necroptosis. Our findings indicate a novel hepatoprotective role for GsdmD in noninfectious inflammation models via regulation of caspase-8 expression and downstream cell death pathways. The effects of GsdmD protection are likely injury specific and may also depend on injury severity and levels of ROS produced. These data suggest modulation of GsdmD/caspase-8 may be a novel therapeutic option in ROS-mediated liver injury.
Collapse
|
7
|
Lu WJ, Lin KH, Tseng MF, Yuan KC, Huang HC, Sheu JR, Chen RJ. New therapeutic strategy of hinokitiol in haemorrhagic shock-induced liver injury. J Cell Mol Med 2018; 23:1723-1734. [PMID: 30548082 PMCID: PMC6378182 DOI: 10.1111/jcmm.14070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 01/19/2023] Open
Abstract
Haemorrhagic shock and resuscitation (HS/R) may cause global ischaemia-reperfusion injury, which can result in systemic inflammation, multiorgan failure (particularly liver failure) and high mortality. Hinokitiol, a bioactive tropolone-related compound, exhibits antiplatelet and anti-inflammatory activities. Targeting inflammatory responses is a potential strategy for ameliorating hepatic injury during HS/R. Whether hinokitiol prevents hepatic injury during HS/R remains unclear. In the present study, we determined the role of hinokitiol following HS/R. The in vivo assays revealed that hinokitiol markedly attenuated HS/R-induced hepatic injury. Hinokitiol could inhibited NF-κB activation and IL-6 and TNF-α upregulation in liver tissues. Moreover, hinokitiol reduced caspase-3 activation, upregulated Bax and downregulated Bcl-2. These findings suggest that hinokitiol can ameliorate liver injury following HS/R, partly through suppression of inflammation and apoptosis. Furthermore, the in vitro data revealed that hinokitiol significantly reversed hypoxia/reoxygenation (H/R)-induced cell death and apoptosis in the primary hepatocytes. Hinokitiol prevented H/R-induced caspase-3 activation, PPAR cleavage, Bax overexpression and Bcl-2 downregulation. Moreover, hinokitiol attenuated H/R-stimulated NF-κB activation and reduced the levels of IL-6 and TNF-α mRNAs, suggesting that hinokitiol can protect hepatocytes from H/R injury. Collectively, our data suggest that hinokitiol attenuates liver injury following HS/R, partly through the inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Wan-Jung Lu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Mei-Fang Tseng
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Ching Yuan
- Department of Emergency and Critical Care Medicine and Division of Acute Care Surgery and Trauma, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hung-Chang Huang
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Metabolism and Obesity Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ray-Jade Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Abstract
Corilagin, a component of Phyllanthus urinaria extract, possesses antioxidant, thrombolytic, antiatherogenic, and hepatoprotective properties, but the mechanism underlying these effects remains unclear. Previous studies showed that the Akt (protein kinase B) signaling pathway exerts anti-inflammatory and organ protective effects. The aim of this study was to investigate the mechanism of action of corilagin and determine whether these effects are mediated through the Akt-dependent pathway in a trauma-hemorrhagic shock-induced liver injury rodent model. Hemorrhagic shock was induced in male Sprague–Dawley rats; mean blood pressure was maintained at 35 mm Hg to 40 mm Hg for 90 min, followed by fluid resuscitation. During resuscitation, three doses of corilagin alone (1 mg/kg, 5 mg/kg, or 10 mg/kg, intravenously) were administered. Furthermore, a single dose of corilagin (5 mg/kg) with and without Wortmannin (1 mg/kg, PI3K inhibitor), Wortmannin alone, or vehicle was administered. Twenty-four hours after resuscitation, plasma alanine aminotransferase and aspartate aminotransferase concentration and hepatic parameters were measured. One-way ANOVA was used for statistical analysis. Hepatic myeloperoxidase activity and the concentrations of plasma alanine aminotransferase and aspartate aminotransferase, interleukin-6, tumor necrosis factor-α, intercellular adhesion molecule-1, and cytokine-induced neutrophil chemoattractant-1 (CINC-1) and CINC-3 increased following hemorrhagic shock. These parameters were significantly attenuated in corilagin-treated rats following hemorrhagic shock. Hepatic phospho-Akt expression was also higher in corilagin-treated rats than in vehicle-treated rats. The elevation of phospho-Akt was abolished by combined treatment with Wortmannin and corilagin. Our results suggest that corilagin exerts its protective effects on hemorrhagic shock-induced liver injury, at least, via the Akt-dependent pathway.
Collapse
|
9
|
Wagner N, Dieteren S, Franz N, Köhler K, Mörs K, Nicin L, Schmidt J, Perl M, Marzi I, Relja B. Ethyl pyruvate ameliorates hepatic injury following blunt chest trauma and hemorrhagic shock by reducing local inflammation, NF-kappaB activation and HMGB1 release. PLoS One 2018; 13:e0192171. [PMID: 29420582 PMCID: PMC5805235 DOI: 10.1371/journal.pone.0192171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 01/17/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The treatment of patients with multiple trauma including blunt chest/thoracic trauma (TxT) and hemorrhagic shock (H) is still challenging. Numerous studies show detrimental consequences of TxT and HS resulting in strong inflammatory changes, organ injury and mortality. Additionally, the reperfusion (R) phase plays a key role in triggering inflammation and worsening outcome. Ethyl pyruvate (EP), a stable lipophilic ester, has anti-inflammatory properties. Here, the influence of EP on the inflammatory reaction and liver injury in a double hit model of TxT and H/R in rats was explored. METHODS Female Lewis rats were subjected to TxT followed by hemorrhage/H (60 min, 35±3 mm Hg) and resuscitation/R (TxT+H/R). Reperfusion was performed by either Ringer`s lactated solution (RL) alone or RL supplemented with EP (50 mg/kg). Sham animals underwent all surgical procedures without TxT+H/R. After 2h, blood and liver tissue were collected for analyses, and survival was assessed after 24h. RESULTS Resuscitation with EP significantly improved haemoglobin levels and base excess recovery compared with controls after TxT+H/R, respectively (p<0.05). TxT+H/R-induced significant increase in alanine aminotransferase levels and liver injury were attenuated by EP compared with controls (p<0.05). Local inflammation as shown by increased gene expression of IL-6 and ICAM-1, enhanced ICAM-1 and HMGB1 protein expression and infiltration of the liver with neutrophils were also significantly attenuated by EP compared with controls after TxT+H/R (p<0.05). EP significantly reduced TxT+H/R-induced p65 activation in liver tissue. Survival rates improved by EP from 50% to 70% after TxT+H/R. CONCLUSIONS These data support the concept that the pronounced local pro-inflammatory response in the liver after blunt chest trauma and hemorrhagic shock is associated with NF-κB. In particular, the beneficial anti-inflammatory effects of ethyl pyruvate seem to be regulated by the HMGB1/NF-κB axis in the liver, thereby, restraining inflammatory responses and liver injury after double hit trauma in the rat.
Collapse
Affiliation(s)
- Nils Wagner
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Scott Dieteren
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Niklas Franz
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Mörs
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Luka Nicin
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Julia Schmidt
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Mario Perl
- BG-Trauma Center Murnau, Murnau, Germany
| | - Ingo Marzi
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
10
|
Dang Y, Liu T, Mei X, Meng X, Gou X, Deng B, Xu H, Xu L. Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury. J Surg Res 2017; 220:363-371. [PMID: 29180204 DOI: 10.1016/j.jss.2017.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/04/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND It is not known whether simultaneous delivery of hydrogen and oxygen can reduce injury caused by hemorrhagic shock and resuscitation (HSR). This study investigated the therapeutic potential of hyperoxygenated hydrogen-rich solution (HHOS), a combined hydrogen/oxygen carrier, in a rat model of HSR-induced liver injury. MATERIALS AND METHODS Rats (n = 60) were randomly divided into 5 groups (n = 6 per group at each time point). One group underwent sham operation, and the others were subjected to severe hemorrhagic shock and then treated with lactated Ringer's solution (LRS), hydrogen-rich solution, hyperoxygenated solution, or HHOS. At 2 and 6 h after resuscitation, blood samples (n = 6) were collected from the femoral artery and serum concentrations of alanine aminotransferase and aspartate aminotransferase (AST) were measured. Rats were then sacrificed, and histopathological changes in the liver were evaluated by quantifying the percentage of apoptotic cells by caspase-3 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick-end labeling. Inflammation was assessed by assessing malondialdehyde content and tumor necrosis factor-α, and interleukin (IL)-6 expression. RESULTS Compared to lactated Ringer's solution, hydrogen-rich solution, or hyperoxygenated solution groups, serum AST and alanine aminotransferase levels and IL-6, tumor necrosis factor-α, and malondialdehyde expression in liver tissue were decreased by HHOS treatment. The number of caspase-3- and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was decreased (P < 0.05) by HHOS treatment, 2 and 6 h after resuscitation. CONCLUSIONS HHOS has protective effects against liver injury in a rat model of HSR.
Collapse
Affiliation(s)
- Yangjie Dang
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China; The Department of Anesthesiology, Children Hospital of Xi'an, Xi'an, Shaanxi, China
| | - Ting Liu
- Department of Nephrology, the Fourth Hospital of Xi'an, Xi'an, China
| | - Xiaopeng Mei
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Xiangzhong Meng
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xingchun Gou
- Institution of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Bin Deng
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Xu
- Institution of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| | - Lixian Xu
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Zhang Y, Yi W, Yao J, Yu X, Qian C, Hu Z. Hypoxia serves a key function in the upregulated expression of vascular adhesion protein‑1 in vitro and in a rat model of hemorrhagic shock. Mol Med Rep 2017. [PMID: 28627649 PMCID: PMC5562078 DOI: 10.3892/mmr.2017.6727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hemorrhagic shock following major trauma results in mortality, but the function of vascular adhesion protein-1 (VAP-1), implicated in intracranial hemorrhage, remains unknown. This study aimed to determine whether expression of the AOC3 gene and its encoded protein, VAP-1, is altered by hypoxia. Rat hepatic sinusoidal endothelial cells (RHSECs) and rat intestinal microvascular endothelial cells (RIMECs) were transduced with a viral vector carrying AOC3, and AOC3 mRNA expression levels were measured by reverse transcription-quantitative polymerase chain reaction. VAP-1 protein expression levels were measured by western blot analysis and compared between normoxic and hypoxic conditions. Following this, AOC3 mRNA and VAP-1 protein expression levels in hepatic and intestinal tissues were assessed in a rat model of hemorrhagic shock with or without fluid resuscitation; and serum semicarbazide-sensitive amine oxidase (SSAO) activity was measured by fluorometric assays. The effects of 2-bromoethylamine (2-BEA) on AOC3/VAP-1 levels and 24 h survival were investigated. AOC3 mRNA and VAP-1 protein levels were increased in RHSECs and RIMECs by hypoxia, and in hepatic and intestinal tissues from rats following hemorrhagic shock. Hypoxia increased serum SSAO activity in these animals. 2-BEA reduced AOC3 mRNA and VAP-1 protein levels in hepatic and intestinal tissues from rats following hemorrhagic shock, and appeared to improve survival in animals not receiving resuscitation following hemorrhagic shock. In conclusion, hemorrhagic shock upregulates AOC3/VAP-1 expressions, and this potentially occurs via hypoxia. Therefore, inhibition of VAP-1 may be beneficial in the setting of hemorrhagic shock. Further studies are required to confirm these findings and to establish whether VAP-1 may be a valid target for the development of novel therapies for hemorrhagic shock.
Collapse
Affiliation(s)
- Yuxing Zhang
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Wei Yi
- Department of General Surgery, China People's Liberation Army No. 94 Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Jun Yao
- Department of General Surgery, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Xiaojun Yu
- Department of Gastroenterological Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Cheng Qian
- Department of General Surgery, Huzhou Maternity & Child Care Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Zhiqian Hu
- Department of General Surgery, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| |
Collapse
|
12
|
Chen G, Song X, Wang B, You G, Zhao J, Xia S, Zhang Y, Zhao L, Zhou H. Carboxyfullerene nanoparticles alleviate acute hepatic injury in severe hemorrhagic shock. Biomaterials 2017; 112:72-81. [PMID: 27750099 DOI: 10.1016/j.biomaterials.2016.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 01/02/2023]
|
13
|
Eriksson M, Strandberg G, Lipcsey M, Larsson A. Evaluation of intraosseous sampling for measurements of alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, creatinine kinase, gamma-glutamyl transferase and lactate dehydrogenase. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:597-600. [DOI: 10.1080/00365513.2016.1230774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mats Eriksson
- Section of Anesthesiology & Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnar Strandberg
- Section of Anesthesiology & Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Section of Anesthesiology & Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Gradually Increased Oxygen Administration Improved Oxygenation and Mitigated Oxidative Stress after Resuscitation from Severe Hemorrhagic Shock. Anesthesiology 2016; 123:1122-32. [PMID: 26352377 DOI: 10.1097/aln.0000000000000859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. METHODS Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. RESULTS Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. CONCLUSIONS GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.
Collapse
|
15
|
Yadav VR, Hussain A, Xie J, Kosanke S, Awasthi V. The salutary effects of diphenyldifluoroketone EF24 in liver of a rat hemorrhagic shock model. Scand J Trauma Resusc Emerg Med 2015; 23:8. [PMID: 25645333 PMCID: PMC4324433 DOI: 10.1186/s13049-015-0098-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Liver is a target for injury in low flow states and it plays a central role in the progression of systemic failure associated with hemorrhagic shock. Pharmacologic support can help recover liver function even after it has suffered extensive damage during ischemia and reperfusion phases. In this work we assessed the efficacy of a diphenyldifluoroketone EF24, an IKKβ inhibitor, in controlling hepatic inflammatory signaling caused by hemorrhagic shock in a rat model. Methods Sprague Dawley rats were bled to about 50% of blood volume. The hemorrhaged rats were treated with vehicle control or EF24 (0.4 mg/kg) after 1 h of hemorrhage without any accompanying resuscitation. The study was terminated after additional 5 h to excise liver tissue for biochemical analyses and histology. Results EF24 treatment alleviated hemorrhagic shock-induced histologic injury in the liver and restored serum transaminases to normal levels. Hemorrhagic shock induced the circulating levels of CD163 (a marker for macrophage activation) and CINC (an IL-8 analog), as well as myeloperoxidase activity in liver tissue. These markers of inflammatory injury were reduced by EF24 treatment. EF24 treatment also suppressed the expression of the Toll-like receptor 4, phospho-p65/Rel A, and cyclooxygenase-2 in liver tissues, indicating that it suppressed inflammatory pathway. Moreover, it reduced the hemorrhagic shock-induced increase in the expression of high mobility group box-1 protein. The evidence for apoptosis after hemorrhagic shock was inconclusive. Conclusion Even in the absence of volume support, EF24 treatment suppresses pro-inflammatory signaling in liver tissue and improves liver functional markers in hemorrhagic shock.
Collapse
Affiliation(s)
- Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Alamdar Hussain
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Jun Xie
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Stanley Kosanke
- Department of Comparative Medicine, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, USA.
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|