1
|
Wen J, Wang D, Fang K, Xiao S, Ma R, Liu H. Effect of neurocentral cartilage destruction on spinal growth in immature rabbits. J Int Med Res 2019; 47:951-961. [PMID: 30616424 PMCID: PMC6381499 DOI: 10.1177/0300060518820198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective This study was performed to observe the effect of neurocentral cartilage (NCC) destruction on spinal growth in immature rabbits. Methods The NCC of the lumbar vertebrae of 24 4-week-old female rabbits was destroyed through posterolateral and anterior approaches, and three-dimensional computed tomography examinations were performed 3 months after the procedure. Results Scoliosis was successfully induced in all rabbits of both the anterior and posterolateral approach groups. The scoliosis exceeded 10 degrees in three rabbits, which exhibited coronal scoliosis of the spine, unequal length and thickness of the bilateral pedicles, and rotation of the vertebrae. Scoliosis was not observed in the control group. Conclusions Destruction of the unilateral NCC in immature rabbits can induce structural scoliosis, similar to the pathological features of human scoliosis. The Cobb angles are similar after NCC destruction by a posterolateral approach and under direct vision via the anterior approach.
Collapse
Affiliation(s)
- Jie Wen
- 1 Department of Orthopedics, The Children's Hospital of Fudan University, Shanghai, China.,2 Department of Pediatric Orthopaedics, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Dahui Wang
- 1 Department of Orthopedics, The Children's Hospital of Fudan University, Shanghai, China
| | - Ke Fang
- 2 Department of Pediatric Orthopaedics, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Sheng Xiao
- 2 Department of Pediatric Orthopaedics, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ruixue Ma
- 1 Department of Orthopedics, The Children's Hospital of Fudan University, Shanghai, China
| | - Hong Liu
- 2 Department of Pediatric Orthopaedics, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
2
|
Diffusion Tensor Imaging of Lumbar Vertebras in Female Adolescent Idiopathic Scoliosis: Initial Findings. J Comput Assist Tomogr 2017; 42:317-322. [PMID: 28937482 DOI: 10.1097/rct.0000000000000667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this study was to characterize diffusion tensor imaging (DTI) features of lumbar vertebras in adolescent idiopathic scoliosis (AIS) patients. METHODS Fifty-two AIS patients and 20 healthy volunteers underwent 3-T magnetic resonance scanning including DTI sequence. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values on the convex and concave sides of lumbar vertebras were obtained and compared. RESULTS The FA and ADC values differed significantly between the convex and concave side of lumbar vertebras in AIS (P < 0.01). The ADC values in AIS differed significantly with healthy volunteers (P < 0.01). The FA values on the convex side of L1 to L2 were significantly lower than L4 to L5 in AIS. The difference of FA values between the concave and convex sides of the apex vertebra correlated significantly with Cobb angle (r = 0.436, P < 0.01). CONCLUSIONS The convex and concave sides of lumbar vertebras in AIS patients showed different DTI features.
Collapse
|
3
|
A postnatal role for embryonic myosin revealed by MYH3 mutations that alter TGFβ signaling and cause autosomal dominant spondylocarpotarsal synostosis. Sci Rep 2017; 7:41803. [PMID: 28205584 PMCID: PMC5311977 DOI: 10.1038/srep41803] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/28/2016] [Indexed: 11/09/2022] Open
Abstract
Spondylocarpotarsal synostosis (SCT) is a skeletal disorder characterized by progressive vertebral, carpal and tarsal fusions, and mild short stature. The majority of affected individuals have an autosomal recessive form of SCT and are homozygous or compound heterozygous for nonsense mutations in the gene that encodes the cytoskeletal protein filamin B (FLNB), but a subset do not have FLNB mutations. Exome sequence analysis of three SCT patients negative for FLNB mutations identified an autosomal dominant form of the disease due to heterozygosity for missense or nonsense mutations in MYH3, which encodes embryonic myosin. Cells transfected with the MYH3 missense mutations had reduced TGFβ signaling, revealing a regulatory role for embryonic myosin in the TGFβ signaling pathway. In wild-type mice, there was persistent postnatal expression of embryonic myosin in the small muscles joining the neural arches of the spine suggesting that loss of myosin function in these muscles contribute to the disease. Our findings demonstrate that dominant mutations in MYH3 underlie autosomal dominant SCT, identify a postnatal role for embryonic myosin and suggest that altered regulation of signal transduction in the muscles within the spine may lead to the development of vertebral fusions.
Collapse
|
4
|
Bobyn JD, Little DG, Gray R, Schindeler A. Animal models of scoliosis. J Orthop Res 2015; 33:458-67. [PMID: 25492698 DOI: 10.1002/jor.22797] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/03/2014] [Indexed: 02/04/2023]
Abstract
Multiple techniques designed to induce scoliotic deformity have been applied across many animal species. We have undertaken a review of the literature regarding experimental models of scoliosis in animals to discuss their utility in comprehending disease aetiology and treatment. Models of scoliosis in animals can be broadly divided into quadrupedal and bipedal experiments. Quadrupedal models, in the absence of axial gravitation force, depend upon development of a mechanical asymmetry along the spine to initiate a scoliotic deformity. Bipedal models more accurately mimic human posture and consequently are subject to similar forces due to gravity, which have been long appreciated to be a contributing factor to the development of scoliosis. Many effective models of scoliosis in smaller animals have not been successfully translated to primates and humans. Though these models may not clarify the aetiology of human scoliosis, by providing a reliable and reproducible deformity in the spine they are a useful means with which to test interventions designed to correct and prevent deformity.
Collapse
Affiliation(s)
- Justin D Bobyn
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
5
|
Ouellet J, Odent T. Animal models for scoliosis research: state of the art, current concepts and future perspective applications. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22 Suppl 2:S81-95. [PMID: 23099524 PMCID: PMC3616476 DOI: 10.1007/s00586-012-2396-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/21/2012] [Accepted: 05/28/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE The purpose of this study was to provide the readers with a reliable source of animal models currently being utilized to perform state-of-the-art scoliotic research. MATERIALS AND METHODS A comprehensive search was undertaken to review all publications on animal models for the study of scoliosis within the database from 1946 to January 2011. RESULTS The animal models have been grouped under specific headings reflecting the underlying pathophysiology behind the development of the spinal deformities produced in the animals: genetics, neuroendocrine, neuromuscular, external constraints, internal constraints with or without tissue injury, vertebral growth modulation and iatrogenic congenital malformations, in an attempt to organize and classify these multiple scoliotic animal models. As it stands, there are no animal models that mimic the human spinal anatomy with all its constraints and weaknesses, which puts it at risk of developing scoliosis. What we do have are a multitude of models, which produce spinal deformities that come close to the idiopathic scoliosis deformity. CONCLUSION All these different animal models compel us to believe that the clinical phenotype of what we call idiopathic scoliosis may well be caused by a variety of different underlying pathologies.
Collapse
Affiliation(s)
- Jean Ouellet
- />McGill Scoliosis and Spinal Research Chair, Deputy Chief Shriners Hospital, Montreal, Canada
- />Division of Orthopaedic Surgery, McGill University Health Hospital, Centre, Montreal Children Hospital, 2300 Tupper Street, Montreal, QC H3H 1P3 Canada
| | - Thierry Odent
- />Department of Orthopaedic Surgery, Hopital des Enfants Malade, Necker, Paris Descartes, France
- />Université Paris Descartes - Sorbonne Paris Cité - Service d’orthopédie pédiatrique - Hôpital Universitaire Necker - Enfants-Malades, Paris, France
| |
Collapse
|
6
|
The creation of scoliosis by scapula-to-contralateral ilium tethering procedure in bipedal rats: a kyphoscoliosis model. Spine (Phila Pa 1976) 2011; 36:1340-9. [PMID: 21224778 DOI: 10.1097/brs.0b013e3181f3d164] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Randomized trial. OBJECTIVE To create a new scoliotic model. SUMMARY OF BACKGROUND DATA Although there were a lot of modeling techniques producing scoliosis, failed was the creation of a scoliotic animal model all characterized by the evident axial rotation of vertebrae body, the simulation of the human erect posture, and avoiding direct traumas to the spine, the spinal cord, ribs, or glands in modeling techniques. METHODS A total of 45 4-week-old female wistar rats were randomly divided into three groups. Group 1 underwent subcutaneous left scapula-to-contralateral ilium tethering procedure with a nonadsorbable suture, which made the spine convex toward right side, and then removed forelimbs and tails of rats to create the bipedal rats. Tethering sutures were cut at postoperative eighth week, and the spines of rats were then observed during 2 weeks. Group 2 was the same as group 1 but in which scapula-to-ipsilateral ilium tethering procedure was performed. Group 3 was the same as group 1 except that the bipedal rats were not created. All postoperative rats were fed separately in special high cages for groups 1 and 2 or in standard cages for group 3. RESULTS At 2 weeks after tether release, the incidence of vertebral rotation was significantly higher in group 1 than in group 2 (P = 0.004). The differences in degrees of scoliosis and kyphosis between groups at the time of initial tethering were not found to be significant (P > 0.05), whereas those at 2 weeks after tether release were significantly larger in group 1 than in group 3 (P < 0.01). There were no significant differences in postoperative first food-taking duration, body weight, spinal relative length, modeling mortality, the incidences of reoperation, and scoliosis between groups (all P > 0.05). CONCLUSION The scoliotic model created by scapula-to-contralateral ilium tethering procedure in bipedal rats can preferably simulate the human scoliosis.
Collapse
|
7
|
Janssen MMA, de Wilde RF, Kouwenhoven JWM, Castelein RM. Experimental animal models in scoliosis research: a review of the literature. Spine J 2011; 11:347-58. [PMID: 21474088 DOI: 10.1016/j.spinee.2011.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/01/2011] [Accepted: 03/08/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Many animal species and an overwhelming variety of procedures that produce an experimental scoliosis have been reported in the literature. However, varying results have been reported on identical procedures in different animal species. Furthermore, the relevance of experimental animal models for the understanding of human idiopathic scoliosis remains questionable. PURPOSE To give an overview of the procedures that have been performed in animals in an attempt to induce experimental scoliosis and discuss the characteristics and significance of various animal models. STUDY DESIGN Extensive review of the literature on experimental animal models in scoliosis research. METHODS MEDLINE electronic database was searched, focusing on parameters concerning experimental scoliosis in animal models. The search was limited to the English, French, and German languages. RESULTS The chicken appeared to be the most frequently used experimental animal followed by the rabbit and rat. Additionally, scoliosis has been induced in primates, goats, sheep, pigs, cows, dogs, and frogs. Procedures widely varied from systemic to local procedures. CONCLUSIONS Although it has been possible to induce scoliosis-like deformities in many animals through various ways, this always required drastic surgical or systemic interventions, thus making the relation to human idiopathic scoliosis unclear. The basic drawback of all used models remains that no animal resembles the upright biomechanical spinal loading condition of man, with its inherent rotational instability of certain spinal segments. The fundamental question remains what the significance of these animal models is to the understanding of human idiopathic scoliosis.
Collapse
Affiliation(s)
- Michiel M A Janssen
- Department of Orthopaedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
8
|
Gorman KF, Handrigan GR, Jin G, Wallis R, Breden F. Structural and micro-anatomical changes in vertebrae associated with idiopathic-type spinal curvature in the curveback guppy model. SCOLIOSIS 2010; 5:10. [PMID: 20529276 PMCID: PMC2890417 DOI: 10.1186/1748-7161-5-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/07/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND The curveback lineage of guppy is characterized by heritable idiopathic-type spinal curvature that develops during growth. Prior work has revealed several important developmental similarities to the human idiopathic scoliosis (IS) syndrome. In this study we investigate structural and histological aspects of the vertebrae that are associated with spinal curvature in the curveback guppy and test for sexual dimorphism that might explain a female bias for severe curve magnitudes in the population. METHODS Vertebrae were studied from whole-mount skeletal specimens of curved and non-curved adult males and females. A series of ratios were used to characterize structural aspects of each vertebra. A three-way analysis of variance tested for effects of sex, curvature, vertebral position along the spine, and all 2-way interactions (i.e., sex and curvature, sex and vertebra position, and vertebra position and curvature). Histological analyses were used to characterize micro-architectural changes in affected vertebrae and the intervertebral region. RESULTS In curveback, vertebrae that are associated with curvature demonstrate asymmetric shape distortion, migration of the intervertebral ligament, and vertebral thickening on the concave side of curvature. There is sexual dimorphism among curved individuals such that for several vertebrae, females have more slender vertebrae than do males. Also, in the region of the spine where lordosis typically occurs, curved and non-curved females have a reduced width at the middle of their vertebrae, relative to males. CONCLUSIONS Based on similarities to human spinal curvatures and to animals with induced curves, the concave-convex biases described in the guppy suggest that there is a mechanical component to curve pathogenesis in curveback. Because idiopathic-type curvature in curveback is primarily a sagittal deformity, it is structurally more similar to Scheuermann kyphosis than IS. Anatomical differences between teleosts and humans make direct biomechanical comparisons difficult. However, study of basic biological systems involved in idiopathic-type spinal curvature in curveback may provide insight into the relationship between a predisposing aetiology, growth, and biomechanics. Further work is needed to clarify whether observed sex differences in vertebral characteristics are related to the female bias for severe curves that is observed in the population.
Collapse
Affiliation(s)
- Kristen F Gorman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gregory R Handrigan
- Department of Oral Health Sciences, Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ge Jin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rob Wallis
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
9
|
Scoliosis model created by pedicle screw tethering in immature goats: the feasibility, reliability, and complications. Spine (Phila Pa 1976) 2009; 34:2305-10. [PMID: 19934810 DOI: 10.1097/brs.0b013e3181b1fdd0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vivo model of scoliosis was established in immature goats. OBJECTIVE To assess the feasibility, reliability, and complications of the innovative animal model. SUMMARY OF BACKGROUND DATA Among the methods of creating a scoliotic model, posterior asymmetric tethering of spine yielded encouraging results. However, some shortcomings associated with the use of posterior asymmetric tether are apparent. METHODS Fourteen female goats (age: 5-8 weeks old, weight: 6-8 kg), were instrumented and tethered using unilateral pedicle screws and contralateral rib resections. Twelve of the goats were followed up for 8 weeks by serial radiography. Six goats were removed of the posterior load and no treatment was given. Two goats were selected randomly from the 6 animals and subjected to computed tomography (CT) three-dimensional reconstruction after another 8 weeks. All the 6 goats were killed and spine specimens were harvested for histologic study 16 weeks after observation. RESULT Radiographic observation showed that 12 goats developed scoliosis with convex toward the right side, and the curvature increased with time in 11 goats, and it remained unchanged in 1 animal. The angle immediately after the procedures averaged 29.0 degrees (23 degrees -38 degrees ) and increased to an average of 43.0 degrees (36.0 degrees -58.0 degrees ) over a period of 8 to 10 weeks, with average angle increment being 14.0 degrees (P < 0.001). The curvature ceased to increase in 6 goats during the subsequent 2 months after the tether were removed (P > 0.05). Three-dimensional CT reconstruction revealed that the vertebral bodies were wedged, the 2 sides of the thoracic skeleton were asymmetric, and the vertebrae in the major curve were rotated. Histologic study revealed that the goats remained in growth stage and the growth potential of 2 sides of the spine was not identical. CONCLUSION Radiography and three-dimensional CT reconstruction of vertebrae revealed that the architectural alterations found in the model were similar to those of idiopathic-type deformity observed in clinical practice.
Collapse
|
10
|
Gorman KF, Breden F. Idiopathic-type scoliosis is not exclusive to bipedalism. Med Hypotheses 2008; 72:348-52. [PMID: 19070438 DOI: 10.1016/j.mehy.2008.09.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 09/12/2008] [Accepted: 09/12/2008] [Indexed: 12/11/2022]
Abstract
Human familial/idiopathic-type scoliosis (IS) is a complex genetic disorder for which the cause is unknown. The curve phenotype characteristically demonstrates pronounced morphological and developmental variability that is likely a consequence of biomechanical, environmental, and genetic differences between individuals. In addition, risk factors that affect the propensity for curves to progress to severity are unknown. Progress in understanding the fundamental biology of idiopathic-type scoliosis has been limited by the lack of a genetic/developmental animal model. Prior to consideration of teleosts, developmental idiopathic-type scoliosis has been considered to be exclusive to humans. Consequently, there is the notion that the syndrome is a result of bipedalism, and many studies try to explain the deformity from this anthrocentric viewpoint. This perspective has been reinforced by the choice of animals used for study, in that chickens and bipedal rats and mice demonstrate idiopathic-type curvature when made melatonin-deficient, but quadrupedal animals do not. Overlooked is the fact that teleosts also demonstrate similar curvature when made melatonin-deficient. Our characterization of the guppy curveback has demonstrated that non-induced idiopathic-type curvature is not exclusive to humans, nor bipedalism. We hypothesize that unique morphological, developmental and genetic parallels between the human and guppy syndromes are due to common molecular pathways involved in the etiopathogenesis of both phenotypes. We explore established gene conservation between human and teleost genomes that are in pathways hypothesized to be involved in the IS syndrome. We present non-induced vertebral wedging as a unique shared feature in IS and curveback that suggests a similar interaction between a molecular phenotype on the level of the vertebral anatomy, and biomechanics. We propose that rather than bipedalism per se, expression of idiopathic-type scoliosis is dependent on normal spinal loading applied along the cranio-caudal axis that interacts with an unknown factor causing the primary curve. In this regard, a comparative biological approach using a simplified teleost model will promote discovery of basic processes integral to idiopathic-type scoliosis in teleosts and humans, and highlight human-specific aspects of the deformity.
Collapse
Affiliation(s)
- Kristen F Gorman
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
11
|
Meir A, McNally DS, Fairbank JC, Jones D, Urban JP. The internal pressure and stress environment of the scoliotic intervertebral disc — a review. Proc Inst Mech Eng H 2008; 222:209-19. [DOI: 10.1243/09544119jeim303] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aetiology, in terms of both initiation and progression, of the deformity in idiopathic scoliosis is at present unclear. Even in neuromuscular cases, the mechanisms underlying progression are not fully elucidated. It is thought, however, that asymmetrical loading is involved in the progression of the disease, with evidence mainly from animal studies and modelling. There is, however, very little direct information as to the origin or mechanism of action of these forces in the scoliotic spine. This review describes the concept of intervertebral disc pressure or stress and examines possible measurement techniques. The biological and mechanical consequences of abnormalities in these parameters are described. Future possible studies and their clinical significance are also briefly discussed.Techniques of pressure measurement have culminated in the development of ‘pressure profilometry’, which provides stress profiles across the disc in mutually perpendicular axes. A hydrated intervertebral disc exhibits mainly hydrostatic behaviour. However, in pathological states such as degeneration and scoliosis, non-hydrostatic behaviour predominates and annular peaks of stress occur. Recent studies have shown that, in scoliosis, high hydrostatic pressures are seen with asymmetrical stresses from concave to convex sides. These abnormalities could influence both disc and endplate cellular activity directly, causing asymmetrical growth and matrix changes. In addition, disc cells could be influenced via nutritional changes consequent to end-plate calcification.Evidence suggests that the stress environment of the scoliotic disc is abnormal, probably generated by high and asymmetrical loading of non-muscular origin. If present in the scoliotic spine during daily activities, this could generate a positive feedback of cellular changes, resulting in curve progression. Future advances in understanding may rely on the development of computer models owing to the difficulties of in-vivo invasive measurements.
Collapse
Affiliation(s)
- A Meir
- Nuffield Department of Orthopaedic Surgery, Oxford, UK
| | - D S McNally
- Physiology Laboratory, Oxford University, Oxford, UK
| | - J C Fairbank
- Nuffield Department of Orthopaedic Surgery, Oxford, UK
| | - D Jones
- Nuffield Department of Orthopaedic Surgery, Oxford, UK
| | - J P Urban
- Institute of Biomechanics, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Zhang Y, Wang Y, Zheng G, Zhang X, Zhang R, Zhang W. Unilateral pedicle screws asymmetric tethering: an innovative method to create idiopathic deformity. J Orthop Surg Res 2007; 2:18. [PMID: 17974008 PMCID: PMC2194665 DOI: 10.1186/1749-799x-2-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Accepted: 10/31/2007] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility of the method that unilateral pedicle screws asymmetric tethering in concave side in combination with convex rib resection for creating idiopathic deformity. SUMMARY OF BACKGROUND DATA Various methods are performed to create idiopathic deformity. Among these methods, posterior asmmetric tethering of the spine shows satisfying result, but some drawbacks related to the current posterior asymmetric tether were still evident. MATERIALS AND METHODS Unilateral pedicle screws asymmetric tethering was performed to 14 female goats (age: 5-8 week-old, weight: 6-8 kg) in concave side in combination with convex rib resection. Dorsoventral and lateral plain radiographs were taken of each thoracic spine in the frontal and sagittal planes right after the surgery and later every 4 weeks. RESULTS All animals ambulated freely after surgery. For technical reasons, 2 goats were excluded (one animal died for anesthetic during the surgery, and one animal was lost for instrumental fail due to postoperative infection). Radiography showed that 11 goats exhibited scoliosis with convex toward to the right side, and as the curve increased with time, only 1 goat showed nonprogressive. The initial scoliosis generated in the progressors after the procedures measured 29.0 degrees on average (range 23.0 degrees -38.5 degrees ) and increased to 43.0 degrees on average (range 36.0 degrees -58.0 degrees ) over 8 to 10 weeks. The average progression of 14.0 degrees was measured. The curvature immediately after tethering surgery (the initial Cobb angle) did have a highly significant correlation with the final curvature (p < 0.001). The progressive goats showed an idiopathic-like deformity not only by radiography, but in general appearance. CONCLUSION Unilateral pedicle screws asymmetric tethering is a practical method to create experimental scoliosis, especially for those who would like to study the correction of this deformity.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, China.
| | | | | | | | | | | |
Collapse
|