1
|
Chang S, Liu H. Effects of combined resistance training and Tai Chi on oxidative stress, blood glucose and lipid metabolism and quality of life in elderly patients with type 2 diabetes mellitus. Res Sports Med 2024; 32:871-884. [PMID: 38715371 DOI: 10.1080/15438627.2024.2349521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/16/2024] [Indexed: 08/06/2024]
Abstract
This study examined the effects of resistance training (RT), Tai Chi (TC) and combination intervention (RT & TC) on the oxidative stress, blood glucose and lipid metabolism and quality of life of elderly patients with type 2 diabetes mellitus (T2DM). Ninety-four elderly patients with T2DM were randomly divided into an RT group (RTG, n = 23), TC group (TCG, n = 24), combination intervention group (CIG, n = 24) and control group (CG, n = 23). All participants were given nutrition and medication. On this basis, RTG, TCG and CIG were administered for 24 weeks (3 times/week, 40 minutes/time). Observation indicators were malondialdehyde (MDA), superoxide dismutase (SOD), 8-hydroxy-2 deoxyguanosine (8-OHdG), fasting plasma glucose (FPG), postprandial plasma glucose (PPG), haemoglobin A1c (HbA1c) and diabetes specific quality of life (DSQL). RT, TC and joint intervention can reduce the oxidative stress damage on elderly patients with T2DM to different degrees, control the levels of blood sugar and blood lipid and improve the quality of life. Compared with single intervention, combination intervention can further reduce the level of oxidative stress but has no additional benefits on blood glucose and lipid control and quality of life.
Collapse
Affiliation(s)
- Shuwan Chang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
- Department of Sports Human Science, Sichuan Sports College, Chengdu, China
| | - Heng Liu
- College of Physical Education, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Guan J, Sun Y, Fan Y, Liang J, Liu C, Yu H, Liu J. Effects and neural mechanisms of different physical activity on major depressive disorder based on cerebral multimodality monitoring: a narrative review. Front Hum Neurosci 2024; 18:1406670. [PMID: 39188405 PMCID: PMC11345241 DOI: 10.3389/fnhum.2024.1406670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 08/28/2024] Open
Abstract
Major depressive disorder (MDD) is currently the most common psychiatric disorder in the world. It characterized by a high incidence of disease with the symptoms like depressed mood, slowed thinking, and reduced cognitive function. Without timely intervention, there is a 20-30% risk of conversion to treatment-resistant depression (TRD) and a high burden for the patient, family and society. Numerous studies have shown that physical activity (PA) is a non-pharmacological treatment that can significantly improve the mental status of patients with MDD and has positive effects on cognitive function, sleep status, and brain plasticity. However, the physiological and psychological effects of different types of PA on individuals vary, and the dosage profile of PA in improving symptoms in patients with MDD has not been elucidated. In most current studies of MDD, PA can be categorized as continuous endurance training (ECT), explosive interval training (EIT), resistance strength training (RST), and mind-body training (MBT), and the effects on patients' depressive symptoms, cognitive function, and sleep varied. Therefore, the present study was based on a narrative review and included a large number of existing studies to investigate the characteristics and differences in the effects of different PA interventions on MDD. The study also investigated the characteristics and differences of different PA interventions in MDD, and explained the neural mechanisms through the results of multimodal brain function monitoring, including the intracranial environment and brain structure. It aims to provide exercise prescription and theoretical reference for future research in neuroscience and clinical intervention in MDD.
Collapse
Affiliation(s)
- Jian Guan
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yan Sun
- Department of Sports, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yiming Fan
- College of P.E and Sports, Beijing Normal University, Beijing, China
| | - Jiaxin Liang
- Department of Physical Education, Kunming University of Science and Technology Oxbridge College, Kunming, China
| | - Chuang Liu
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Haohan Yu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Jingmin Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Pakarinen E, Lindholm P. CDNF and MANF in the brain dopamine system and their potential as treatment for Parkinson's disease. Front Psychiatry 2023; 14:1188697. [PMID: 37555005 PMCID: PMC10405524 DOI: 10.3389/fpsyt.2023.1188697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 08/10/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by gradual loss of midbrain dopamine neurons, leading to impaired motor function. Preclinical studies have indicated cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) to be potential therapeutic molecules for the treatment of PD. CDNF was proven to be safe and well tolerated when tested in Phase I-II clinical trials in PD patients. Neuroprotective and neurorestorative effects of CDNF and MANF were demonstrated in animal models of PD, where they promoted the survival of dopamine neurons and improved motor function. However, biological roles of endogenous CDNF and MANF proteins in the midbrain dopamine system have been less clear. In addition to extracellular trophic activities, CDNF/MANF proteins function intracellularly in the endoplasmic reticulum (ER), where they modulate protein homeostasis and protect cells against ER stress by regulating the unfolded protein response (UPR). Here, our aim is to give an overview of the biology of endogenous CDNF and MANF in the brain dopamine system. We will discuss recent studies on CDNF and MANF knockout animal models, and effects of CDNF and MANF in preclinical models of PD. To elucidate possible roles of CDNF and MANF in human biology, we will review CDNF and MANF tissue expression patterns and regulation of CDNF/MANF levels in human diseases. Finally, we will discuss novel findings related to the molecular mechanism of CDNF and MANF action in ER stress, UPR, and inflammation, all of which are mechanisms potentially involved in the pathophysiology of PD.
Collapse
Affiliation(s)
| | - Päivi Lindholm
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Arabzadeh E, Reza Rahimi A, Zargani M, Feyz Simorghi Z, Emami S, Sheikhi S, Zaeri Amirani Z, Yousefi P, Sarshin A, Aghaei F, Feizollahi F. Resistance exercise promotes functional test via sciatic nerve regeneration, and muscle atrophy improvement through GAP-43 regulation in animal model of traumatic nerve injuries. Neurosci Lett 2022; 787:136812. [PMID: 35872241 DOI: 10.1016/j.neulet.2022.136812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Resistance training improves muscle strength through a combination of neural plasticity and muscle hypertrophy. This study aimed to evaluate the effects of resistance exercise on sciatic nerve regeneration and histology, growth-associated protein 43 (GAP-43) expressions, and soleus muscle atrophy following traumatic nerve injuries in Wistar rats. In the present study, 40 male Wistar rats were randomly assigned into four groups: healthy control (HC) as a sham group was exposed to the surgical procedures without any sciatic nerve compression, lesioned control (LC), resistance training (RT,non-lesioned), and lesioned rats+RT (LRT) (n=10 in each). The RT group performed a resistance-training program 5 days/week for 4 weeks. Sciatic functional index (SFI) score, beam score and Basso, Beattie, and Bresnahan (BBB) score decreased and the hot plate time increased significantly in the LC group compared to the HC (p<0.05) group. However, the LRT group showed a significant increase in the SFI score (p=0.001) and a significant decrease in hot plate time (p=0.0232) compared to the LC group. The LC group also showed neurological morphological damage and muscle atrophy and a decrease in GAP-43 in nerve tissue. In comparison to the LC group, a significant increase in sciatic nerve caliber, diameter, number of muscle fibers, and the expression of GAP-43 (p<0.05) was observed in the LRT group. Doing resistance training even for four weeks seems to affect sciatic nerve lesions and injuries. It can also repair and regenerate nerve tissue by upregulating GAP-43 expression, improving motor behavioral tests, and controlling muscle atrophy.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Reza Rahimi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Zeinab Feyz Simorghi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Shaghayegh Emami
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Sahar Sheikhi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Zeinab Zaeri Amirani
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Parisa Yousefi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Fariba Aghaei
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Foad Feizollahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
5
|
Swimming exercise with L-arginine coated nanoparticles supplementation upregulated HAND2 and TBX5 expression in the cardiomyocytes of aging male rats. Biogerontology 2022; 23:473-484. [PMID: 35809117 DOI: 10.1007/s10522-022-09977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
We investigated possible cardioprotective mechanisms of L-arginine coated nanoparticles (L-ACN) combined with swimming exercise (SE) in aging male rats considering heart and neural crest derivatives-expressed protein 2 (HAND2) and t-box transcription factor 5 (TBX5). Thirty-five male Wistar rats were randomly assigned into five groups: young, old, old + L-ACN, old + SE, and old + L-ACN + SE (n = 7 in each). L-arginine coated with chitosan nanoparticles was given to L-ACN groups via gavage at 500 mg/kg/day. SE groups performed a swimming exercise program 5 days per week for 6 weeks. The exercise program started with 20 min, gradually increasing to 60 min after four sessions, which was then constant until the completion of the training period. After the protocol completion, the rats were sacrificed, and the heart was fixed and frozen to carry out histological, immunohistochemistry (IHC), and gene expression analyses. The expression of HAND2 protein, HAND2 mRNA, and TBX5 mRNA of the heart tissue was significantly higher in the young group than in all older groups (P < 0.05). The old + L-ACN, old + SE, and old + L-ACN + SE groups showed a significant increase in these factors compared to the old group (P < 0.05). Nano-L-arginine supplement, along with swimming exercises, seems to have cardioprotective potential and improve cardiac function in old age by strengthening cardiomyocyte signaling, especially HAND2 and TBX5. However, more research is required, particularly on human samples.
Collapse
|
6
|
Short-term effects of isometric exercise with local and systemic hypoxia and normoxia on fatigue and muscle function in trained men. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
An 8-Week Administration of Bifidobacterium bifidum and Lactobacillus plantarum Combined with Exercise Training Alleviates Neurotoxicity of Aβ and Spatial Learning via Acetylcholine in Alzheimer Rat Model. J Mol Neurosci 2021; 71:1495-1505. [PMID: 33715084 DOI: 10.1007/s12031-021-01812-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
This study aimed to determine the effects of 8 weeks of an administration of Bifidobacterium bifidum and Lactobacillus plantarum combined with exercise training on neurotoxicity of Aβ, spatial learning, acetylcholine (ACH), and vascular endothelial growth factor (VEGF) in Alzheimer rats. Twenty-five Wistar rats were randomly divided into 5 groups (n = 5 in each): (1) healthy control (control), (2) Alzheimer disease (AD), (3) AD with treadmill exercise (AD + Exe), (4) AD with probiotic (combined administration of Bifidobacterium bifidum and Lactobacillus plantarum) treatment (AD + Pro), and (5) AD with treadmill exercise and probiotic treatment (AD + Exe + Pro). AD was induced by intra-cerebroventricular injection of Aβ1-42 peptide. Then, the training groups exercised on treadmill for 8 weeks, 5 days per weeks. The rats were treated daily with probiotic supplements via gavage for 8 weeks. The Morris water maze (MWM) test was administered to measure spatial learning. Then, the animals were sacrificed and Vegf and ACH were analyzed using the qPCR and immunohistochemistry (IHC) methods, respectively. Results showed that the β-amyloid plaques were significantly increased in the brains of the AD group compared with the control group (p < 0.001). The combined use of probiotics and exercise training significantly increased the time spent in the target quadrant after removing the platform, compared with the AD group in the Morris water maze test (p < 0.001). Crystal violet analysis showed that sole (p < 0.01) and combined exercise training and probiotic supplementation (p < 0.001) significantly reduced the number of dead cells in the brains of rats compared with the AD group. AD significantly decreased Vegf mRNA and ACH in the CA1 area of the hippocampus (p < 0.001). However, mono and combined therapy (exercise and probiotics) significantly increased ACH in the rats' brain compared with the AD group. Overall, 8 weeks of an administration of Bifidobacterium bifidum and Lactobacillus plantarum combined with exercise training can improve spatial learning impairment in the AD rats. Exercise and probiotics seem to offer potential benefits to AD patients by upregulating ACH.
Collapse
|
8
|
Modirshanechi G, Eslampour MA, Abdolmaleki Z. Agonist and antagonist NMDA receptor effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture. Andrologia 2020; 52:e13764. [PMID: 32920884 DOI: 10.1111/and.13764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 11/27/2022] Open
Abstract
In this work, agonist and antagonist N-methyl-D-aspartate (NMDA) receptor activation effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture were studied. Afterwards, the effect of D-serine, retinoic acid (RA) and MK801 on spermatogenesis development was investigated. The animals were injected a single dose (40 mg/kg, intraperitoneal) of busulfan. After confirming the model, ten 5-day-old NMRI mice were used as spermatogonial stem cells (SSCs) transplantation donors. The SSCs were confirmed by detecting the promyelocytic leukaemia zinc finger (PLZF) protein. Then, tissue culture of the azoospermia model which had received SSCs was performed in various conditions (seven groups). The apoptosis markers levels of cells were significantly decreased in differentiation media containing RA and serine. In contrast, the expression of apoptotic markers including caspase 3, caspase 9 and Bax was increased in the presence of MK801. In conclusion, a new in vitro system capable of producing mature spermatozoa was developed that would be useful for investigating the medicinal effects of agents on the male reproductive system. Also, a comparison of spermatogenesis development in different media revealed that the presence of D-serine and RA (retinoic acid) in the culture medium has a positive effect on spermatogenesis.
Collapse
Affiliation(s)
- Ghazaleh Modirshanechi
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Eslampour
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
9
|
Nazarian S, Abdolmaleki Z, Torfeh A, Shirazi Beheshtiha SH. Mesenchymal stem cells with modafinil (gold nanoparticles) significantly improves neurological deficits in rats after middle cerebral artery occlusion. Exp Brain Res 2020; 238:2589-2601. [PMID: 32886135 DOI: 10.1007/s00221-020-05913-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023]
Abstract
Systemic treatments for ischemic stroke as a disease with high disability and death have been yet unsuccessful. Combined treatments can potentially cause better results in treatment of patients with Stroke. In this study we assessed the neuroprotective effect of modafinil-coated gold nanoparticles (AuNPs) and mesenchymal stem cell (MSC) in ischemic stroke rats. Stem cells and AuNPs offer great promise for new medical treatments. 60 male Wistar rats were randomly divided into five groups (12 in each group): (1) the group that developed middle cerebral artery occlusion (MCAO or ischemia), (2) the normal group (control), (3) the MCAO group that received MSC (C + MCAO), (4) the MCAO group that received MSC and modafinil (CM + MCAO), and (5) the MCAO group that received MSC and modafinil-coated AuNPs (CMN + MCAO). Middle Cerebral Artery Occlusion (MCAO) was performed by inserting a silicone coat filament in the right internal carotid artery via the external carotid artery until it reached the anterior cerebral artery. The filament was located in the internal carotid artery for 60 min and then removed. Modafinil-coated AuNPs (100 mg/kg) or Modafinil (100 mg/kg) were given to the rats as an oral gavage, once a day in the morning time. Finally, infarct volume, BDNF (Brain-derived neurotrophic factor), GDNF (Glial cell-derived neurotrophic factor), NeuN (neuronal nuclear protein) expression, and cell apoptosis in brain were analyzed. The brain infarct volume and apoptosis significantly decreased and BDNF, NeuN, and GDNF increased in C + MCAO, CM + MCAO, and CMN + MCAO groups compared to ischemia. CMN + MCAO groups did not show significant difference in these factors compared to control group. These results demonstrated that the administration of stem cells and Modafinil-coated AuNPs at the same time had a good effect on ischemic brain injuries. It happened through increasing neurotrophic factors and decreasing brain cell apoptosis.
Collapse
Affiliation(s)
- Sepideh Nazarian
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | - Alireza Torfeh
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
10
|
Combination effect of exercise training and eugenol supplementation on the hippocampus apoptosis induced by chlorpyrifos. Mol Biol Rep 2020; 47:5985-5996. [PMID: 32780254 DOI: 10.1007/s11033-020-05672-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the combination effect of exercise training and eugenol supplementation on the hippocampus apoptosis induced by CPF. 64 adult male albino rats were randomly selected and devided into eight groups of eight including: control, exercise (EXE), chlorpyrifos (CPF), Control + Oil (Co + Oil), Control + DMSO (Co + DMSO), chlorpyrifos + eugenol (CPF + Sup), chlorpyrifos + exercise (CPF + Exe) and, chlorpyrifos + exercise + eugenol (CPF + Exe + Eu). Four experimental groups received intraperitoneal injection (5 days a week) of 3.0 mg/kg body weight CPF in DMSO for 6 consecutive weeks. The exercise groups performed aerobic 5 days per week over 4 weeks. Eugenol were administered by gavage. Finally, the animals were sacrificed using CO2 gas (a half of the rats were anesthetized with ketamine and xylazine and then perfused) to evaluate hippocampus histology and parameters. The results of this study showed that CPF injection significantly decreased BDNF, AChE and ATP in CA1 area of the hippocampus (p ˂ 0.05). Also, CA1 apoptosis by tunnel assay, it was found that CPF receiving groups with different dosage, showed a significant increase compared to other groups, which was confirmed by increasing cytochrome C and procaspase-3 in CPF groups (p ˂ 0.05). The result of this study show that 4 weeks of exercise training and eugenol supplementation does not improve the destructive effects of CPF in CA1 area of the hippocampus. As a result, it is recommended that future studies longer periods for treatment with exercise and eugenol supplementation.
Collapse
|
11
|
Sheikh A, Sheikh K. The expression change of glial fibrillary acidic protein and tyrosine hydroxylase in substantia nigra of the Wistar rats exposed to chlorpyrifos: a novel environmental risk factor for Parkinson's disease. Exp Brain Res 2020; 238:2041-2051. [PMID: 32632573 DOI: 10.1007/s00221-020-05868-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Chlorpyrifos (CPF) is one of the most abundant and widely used pesticides in the world. CPF has detrimental effects on brain tissue, so it is possible to generate some neurodegenerative diseases. The aim of this study was to evaluate the effect of CPF on inducing the Parkinson's disease affecting on central nervous system. 6 to 8-week-old animals were categorized into three groups. The first group was normal control which the animals did not received any treatment, while in the second group, CPF were injected (CPF; 5 mg/kg BW for 30 days intraperitoneally) and the sham group as the third group received DMSO. At the end of the CPF treatment, malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured in the brain tissues of rats. Proportion of neurons was analyzed by crystal violet assays and tunnel assay to detect apoptotic cells. Finally, the expression of GFAP and TH was investigated in the brain of animals. The results witnessed an increase in MDA and a decrease in SOD (P < 0.05) after the CPF treating. Moreover, results indicated that the proportion of neurons decreased in the second group vs. normal and sham groups significantly (P < 0.001). Additionally, in substantia nigra, the expression of GFAP had a significant increase and the TH had a remarkable decrease in CPF injected group in comparison to two other groups (P < 0.001). Furthermore, the numbers of apoptosis cells reduced in substantia nigra (P < 0.001) after the 30-day period of CPF injections. These results demonstrated that repeated exposure to CPF can induce PD via apoptotic cell death, histopathological disruption. It also altered the expression of dopaminergic neuron and changes the levels of oxidant and antioxidant enzymes in substantia nigra region which triggers PD. Hence, the CPF can be introduced as a risk factor for PD.
Collapse
Affiliation(s)
- Abolfazl Sheikh
- Islamic Azad University of Dezful, Dezful, Islamic Republic of Iran
| | - Khadijeh Sheikh
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
12
|
Effects of high intensity interval training (up & downward running) with BCAA/nano chitosan on Foxo3 and SMAD soleus muscles of aging rat. Life Sci 2020; 252:117641. [PMID: 32272182 DOI: 10.1016/j.lfs.2020.117641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023]
Abstract
AIMS The aim of this study was investigate the effects of 8 weeks of high intensity interval training (HIIT, up & downward running) with BCAA/nano chitosan on Foxo3 and SMAD soleus muscles of aging rats. MAIN METHODS In this experimental study thirty male rats were randomly divided into six groups of control, BCAA with Nano chitosan (Supplement, (Sup)), upslope running, downslope running, upslope running+Sup, and downslope running+Sup that each groups consist of 6 rats. The exercise training was performed HIIT 8 weeks 3 session per weeks with incrementally intensity 12 to 52 m/m in 7sets (Slop 0 to 15o) during 8 weeks. BCAA coated with chitosan nanoparticles (84 mg/kg) and gavage to supplementation groups, 3 days per weeks for eight weeks. The animals were feed with standard rat chow (Normal diet, 2.87 kcal/g, 15% of energy from fat). At the end of protocol the rat was sacrifice and soleus muscle was fix and frieze for IHC with H&E and gene expression analysis. KEY FINDINGS The results of this study showed that Foxo3 gene expression in the Upslope running + Sup and Downslope running + Sup groups showed a significant decrease (p ≤ 0.05) compared to the control group. The mRNA of Smad also showed that only the Upslope running + Sup group had a significant decrease compared to the control group (p ≤ 0.05). SIGNIFICANCE It seems that, BCAA/nano chitosan supplementation along with exercise training in a variety of ways (Up & down slope running) can control the damage caused by Foxo3 and Smad transcription factors. That, control of these factors can minimize age-related atrophy.
Collapse
|
13
|
Alteration of follistatin-like 1, neuron-derived neurotrophic factor, and vascular endothelial growth factor in diabetic cardiac muscle after moderate-intensity aerobic exercise with insulin. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00631-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
The effect of endurance exercise and methadone on μ-opioid receptor gene expression in morphine-dependent rats following withdrawal syndrome. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-019-00596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
The Effect of Exosomes Derived from Bone Marrow Stem Cells in Combination with Rosuvastatin on Functional Recovery and Neuroprotection in Rats After Ischemic Stroke. J Mol Neurosci 2020; 70:724-737. [PMID: 31974756 DOI: 10.1007/s12031-020-01483-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Rosuvastatin, known as a cholesterol-lowering agent, has been used as an alternative therapy after the onset of stroke. In this study, neuroprotection and functional recovery of exosomes in combination with rosuvastatin have been investigated. Sixty adult male Wistar rats were subjected to middle cerebral artery occlusion (MCAO). Exosome at the dose of 100 μg and/or rosuvastatin at the dose of 20 mg/kg/day for 7 days were administered to rats as a therapeutic strategy. The elevated body swing test (EBST) and Garcia score were conducted as behavioral tests for the measurement of functional recovery. The histopathological and immunohistochemical analyses were also performed for the assessment of infarcted volume and neuroprotection in the brain of rats. The real-time PCR method was carried out to determine the relative expressions of the NLRP-3 and NLRP1 genes. After 7 days of treatment with exosome and rosuvastatin in rats which underwent MCAO, the decrease in infarct volume of the animals treated with exosome was more pronounced compared with those treated only with exosome. The combination therapy remarkably lowered the size of infarct volume. Our observation was confirmed by the downregulation of the NLRP1 and NLRP3 genes in response to combinatory treatment of rats induced by MCOA, denoting a lower rate of cell death. The number of GFAP-positive cells were reduced in the exosome-treated group compared with the MCAO group. The rate of lipid peroxidation was measured by malondialdehyde (MDA) levels which demonstrated a significant reduction of MDA in the exosome- and rotuvastatin-treated groups when compared with the MCAO group. However, the levels of the SOD enzyme did not significantly alter when the treatment groups were compared with the MCAO group. According to our findings, it seems that the use of exosomes and rosuvastatin, as a novel treatment regimen, might promote neurological recovery after the onset of stroke.
Collapse
|