1
|
Saldarriaga JF, López JE, Díaz-García L, Montoya-Ruiz C. Changes in Lolium perenne L. rhizosphere microbiome during phytoremediation of Cd- and Hg-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49498-49511. [PMID: 36781665 PMCID: PMC10104932 DOI: 10.1007/s11356-023-25501-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 04/16/2023]
Abstract
The contamination of soil and water by metals such as mercury (Hg) and cadmium (Cd) has been increasing in recent years, because of anthropogenic activities such as mining and agriculture, respectively. In this work, the changes in the rhizosphere microbiome of Lolium perenne L. during the phytoremediation of soils contaminated with Hg and Cd were evaluated. For this, two soil types were sampled, one inoculated with mycorrhizae and one without. The soils were contaminated with Hg and Cd, and L. perenne seeds were sown and harvested after 30 days. To assess changes in the microbiome, DNA isolation tests were performed, for which samples were subjected to two-step PCR amplification with specific 16S rDNA V3-V4 primers (337F and 805R). With mycorrhizae, changes had been found in the absorption processes of metals and a new distribution. While with respect to microorganisms, families such as the Enterobacteriaceae have been shown to have biosorption and efflux effects on metals such as Hg and Cd. Mycorrhizae then improve the efficiency of removal and allow the plant to better distribute the absorbed concentrations. Overall, L. perenne is a species with a high potential for phytoremediation of Cd- and Hg-contaminated soils in the tropics. Inoculation with mycorrhizae modifies the phytoremediation mechanisms of the plant and the composition of microorganisms in the rhizosphere. Mycorrhizal inoculation and changes in the microbiome were associated with increased plant tolerance to Cd and Hg. Microorganism-assisted phytoremediation is an appropriate alternative for L. perenne.
Collapse
Affiliation(s)
- Juan F Saldarriaga
- Dept. of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este, #19A-40, 111711, Bogotá, Colombia.
| | - Julián E López
- Facultad de Arquitectura E Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia
| | - Laura Díaz-García
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Carolina Montoya-Ruiz
- Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín Calle, 59A #63-20, 050034, Medellín, Colombia
| |
Collapse
|
2
|
Badger Hanson E, Docherty KM. Mini-review: Current and Future Perspectives on Microbially Focused Restoration Strategies in Tallgrass Prairies. MICROBIAL ECOLOGY 2023; 85:1087-1097. [PMID: 36449026 DOI: 10.1007/s00248-022-02150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 05/04/2023]
Abstract
Ecosystem restoration is a critical conservation strategy, especially for increasing resilience and resistance to climate change. Current restoration efforts that convert reclaimed agricultural land to native tallgrass prairies typically focus on aboveground communities, but it can take decades to restore soil microbial biodiversity and function using these strategies, if they recover at all. This incomplete restoration can have detrimental impacts on longer-term restoration goals, such as supporting late-successional plant species and facilitating soil carbon sequestration. Soil microorganisms are key components in determining the fate of organic material that enters the soil. They mediate decomposition rates and contribute to plant-microbe-soil interactions, produce microbial biomass, necromass, and metabolic products, and physically protect soil carbon through aggregation. Interactions with plants and controls over soil carbon vary widely depending on the specific microbial taxa present, their physiology, their functional capabilities, and their responses to environmental stressors. Thus, the ability for new restorations, prairie conservation corridors, and prairies planted in marginal lands to act as carbon sinks and help balance greenhouse gas emissions can depend on the success of microbial restoration. Next-generation sequencing approaches can support novel methods for evaluating existing restoration practices and developing microbially focused management strategies. This review summarizes the growing body of literature describing microbially focused tallgrass prairie restoration and considers when and how integrating next-generation sequencing approaches into management efforts can be beneficial. We provide a roadmap for future restoration efforts where microbial ecologists, restoration ecologists, and land managers can work together to meet their goals to promote climate-ready restored ecosystems.
Collapse
Affiliation(s)
- Ellen Badger Hanson
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI, 49008, USA
| | - Kathryn M Docherty
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
3
|
Bahadur A, Jiang S, Zhang W, Sajjad W, Usman M, Nasir F, Amir Zia M, Zhang Q, Pan J, Liu Y, Chen T, Feng H. Competitive interactions in two different plant species: Do grassland mycorrhizal communities and nitrogen addition play the same game? FRONTIERS IN PLANT SCIENCE 2023; 14:1084218. [PMID: 36993846 PMCID: PMC10040756 DOI: 10.3389/fpls.2023.1084218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
In the Tibetan Plateau grassland ecosystems, nitrogen (N) availability is rising dramatically; however, the influence of higher N on the arbuscular mycorrhizal fungi (AMF) might impact on plant competitive interactions. Therefore, understanding the part played by AMF in the competition between Vicia faba and Brassica napus and its dependence on the N-addition status is necessary. To address this, a glasshouse experiment was conducted to examine whether the grassland AMF community's inocula (AMF and NAMF) and N-addition levels (N-0 and N-15) alter plant competition between V. faba and B. napus. Two harvests took day 45 (1st harvest) and day 90 (2nd harvest), respectively. The findings showed that compared to B. napus, AMF inoculation significantly improved the competitive potential of the V. faba. In the occurrence of AMF, V. faba was the strongest competitor being facilitated by B. napus in both harvests. While under N-15, AMF significantly enhanced tissue N:P ratio in B. napus mixed-culture at 1st harvest, the opposite trend was observed in 2nd harvest. The mycorrhizal growth dependency slightly negatively affected mixed-culture compared to monoculture under both N-addition treatments. The aggressivity index of AMF plants was higher than NAMF plants with both N-addition and harvests. Our observation highlights that mycorrhizal associations might facilitate host plant species in mixed-culture with non-host plant species. Additionally, interacting with N-addition, AMF could impact the competitive ability of the host plant not only directly but also indirectly, thereby changing the growth and nutrient uptake of competing plant species.
Collapse
Affiliation(s)
- Ali Bahadur
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Shengjing Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Center, Islamabad, Pakistan
| | - Qi Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianbin Pan
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongjun Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Huyuan Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Can arbuscular mycorrhizal fungi and rhizobacteria facilitate 33P uptake in maize plants under water stress? Microbiol Res 2023; 271:127350. [PMID: 36913786 DOI: 10.1016/j.micres.2023.127350] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are able to provide key ecosystem services, protecting plants against biotic and abiotic stresses. Here, we hypothesized that a combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) could enhance 33P uptake in maize plants under soil water stress. A microcosm experiment using mesh exclusion and a radiolabeled phosphorus tracer (33P) was installed using three types of inoculation: i) only AMF, ii) only PGPR, and iii) a consortium of AMF and PGPR, alongside a control treatment without inoculation. For all treatments, a gradient of three water-holding capacities (WHC) was considered i) 30% (severe drought), ii) 50% (moderate drought), and iii) 80% (optimal condition, no water stress). In severe drought conditions, AMF root colonization of dual-inoculated plants was significantly lower compared to individual inoculation of the AMF, whilst 33P uptake by dual-inoculated plants or plants inoculated with bacteria was 2.4-fold greater than the uninoculated treatment. Under moderate drought conditions the use of AMF promoted the highest 33P uptake by plants, increasing it by 2.1-fold, when compared to the uninoculated treatment. Without drought stress, AMF showed the lowest 33P uptake and, overall, plant P acquisition was lower for all inoculation types when compared to the severe and moderate drought treatments. The total shoot P content was modulated by the water-holding capacity and inoculation type, with the lowest values observed under severe drought and the highest values under moderate drought. The highest soil electrical conductivity (EC) values were found under severe drought in AMF-inoculated plants and the lowest EC for no drought in single or dual-inoculated plants. Furthermore, water-holding capacity influenced the total soil bacterial and mycorrhizal abundance over time, with the highest abundances being found under severe and moderate drought. This study demonstrates that the positive influence of microbial inoculation on 33P uptake by plants varied with soil water gradient. Furthermore, under severe stress conditions, AMF invested more in the production of hyphae, vesicles and spore production, indicating a significant carbon drain from the host plant as evidenced by the lack of translation of increased 33P uptake into biomass. Therefore, under severe drought the use of bacteria or dual-inoculation seems to be more effective than individual AMF inoculation in terms of 33P uptake by plants, while under moderate drought, the use of AMF stood out.
Collapse
|
5
|
Wu D, Wang XL, Zhu XX, Wang HH, Liu W, Qi L, Song P, Zhang MM, Zhao W. Effect of Ammonia-Oxidizing Bacterial Strains That Coexist in Rhizosphere Soil on Italian Ryegrass Regrowth. Microorganisms 2022; 10:2122. [PMID: 36363714 PMCID: PMC9696852 DOI: 10.3390/microorganisms10112122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 10/10/2023] Open
Abstract
Potted Italian ryegrasses (Lolium multiflorum L.) were used to investigate the effect of ammonia-oxidizing bacterial (AOB) strain that coexisted in rhizosphere soil on Italian ryegrass regrowth. The results showed that the isolated and screened AOB strain (S2_8_1) had 100% similarity to Ensifer sesbaniae. The inoculation of S2_8_1 on day 44 before defoliation caused its copy number in rhizosphere soils to increase by 83-157% from day 34 before defoliation to day 14 after defoliation compared with that in Italian ryegrass without S2_8_1 inoculation, indicating that S2_8_1 coexisted permanently with Italian ryegrass. The coexistence promoted the delivery of root-derived cytokinin to leaves and to increase its cytokinin concentrations; thus, the Italian ryegrass regrowth accelerated. During the 14-day regrowth period, the S2_8_1 coexistence with Italian ryegrass caused its leaf and xylem sap cytokinin concentrations, rhizosphere soil nitrification rates, net photosynthetic rates, and total biomass to increase by 38%, 58%, 105%, 18%, and 39% on day 14 after defoliation, respectively. The inoculation of S2_8_1 on day 2 before defoliation also increased the regrowth of Italian ryegrass. Thus, the coexistence of AOB with Italian ryegrass increased its regrowth by regulating the delivery of cytokinins from roots to leaves.
Collapse
Affiliation(s)
- Di Wu
- College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiao-Ling Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China
| | - Xi-Xia Zhu
- Anyang Yindu Agricultural and Rural Bureau, Anyang 455000, China
| | - Hai-Hong Wang
- Anyang Yindu Agricultural and Rural Bureau, Anyang 455000, China
| | - Wei Liu
- College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China
| | - Lin Qi
- College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China
| | - Peng Song
- College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China
| | - Ming-Ming Zhang
- College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China
| | - Wei Zhao
- College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|