1
|
Betz JW, Lightstone DF, Oakley PA, Haas JW, Moustafa IM, Harrison DE. Reliability of the Biomechanical Assessment of the Sagittal Lumbar Spine and Pelvis on Radiographs Used in Clinical Practice: A Systematic Review of the Literature. J Clin Med 2024; 13:4650. [PMID: 39200793 PMCID: PMC11355792 DOI: 10.3390/jcm13164650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Biomechanical analysis of the sagittal alignment of the lumbar spine and pelvis on radiographs is common in clinical practices including chiropractic, physical therapy, scoliosis-related thoraco-lumbo-sacral orthosis (TLSO) management, orthopedics, and neurosurgery. Of specific interest is the assessment of pelvic morphology and the relationship between angle of pelvic incidence, sacral slope, and lumbar lordosis to pain, disability, and clinical treatment of spine conditions. The current state of the literature on the reliability of common methods quantifying these parameters on radiographs is limited. Methods: The objective of this systematic review is to identify and review the available studies on the reliability of different methods of biomechanical analysis of sagittal lumbo-pelvic parameters used in clinical practice. Our review followed the recommendations of the preferred reporting items for systematic reviews and meta-analyses (PRISMA). The design of this systematic review was registered with PROSPERO (CRD42023379873). Results: The search strategy yielded a total of 2387 articles. A total of 1539 articles were screened after deduplication and exclusion by automation tools, leaving 473 full-text articles that were retrieved. After exclusion, 64 articles met the inclusion criteria. The preponderance of the evidence showed good to excellent reliability for biomechanical assessment of sagittal lumbo-pelvic spine alignment. Conclusions: The results of this systematic review of the literature show that sagittal radiographic analysis of spinal biomechanics and alignment of the human lumbo-pelvic spine is a reliable tool for aiding diagnosis and management in clinical settings.
Collapse
Affiliation(s)
| | | | - Paul A. Oakley
- Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Jason W. Haas
- Chiropractic Biophysics NonProfit, Inc., Eagle, ID 83616, USA;
| | - Ibrahim M. Moustafa
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Neuromusculoskeletal Rehabilitation Research Group, RIMHS—Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | |
Collapse
|
2
|
Pérez-de la Cruz S. Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain. Sports (Basel) 2024; 12:190. [PMID: 39058081 PMCID: PMC11281180 DOI: 10.3390/sports12070190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The therapeutic actions indicated for low back pain, in addition to physiotherapy, include mobilization of the affected segment, as it is assumed that a loss of mobility may contribute to a patient's pain. The aim of this study was to investigate the influence of back pain on the degrees of spinal mobility in young adults. Eighty-six volunteers participated in the study. Fingertip-to-floor distance, Schöber's test, the fingertip-to-floor lateral flexion test, GHQ-12, the Fear-Avoidance Beliefs Questionnaire and the STarT Back Screening Tool were used. There were statistically significant differences between the two groups (pain and no pain) in degrees of spinal flexion (Schöber's test and side flexion) showing greater mobility in the group with pain. However, the group with low back pain showed less rotational mobility. The presence or absence of back pain had an impact on the individual's sporting practice and perception of pain, and they were able to carry out their sporting activities normally. Young adults with idiopathic low back pain showed some statistically significant differences in relation to the mobility of the spine in the different planes of movement (flexion and side flexion), conditioning their quality of life and sports practice.
Collapse
|
3
|
Breen A, Carvil P, Green DA, Russomano T, Breen A. Effects of a microgravity SkinSuit on lumbar geometry and kinematics. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:839-847. [PMID: 36645514 DOI: 10.1007/s00586-022-07454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 11/05/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE Astronauts returning from long ISS missions have demonstrated an increased incidence of lumbar disc herniation accompanied by biomechanical and morphological changes associated with spine elongation. This research describes a ground-based study of the effects of an axial compression countermeasure Mk VI SkinSuit designed to reload the spine and reduce these changes before return to terrestrial gravity. METHODS Twenty healthy male volunteers aged 21-36 without back pain participated. Each lay overnight on a Hyper Buoyancy Flotation (HBF) bed for 12 h on two occasions 6 weeks apart. On the second occasion participants donned a Mk VI SkinSuit designed to axially load the spine at 0.2 Gz during the last 4 h of flotation. Immediately after each exposure, participants received recumbent MRI and flexion-extension quantitative fluoroscopy scans of their lumbar spines, measuring differences between spine geometry and intervertebral kinematics with and without the SkinSuit. This was followed by the same procedure whilst weight bearing. Paired comparisons were performed for all measurements. RESULTS Following Mk VI SkinSuit use, participants evidenced more flexion RoM at L3-4 (p = 0.01) and L4-5 (p = 0.003), more translation at L3-4 (p = 0.02), lower dynamic disc height at L5-S1 (p = 0.002), lower lumbar spine length (p = 0.01) and greater lordosis (p = 0.0001) than without the Mk VI SkinSuit. Disc cross-sectional area and volume were not significantly affected. CONCLUSION The MkVI SkinSuit restores lumbar mobility and lordosis following 4 h of wearing during hyper buoyancy flotation in a healthy control population and may be an effective countermeasure for post space flight lumbar disc herniation.
Collapse
Affiliation(s)
- Alexander Breen
- Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB, UK
| | - Philip Carvil
- Centre of Human and Applied Physiological Sciences, King's College London, Strand, London, WC2R 2LS, UK
| | - David Andrew Green
- Centre of Human and Applied Physiological Sciences, King's College London, Strand, London, WC2R 2LS, UK.,Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany.,KBRwyle, Cologne, Germany
| | - Thais Russomano
- CEMA, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz (Edifício Comum ao Hospital de Santa Maria), 1649-028, Lisbon, Portugal
| | - Alan Breen
- Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB, UK.
| |
Collapse
|
4
|
Hartley L, Zappalà M, Ehiogu U, Heneghan NR, Gardner A. What is the most appropriate method for the measurement of the range of motion in the lumbar spine and how does surgical fixation affect the range of movement of the lumbar spine in adolescent idiopathic scoliosis? A systematic review protocol. Syst Rev 2022; 11:208. [PMID: 36180881 PMCID: PMC9523991 DOI: 10.1186/s13643-022-02077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/18/2022] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Adolescent idiopathic scoliosis (AIS) is a three-dimensional rotational change in the normal shape of the spine which affects children aged 10 to 18 years. Both the condition and its management can have significant impact on functional ability. Currently, expected restriction in spinal motion is experience based, rather than evidence based, and discussions to inform patient expectations pre-operatively can be difficult. The aim of this review is to evaluate the evidence pertaining to measurement of spinal motion and whether this is altered following surgery, dependent on the anatomical level of surgical fixation in AIS. METHODS/ANALYSIS: This protocol is reported in line with both PRISMA-P and informed by the COSMIN methodology. Electronic databases will be searched using a two-stage search strategy. The first stage will identify and evaluate the methods used to assess spinal motion. The second stage aims to evaluate the change in spinal motion using these methods based on anatomical level of fixation following surgery along with the measurement properties of those methods, to include the validity, reliability and responsiveness of the methods. Two reviewers will independently screen the search results against eligibility criteria, extract the data and assess the quality of the included studies. Any disputes between the reviewers will be resolved with a third independent reviewer. Data may be pooled where possible; however, this is not expected. The overall strength of the body of evidence will then be assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. PATIENT AND PUBLIC INVOLVEMENT Patients and members of the public will not be consulted in the production of this review, although the review was conceived based on the experiences of the authors when managing this patient population and a need to address patient expectations in pre-operative planning. ETHICS, DISSEMINATION AND DATA AVAILABILITY No ethical approval required. The final review will be submitted to peer-reviewed journals for publication and disseminated publicly. The datasets used and/or analysed in this review will be available from the corresponding author on reasonable request. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration number. CRD42021282264.
Collapse
Affiliation(s)
- Laura Hartley
- The Royal Orthopaedic Hospital NHS Foundation Trust, The Woodlands, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Mattia Zappalà
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Uzo Ehiogu
- The Royal Orthopaedic Hospital NHS Foundation Trust, The Woodlands, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Nicola R Heneghan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Adrian Gardner
- The Royal Orthopaedic Hospital NHS Foundation Trust, The Woodlands, Bristol Road South, Northfield, Birmingham, B31 2AP, UK. .,Institute of Clinical Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Lumbar intervertebral disc diurnal deformations and T2 and T1rho relaxation times vary by spinal level and disc region. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:746-754. [PMID: 35072794 DOI: 10.1007/s00586-021-07097-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/16/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Magnetic resonance imaging (MRI) is routinely used to evaluate spine pathology; however, standard imaging findings weakly correlate to low back pain. Abnormal disc mechanical function is implicated as a cause of back pain but is not assessed using standard clinical MRI. Our objective was to utilize our established MRI protocol for measuring disc function to quantify disc mechanical function in a healthy cohort. METHODS We recruited young, asymptomatic volunteers (6 male/6 female; age 18-30 years; BMI < 30) and used MRI to determine how diurnal deformations in disc height, volume, and perimeter were affected by spinal level, disc region, MRI biomarkers of disc health (T2, T1rho), and Pfirrmann grade. RESULTS Lumbar discs deformed by a mean of -6.1% (95% CI: -7.6%, -4.7%) to -8.0% (CI: -10.6%, -5.4%) in height and -5.4% (CI: -7.6%, -3.3%) to -8.5% (CI: -11.0%, -6.0%) in volume from AM to PM across spinal levels. Regional deformations were more uniform in cranial lumbar levels and concentrated posteriorly in the caudal levels, reaching a maximum of 13.1% at L5-S1 (CI:-16.1%, -10.2%). T2 and T1rho relaxation times were greatest in the nucleus and varied circumferentially within the annulus. T2 relaxation times were greatest at the most cranial spinal levels and decreased caudally. In this young healthy cohort, we identified a weak association between nucleus T2 and the diurnal change in the perimeter. CONCLUSIONS Spinal level is a key factor in determining regional disc deformations. Interestingly, deformations were concentrated in the posterior regions of caudal discs where disc herniation is most prevalent.
Collapse
|
6
|
Viggiani D, Mannen EM, Nelson-Wong E, Wong A, Ghiselli G, Shelburne KB, Davidson BS, Callaghan JP. Lumbar Intervertebral Kinematics During an Unstable Sitting Task and Its Association With Standing-Induced Low Back Pain. J Appl Biomech 2020; 36:423-435. [PMID: 32971516 DOI: 10.1123/jab.2019-0382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/05/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022]
Abstract
People developing transient low back pain during standing have altered control of their spine and hips during standing tasks, but the transfer of these responses to other tasks has not been assessed. This study used video fluoroscopy to assess lumbar spine intervertebral kinematics of people who do and do not develop standing-induced low back pain during a seated chair-tilting task. A total of 9 females and 8 males were categorized as pain developers (5 females and 3 males) or nonpain developers (4 females and 5 males) using a 2-hour standing exposure; pain developers reported transient low back pain and nonpain developers did not. Participants were imaged with sagittal plane fluoroscopy at 25 Hz while cyclically tilting their pelvises anteriorly and posteriorly on an unstable chair. Intervertebral angles, relative contributions, and anterior-posterior translations were measured for the L3/L4, L4/L5, and L5/S1 joints and compared between sexes, pain groups, joints, and tilting directions. Female pain developers experienced more extension in their L5/S1 joints in both tilting directions compared with female nonpain developers, a finding not present in males. The specificity in intervertebral kinematics to sex-pain group combinations suggests that these subgroups of pain developers and nonpain developers may implement different control strategies.
Collapse
Affiliation(s)
| | - Erin M Mannen
- University of Denver
- University of Arkansas for Medical Sciences
| | | | | | | | | | | | | |
Collapse
|
7
|
To D, Breen A, Breen A, Mior S, Howarth SJ. Investigator analytic repeatability of two new intervertebral motion biomarkers for chronic, nonspecific low back pain in a cohort of healthy controls. Chiropr Man Therap 2020; 28:62. [PMID: 33228737 PMCID: PMC7685540 DOI: 10.1186/s12998-020-00350-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022] Open
Abstract
Background Understanding the mechanisms underlying chronic, nonspecific low back pain (CNSLBP) is essential to advance personalized care and identify the most appropriate intervention. Recently, two intervertebral motion biomarkers termed “Motion Sharing Inequality” (MSI) and “Motion Sharing Variability” (MSV) have been identified for CNSLBP using quantitative fluoroscopy (QF). The aim of this study was to conduct intra- and inter-investigator analytic repeatability studies to determine the extent to which investigator error affects their measurement in clinical studies. Methods A cross-sectional cohort study was conducted using the image sequences of 30 healthy controls who received QF screening during passive recumbent flexion motion. Two independent investigators analysed the image sequences for MSI and MSV from October to November 2018. Intra and inter- investigator repeatability studies were performed using intraclass correlations (ICC), standard errors of measurement (SEM) and minimal differences (MD). Results Intra-investigator ICCs were 0.90 (0.81,0.95) (SEM 0.029) and 0.78 (0.59,0.89) (SEM 0.020) for MSI and MSV, respectively. Inter-investigator ICCs 0.93 (0.86,0.97) (SEM 0.024) and 0.55 (0.24,0.75) (SEM 0.024). SEMs for MSI and MSV were approximately 10 and 30% of their group means respectively. The MDs for MSI for intra- and inter-investigator repeatability were 0.079 and 0.067, respectively and for MSV 0.055 and 0.067. Conclusions MSI demonstrated substantial intra- and inter-investigator repeatability, suggesting that investigator input has a minimal influence on its measurement. MSV demonstrated moderate intra-investigator reliability and fair inter-investigator repeatability. Confirmation in patients with CNSLBP is now required.
Collapse
Affiliation(s)
- Daphne To
- Canadian Memorial Chiropractic College, 6100 Leslie Street, Toronto, Ontario, M2H 3J1, Canada
| | - Alexander Breen
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Parkwood Road, Bournemouth, Dorset, BH5 2DF, UK
| | - Alan Breen
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Parkwood Road, Bournemouth, Dorset, BH5 2DF, UK
| | - Silvano Mior
- Canadian Memorial Chiropractic College, 6100 Leslie Street, Toronto, Ontario, M2H 3J1, Canada
| | - Samuel J Howarth
- Canadian Memorial Chiropractic College, 6100 Leslie Street, Toronto, Ontario, M2H 3J1, Canada.
| |
Collapse
|
8
|
Chronic Pain Diagnosis Using Machine Learning, Questionnaires, and QST: A Sensitivity Experiment. Diagnostics (Basel) 2020; 10:diagnostics10110958. [PMID: 33212774 PMCID: PMC7697204 DOI: 10.3390/diagnostics10110958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
In the last decade, machine learning has been widely used in different fields, especially because of its capacity to work with complex data. With the support of machine learning techniques, different studies have been using data-driven approaches to better understand some syndromes like mild cognitive impairment, Alzheimer’s disease, schizophrenia, and chronic pain. Chronic pain is a complex disease that can recurrently be misdiagnosed due to its comorbidities with other syndromes with which it shares symptoms. Within that context, several studies have been suggesting different machine learning algorithms to classify or predict chronic pain conditions. Those algorithms were fed with a diversity of data types, from self-report data based on questionnaires to the most advanced brain imaging techniques. In this study, we assessed the sensitivity of different algorithms and datasets classifying chronic pain syndromes. Together with this assessment, we highlighted important methodological steps that should be taken into account when an experiment using machine learning is conducted. The best results were obtained by ensemble-based algorithms and the dataset containing the greatest diversity of information, resulting in area under the receiver operating curve (AUC) values of around 0.85. In addition, the performance of the algorithms is strongly related to the hyper-parameters. Thus, a good strategy for hyper-parameter optimization should be used to extract the most from the algorithm. These findings support the notion that machine learning can be a powerful tool to better understand chronic pain conditions.
Collapse
|
9
|
Malekmirzaei N, Salehi R, Shaterzadeh Yazdi MJ, Orakifar N. Intersegmental kinematic analysis of lumbar spine by functional radiography between two subgroups of patients with chronic low back pain. J Bodyw Mov Ther 2020; 25:183-187. [PMID: 33714493 DOI: 10.1016/j.jbmt.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Kinematic deficits such as fault in joint accessory motion is one of the most important contributing factors for developing the movement impairment in the lumbar spine. Functional radiography is accessible method for detecting the artherokinematic disorders. The aim of this study was to compare lumbar spine intersegmental motion between low back pain (LBP) subgroups of movement system impairment (MSI) model by functional radiography. MATERIALS AND METHODS 20 subjects with chronic LBP in two subgroups of the MSI model (Rotation with Flexion and Rotation with Extension) participated in this study. Five x-rays were taken in different positions. Intersegmental linear translation and angular rotation of the lumbar segments were calculated. RESULTS In the Rotation with Extension subgroup, the translation and rotation values of the L3-4 segment from full to full position were significantly more than their values in the Rotation with Flexion subgroup ((mean difference = -1.69 (mm) P = 0.01), (mean difference = -3.80 (mm) P = 0.02) respectively). The translation of L2-3 segment from the neutral to the mid-flexion position was significantly greater in the Rotation with Flexion subgroup compared to the Rotation with Extension subgroup (mean difference = 1.12 (mm) P = 0.04). cumulative intersegmental angular rotation of all lumbar segments from mid to mid position was greater in the Rotation with Flexion subgroup compared to the Rotation with Extension subgroup (P = 0.03). CONCLUSION Changes in intersegmental translation and angular rotation of lumbar segments in subgroups of patients with LBP may be important contributing factors that induce direction specific lumbar spine loads and contribute to the development or persistence of LBP problems.
Collapse
Affiliation(s)
- Niloofar Malekmirzaei
- Master ِDegree of physical therapy, Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Reza Salehi
- PhD of physical therapy, Associate Professor of Physical Therapy, Rehabilitation Research Center, Department of Rehabilitation Management, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Jafar Shaterzadeh Yazdi
- PhD of physical therapy, Associate Professor of Physical Therapy, Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Neda Orakifar
- PhD of physical therapy, Assistant Professor of Physical Therapy, Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Brownhill K, Mellor F, Breen A, Breen A. Passive intervertebral motion characteristics in chronic mid to low back pain: A multivariate analysis. Med Eng Phys 2020; 84:115-125. [PMID: 32977908 DOI: 10.1016/j.medengphy.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/02/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Studies comparing back pain patients and controls on continuous intervertebral kinematics have shown differences using univariate parameters. Hitherto, multivariate approaches have not been applied to this high dimensional data, risking clinically relevant features being undetected. A multivariate re-analysis was carried out to estimate main modes of variation, and explore group differences. METHODS 40 participants with mechanical back pain and 40 matched controls underwent passive recumbent quantitative videofluoroscopy. Intervertebral angles of L2/3 to L4/5 were obtained for right and left side-bending, extension, and flexion. Principal components analysis (PCA) was used to identify the main modes of variation, and to obtain a lower dimensional representation for comparing groups. Linear discriminant analysis (LDA) was used to identify how groups differed. RESULTS PCA identified three main modes of variation, all relating to range of motion (ROM) and its distribution between joints. Significant differences were found for coronal plane motions only (right: p = 0.02, left: p = 0.03) . LDA identified a shift in ROM to more cranial joints in the back pain group. CONCLUSION The results confirm altered motion sharing between intervertebral joints in back pain, and provides more details about this. Further work is required to establish how these findings lead to pain, and so strengthen the theoretical basis for treatment and management of this condition.
Collapse
Affiliation(s)
- Kevin Brownhill
- University College of Osteopathy, 275 Borough High Street, London SE1 1JE, United Kingdom.
| | - Fiona Mellor
- Centre for Biomechanics Research, AECC University College, Bournemouth, United Kingdom.
| | - Alex Breen
- Centre for Biomechanics Research, AECC University College, Bournemouth, United Kingdom.
| | - Alan Breen
- Centre for Biomechanics Research, AECC University College, Bournemouth, United Kingdom.
| |
Collapse
|
11
|
Breen A, Mellor F, Morris A, Breen A. An in vivo study exploring correlations between early-to-moderate disc degeneration and flexion mobility in the lumbar spine. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:2619-2627. [PMID: 32651632 DOI: 10.1007/s00586-020-06526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/14/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Early disc degeneration (DD) has been thought to be associated with loss of spine stability. However, before this can be understood in relation to back pain, it is necessary to know the relationship between DD and intervertebral motion in people without pain. This study aimed to find out if early-to-moderate DD is associated with intervertebral motion in people without back pain. METHODS Ten pain-free adults, aged 51-71, received recumbent and weight bearing MRI scans and quantitative fluoroscopy (QF) screenings during recumbent and upright lumbar flexion. Forty individual level and 10 composite (L2-S1) radiographic and MRI DD gradings were recorded and correlated with intervertebral flexion ROM, translation, laxity and motion sharing inequality and variability for both positions. RESULTS Kinematic values were similar to previous control studies. DD was evidenced up to moderate levels by both radiographic and MRI grading. Disc height loss correlated slightly, but negatively with flexion during weight bearing flexion (R = - 0.356, p = 0.0.025). Composite MRI DD and T2 signal loss evidenced similar relationships (R = - 0.305, R = - 0.267) but did not reach statistical significance (p = 0.056, p = 0.096). No significant relationships between any other kinematic variables and DD were found. CONCLUSION This study found only small, indefinite associations between early-to-moderate DD and intervertebral motion in healthy controls. Motion sharing in the absence of pain was also not related to early DD, consistent with previous control studies. Further research is needed to investigate these relationships in patients.
Collapse
Affiliation(s)
- Alan Breen
- Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB, UK.
| | - Fiona Mellor
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Bournemouth, BH5 2DF, UK
| | - Andrew Morris
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Bournemouth, BH5 2DF, UK
| | - Alexander Breen
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Bournemouth, BH5 2DF, UK
| |
Collapse
|
12
|
Breen A, Claerbout E, Hemming R, Ayer R, Breen A. Comparison of intra subject repeatability of quantitative fluoroscopy and static radiography in the measurement of lumbar intervertebral flexion translation. Sci Rep 2019; 9:19253. [PMID: 31848427 PMCID: PMC6917745 DOI: 10.1038/s41598-019-55905-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/02/2019] [Indexed: 11/12/2022] Open
Abstract
Low back pain patients are sometimes offered fusion surgery if intervertebral translation, measured from static, end of range radiographs exceeds 3 mm. However, it is essential to know the measurement error of such methods, if selection for back surgery is going to be informed by them. Fifty-five healthy male (34) and female (21) pain free participants aged 21-80 years received quantitative fluoroscopic (QF) imaging both actively during standing and passively in the lateral decubitus position. The following five imaging protocols were extracted from 2 motion examinations, which were repeated 6 weeks apart: 1. Static during upright free bending. 2. Maximum during controlled upright bending, 3. At the end of controlled upright bending, 4. Maximum during controlled recumbent bending, 5. At the end of controlled recumbent bending. Intervertebral flexion translations from L2-S1 were determined for each protocol and their measurement errors (intra subject repeatability) calculated. Estimations using static, free bending radiographic images gave measurement errors of up to 4 mm, which was approximately twice that of the QF protocols. Significantly higher ranges at L4-5 and L5-S1 were obtained from the static protocol compared with the QF protocols. Weight bearing ranges at these levels were also significantly higher in males regardless of the protocol. Clinical decisions based on sagittal translations of less than 4 mm would therefore require QF imaging.
Collapse
Affiliation(s)
- Alexander Breen
- Centre for Biomechanics Research, AECC University College, Parkwood Rd, Bournemouth, BH5 2DF, UK
| | - Emilie Claerbout
- Centre for Biomechanics Research, AECC University College, Parkwood Rd, Bournemouth, BH5 2DF, UK
| | - Rebecca Hemming
- Arthritis Research UK Biomechanics and Bioengineering Centre, School of Healthcare Sciences, Cardiff University, Eastgate House 35 - 43 Newport Road, Cardiff, CF24 0AB, UK
| | - Ravi Ayer
- Radiology Department, Poole General Hospital NHS Foundation Trust, Longfleet Rd, Poole, BH15 2JB, UK
| | - Alan Breen
- Faculty of Science and Technology Bournemouth University, Fern Barrow, Poole, BH12 5BB, UK.
| |
Collapse
|
13
|
Cholewicki J, Breen A, Popovich JM, Reeves NP, Sahrmann SA, van Dillen LR, Vleeming A, Hodges PW. Can Biomechanics Research Lead to More Effective Treatment of Low Back Pain? A Point-Counterpoint Debate. J Orthop Sports Phys Ther 2019; 49:425-436. [PMID: 31092123 PMCID: PMC7394249 DOI: 10.2519/jospt.2019.8825] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SYNOPSIS Although biomechanics plays a role in the development and perhaps the persistent or recurrent nature of low back pain (LBP), whether biomechanics alone can provide the basis for intervention is debated. Biomechanics, which refers to the mechanics of the body, including its neuromuscular control, has been studied extensively in LBP. But, can gains be made in understanding LBP by research focused on this component of biology in the multifactorial biopsychosocial problem of LBP? This commentary considers whether biomechanics research has the potential to advance treatment of LBP, and how likely it is that this research will lead to better treatment strategies. A point-counterpoint format is taken to present both sides of the argument. First, the challenges faced by an approach that considers biomechanics in isolation are presented. Next, we describe 3 models that place substantial emphasis on biomechanical factors. Finally, reactions to each point are presented as a foundation for further research and clinical practice to progress understanding of the place for biomechanics in guiding treatment of LBP. J Orthop Sports Phys Ther 2019;49(6):425-436. Epub 15 May 2019. doi:10.2519/jospt.2019.8825.
Collapse
|
14
|
Berry DB, Hernandez A, Onodera K, Ingram N, Ward SR, Gombatto SP. Lumbar spine angles and intervertebral disc characteristics with end-range positions in three planes of motion in healthy people using upright MRI. J Biomech 2019; 89:95-104. [PMID: 31047693 DOI: 10.1016/j.jbiomech.2019.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Understanding changes in lumbar spine (LS) angles and intervertebral disc (IVD) behavior in end-range positions in healthy subjects can provide a basis for developing more specific LS models and comparing people with spine pathology. The purposes of this study are to quantify 3D LS angles and changes in IVD characteristics with end-range positions in 3 planes of motion using upright MRI in healthy people, and to determine which intervertebral segments contribute most in each plane of movement. Thirteen people (average age = 24.4 years, range 18-51 years; 9 females; BMI = 22.4 ± 1.8 kg/m2) with no history of low back pain were scanned in an upright MRI in standing, sitting flexion, sitting axial rotation (left, right), prone on elbows, prone extension, and standing lateral bending (left, right). Global and local intervertebral LS angles were measured. Anterior-posterior length of the IVD and location of the nucleus pulposus was measured. For the sagittal plane, lower LS segments contribute most to change in position, and the location of the nucleus pulposus migrated from a more posterior position in sitting flexion to a more anterior position in end-range extension. For lateral bending, the upper LS contributes most to end-range positions. Small degrees of intervertebral rotation (1-2°) across all levels were observed for axial plane positions. There were no systematic changes in IVD characteristics for axial or coronal plane positions.
Collapse
Affiliation(s)
- David B Berry
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Alejandra Hernandez
- Doctor of Physical Therapy Program, School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Keenan Onodera
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Noah Ingram
- Doctor of Physical Therapy Program, School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Samuel R Ward
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA; Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA; Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Sara P Gombatto
- Doctor of Physical Therapy Program, School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
15
|
Mahato NK, Montuelle S, Clark BC. Assessment of In Vivo Lumbar Inter-Vertebral Motion: Reliability of a Novel Dynamic Weight-Bearing Magnetic Resonance Imaging Technique Using a Side-Bending Task. Asian Spine J 2019; 13:377-385. [PMID: 30691259 PMCID: PMC6547391 DOI: 10.31616/asj.2018.0219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/06/2018] [Indexed: 11/23/2022] Open
Abstract
Study Design Between-session reliability of a magnetic resonance imaging (MRI) based experimental technique to quantify lumbar inter-vertebral motion in humans. Purpose We have developed a novel, dynamic, MRI-based approach for quantifying in vivo lumbar inter-vertebral motion. In this study, we present the protocol’s reliability results to quantify inter-vertebral spine motion. Overview of Literature Morphometric studies on intervertebral displacements using static, supine MRI and quantification of dynamic spine motion using different X-ray based radiography techniques are commonly found in the literature. However, reliability testing of techniques assessing real-time lumbar intervertebral motion using weight-bearing MRI has rarely been reported. Methods Ten adults without a history of back pain performed a side-bending task on two separate occasions, inside an open-MRI, in a weight-bearing, upright position. The images were acquired during the task using a dynamic magnetic resonance (MR) sequence. The MRI imaging space was externally calibrated before the study to recreate the imaging volume for subsequent use in an animation software. The dynamic MR images were processed to create side-bending movement animations in the virtual environment. Participant-specific three-dimensional models were manually superimposed over vertebral image silhouettes in a sequence of image frames, representing the motion trials. Inter-vertebral axes and translation and rotational displacements of vertebrae were quantified using the animation software. Results Quantification of inter-vertebral rotations and translations shows high reliability. Between-session reliability results yielded high values for the intra-class correlation coefficient (0.86–0.93), coefficient of variation (13.3%–16.04%), and Pearson’s correlation coefficients (0.89–0.98). Conclusions This technique may be developed further to improve its speed and accuracy for diagnostic applications, to study in vivo spine stability, and to assess outcomes of surgical and non-surgical interventions applied to manage pathological spine motion.
Collapse
Affiliation(s)
- Niladri Kumar Mahato
- The University of The West Indies, St. Augustine, Trinidad and Tobago.,Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA.,Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | | | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA.,Department of Biomedical Sciences, Ohio University, Athens, OH, USA.,Department of Geriatric Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
16
|
Breen A, Hemming R, Mellor F, Breen A. Intrasubject repeatability of in vivo intervertebral motion parameters using quantitative fluoroscopy. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 28:450-460. [PMID: 30535658 DOI: 10.1007/s00586-018-5849-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE In vivo quantification of intervertebral motion through imaging has progressed to a point where biomarkers for low back pain are emerging. This makes possible deeper study of the condition's biometrics. However, the measurement of change over time involves error. The purpose of this prospective investigation is to determine the intrasubject repeatability of six in vivo intervertebral motion parameters using quantitative fluoroscopy. METHODS Intrasubject reliability (ICC) and minimal detectable change (MDC) of baseline to 6-week follow-up measurements were calculated for six lumbar spine intervertebral motion parameters in 109 healthy volunteers. A standardised quantitative fluoroscopy (QF) protocol was used to provide measurements in the coronal and sagittal planes using both passive recumbent and active weight-bearing motion. Parameters were: intervertebral range of motion (IV-RoM), laxity, motion sharing inequality (MSI), motion sharing variability (MSV), flexion translation and anterior disc height change during flexion. RESULTS The best overall intrasubject reliability (ICC) and agreement (MDC) were for disc height (ICC 0.89, MDC 43%) and IV-RoM (ICC 0.96, MDC 60%), and the worst for MSV (ICC 0.04, MDC 408%). Laxity, MSI and translation had acceptable reliability (most ICCs > 0.60), but not agreement (MDC > 85%). CONCLUSION Disc height and IV-RoM measurement using QF could be considered for randomised trials, while laxity, MSI and translation could be considered for moderators, correlates or mediators of patient-reported outcomes. MSV had both poor reliability and agreement over 6 weeks. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Alexander Breen
- Centre for Biomechanics Research, AECC University College, Parkwood Road, Bournemouth, Dorset, BH5 2DF, UK
| | - Rebecca Hemming
- Arthritis Research UK Biomechanics and Bioengineering Centre, School of Healthcare Sciences, Cardiff University, Cardiff, UK
| | - Fiona Mellor
- Centre for Biomechanics Research, AECC University College, Parkwood Road, Bournemouth, Dorset, BH5 2DF, UK
| | - Alan Breen
- Faculty of Science and Technology, Bournemouth University, Bournemouth, UK.
| |
Collapse
|
17
|
Lemeunier N, Jeoun EB, Suri M, Tuff T, Shearer H, Mior S, Wong JJ, da Silva-Oolup S, Torres P, D'Silva C, Stern P, Yu H, Millan M, Sutton D, Murnaghan K, Cȏté P. Reliability and validity of clinical tests to assess posture, pain location, and cervical spine mobility in adults with neck pain and its associated disorders: Part 4. A systematic review from the cervical assessment and diagnosis research evaluation (CADRE) collaboration. Musculoskelet Sci Pract 2018; 38:128-147. [PMID: 30455032 DOI: 10.1016/j.msksp.2018.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine the reliability and validity of clinical tests to assess posture, pain location, and cervical spine mobility in adults with grades I-IV neck pain and associated disorders (NAD). METHODS We systematically searched electronic databases to update the systematic review of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Eligible reliability and validity studies were critically appraised using modified versions of the QAREL and QUADAS-2 instruments, respectively. Evidence from low risk of bias studies were synthesized following best evidence synthesis principles. RESULTS We screened 14302 articles, critically appraised 46 studies, and found 32 low risk of bias articles (14 reliability and 18 validity studies). We found preliminary evidence of: 1) reliability of visual inspection, aided with devices (CROM and digital caliper) to assess head posture; 2) reliability and validity of soft tissue palpation to locate tender/trigger points in muscles; 3) reliability and validity of joint motion palpation to assess stiffness and pain provocation in combination; and 4) range of motion tests using visual estimation (in cervical extension only) or devices (digital caliper, goniometer, inclinometer) to assess cervical mobility. CONCLUSIONS We found little evidence to support the reliability and validity of clinical tests to assess head posture, pain location and cervical mobility in adults with NAD grades I-III. More advanced validity studies are needed to inform the clinical utility of tests used to evaluate patients with NAD.
Collapse
Affiliation(s)
- N Lemeunier
- Institut Franco-Européen de Chiropraxie, 72 chemin de la Flambère, 31300, Toulouse, France; UOIT-CMCC Centre for the Study of Disability Prevention and Rehabilitation, University of Ontario Institute of Technology (UOIT), 2000, Simcoe St. N., Oshawa, Ontario, Canada.
| | - E B Jeoun
- Division of Graduate Education and Research, Canadian Memorial Chiropractic College (CMCC), 6100, Leslie Street, Toronto, Ontario, Canada
| | - M Suri
- Division of Graduate Education and Research, Canadian Memorial Chiropractic College (CMCC), 6100, Leslie Street, Toronto, Ontario, Canada
| | - T Tuff
- Division of Graduate Education and Research, Canadian Memorial Chiropractic College (CMCC), 6100, Leslie Street, Toronto, Ontario, Canada
| | - H Shearer
- UOIT-CMCC Centre for the Study of Disability Prevention and Rehabilitation, University of Ontario Institute of Technology (UOIT), 2000, Simcoe St. N., Oshawa, Ontario, Canada; Division of Graduate Education and Research, Canadian Memorial Chiropractic College (CMCC), 6100, Leslie Street, Toronto, Ontario, Canada
| | - S Mior
- UOIT-CMCC Centre for the Study of Disability Prevention and Rehabilitation, University of Ontario Institute of Technology (UOIT), 2000, Simcoe St. N., Oshawa, Ontario, Canada; Division of Graduate Education and Research, Canadian Memorial Chiropractic College (CMCC), 6100, Leslie Street, Toronto, Ontario, Canada
| | - J J Wong
- UOIT-CMCC Centre for the Study of Disability Prevention and Rehabilitation, University of Ontario Institute of Technology (UOIT), 2000, Simcoe St. N., Oshawa, Ontario, Canada; Division of Graduate Education and Research, Canadian Memorial Chiropractic College (CMCC), 6100, Leslie Street, Toronto, Ontario, Canada
| | - S da Silva-Oolup
- Division of Graduate Education and Research, Canadian Memorial Chiropractic College (CMCC), 6100, Leslie Street, Toronto, Ontario, Canada
| | - P Torres
- Rehabilitation Centre, San Cristobal Clinic, Santiago Spine Group, Santiago, Chile
| | - C D'Silva
- UOIT-CMCC Centre for the Study of Disability Prevention and Rehabilitation, University of Ontario Institute of Technology (UOIT), 2000, Simcoe St. N., Oshawa, Ontario, Canada; Faculty of Health Sciences, University of Ontario Institute of Technology (UOIT), 2000, Simcoe St. N., Oshawa, Ontario, L1H 7K4, Canada
| | - P Stern
- Division of Graduate Education and Research, Canadian Memorial Chiropractic College (CMCC), 6100, Leslie Street, Toronto, Ontario, Canada
| | - H Yu
- UOIT-CMCC Centre for the Study of Disability Prevention and Rehabilitation, University of Ontario Institute of Technology (UOIT), 2000, Simcoe St. N., Oshawa, Ontario, Canada
| | - M Millan
- Cabinet d'expertise médicale, Castres, France
| | - D Sutton
- UOIT-CMCC Centre for the Study of Disability Prevention and Rehabilitation, University of Ontario Institute of Technology (UOIT), 2000, Simcoe St. N., Oshawa, Ontario, Canada
| | - K Murnaghan
- Librarian, Canadian Memorial Chiropractic College (CMCC), 6100, Leslie Street, Toronto, Ontario, Canada
| | - P Cȏté
- UOIT-CMCC Centre for the Study of Disability Prevention and Rehabilitation, University of Ontario Institute of Technology (UOIT), 2000, Simcoe St. N., Oshawa, Ontario, Canada; Faculty of Health Sciences, University of Ontario Institute of Technology (UOIT), 2000, Simcoe St. N., Oshawa, Ontario, L1H 7K4, Canada
| |
Collapse
|
18
|
du Rose A, Breen A, Breen A. Relationships between muscle electrical activity and the control of inter-vertebral motion during a forward bending task. J Electromyogr Kinesiol 2018; 43:48-54. [PMID: 30237131 DOI: 10.1016/j.jelekin.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022] Open
Abstract
Muscle strengthening exercises are commonly used in primary care for the treatment of chronic, non-specific low back pain (CNSLBP) as it has been theorised that increased muscle activity contributes to the stabilisation of inter-vertebral motion segments during bending and other spinal movements, however this has never been demonstrated in vivo. This study used contemporaneous quantitative fluoroscopy (QF) and surface electromyography (sEMG) to investigate relationships between continuous inter-vertebral motion variables and muscle electrical activity in the lumbar multifidus (LMU), lumbar and thoracic erector spinae (LES and TES) during standardised lumbar flexion and return in 18 healthy male human subjects. Our results demonstrated that the variability in the sharing of angular motion (i.e. Motion Share Variability MSV) and motion segment laxity during a bending task were significantly (p < 0.05) negatively correlated (Spearman) with muscle electrical activity throughout the participant bend for both locally and globally acting muscle groups. MSV was also strongly correlated with L2-3 laxity. The former suggests a damping mechanism reducing irregular displacements (i.e. less variability in the sharing of segmental motion) during bending and an action of spinal stabilisation by muscles at segmental levels, and the latter a synergy between laxity at L2-3 and MSV. While this has previously been theorised, it has never been shown in vivo at the inter-vertebral level. These assessments may be considered for use in validation studies of exercise programs for CNSLBP, however further replication is required.
Collapse
Affiliation(s)
- Alister du Rose
- University of South Wales, Treforest, Pontypridd, Wales CF37 1DL, UK.
| | - Alex Breen
- AECC University College, Bournemouth, Dorset, England BH52DF, UK
| | - Alan Breen
- AECC University College, Bournemouth, Dorset, England BH52DF, UK
| |
Collapse
|
19
|
du Rose A. Have Studies that Measure Lumbar Kinematics and Muscle Activity Concurrently during Sagittal Bending Improved Understanding of Spinal Stability and Sub-System Interactions? A Systematic Review. Healthcare (Basel) 2018; 6:healthcare6030112. [PMID: 30205578 PMCID: PMC6163188 DOI: 10.3390/healthcare6030112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 11/26/2022] Open
Abstract
In order to improve understanding of the complex interactions between spinal sub-systems (i.e., the passive (ligaments, discs, fascia and bones), the active (muscles and tendons) and the neural control systems), it is necessary to take a dynamic approach that incorporates the measurement of multiple systems concurrently. There are currently no reviews of studies that have investigated dynamic sagittal bending movements using a combination of electromyography (EMG) and lumbar kinematic measurements. As such it is not clear how understanding of spinal stability concepts has advanced with regards to this functional movement of the spine. The primary aim of this review was therefore to evaluate how such studies have contributed to improved understanding of lumbar spinal stability mechanisms. PubMed and Cochrane databases were searched using combinations of the keywords related to spinal stability and sagittal bending tasks, using strict inclusion and exclusion criteria and adhering to PRISMA guidelines. Whilst examples of the interactions between the passive and active sub-systems were shown, typically small sample sizes meant that results were not generalizable. The majority of studies used regional kinematic measurements, and whilst this was appropriate in terms of individual study aims, the studies could not provide insight into sub-system interaction at the level of the spinal motion segment. In addition, the heterogeneity in methodologies made comparison between studies difficult. The review suggests that since Panjabi’s seminal spinal control papers, only limited advancement in the understanding of these theories has been provided by the studies under review, particularly at an inter-segmental level. This lack of progression indicates a requirement for new research approaches that incorporate multiple system measurements at a motion segment level.
Collapse
Affiliation(s)
- Alister du Rose
- Faculty of Life Sciences and Education, University of South Wales, Treforest, Pontypridd, Wales CF37 1DL, UK.
| |
Collapse
|
20
|
Breen A, Mellor F, Breen A. Aberrant intervertebral motion in patients with treatment-resistant nonspecific low back pain: a retrospective cohort study and control comparison. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:2831-2839. [PMID: 29926209 DOI: 10.1007/s00586-018-5666-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/02/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Intervertebral kinematic assessments have been used to investigate mechanical causes when back pain is resistant to treatment, and recent studies have identified intervertebral motion markers that discriminate patients from controls. However, such patients are a heterogeneous group, some of whom have structural disruption, but the effects of this on intervertebral kinematics are unknown. METHODS Thirty-seven patients with treatment-resistant back pain referred for quantitative fluoroscopy were matched to an equal number of pain-free controls for age and sex. All received passive recumbent flexion assessments for intervertebral motion sharing inequality (MSI), variability (MSV), laxity and translation. Comparisons were made between patient subgroups, between patients and controls and against normative levels from a separate group of controls. RESULTS Eleven patients had had surgical or interventional procedures, and ten had spondylolisthesis or pars defects. Sixteen had no disruption. Patients had significantly higher median MSI values (0.30) than controls (0.27, p = 0.010), but not MSV (patients 0.08 vs controls 0.08, p = 0.791). Patients who received invasive procedures had higher median MSI values (0.37) than those with bony defects (0.30, p = 0.018) or no disruption (0.28, p = 0.0007). Laxity and translation above reference limits were not more prevalent in patients. CONCLUSION Patients with treatment-resistant nonspecific back pain have greater MSI values than controls, especially if the former have received spinal surgery. However, excessive laxity, translation and MSV are not more prevalent in these patients. Thus, MSI should be investigated as a pain mechanism and for its possible value as a prognostic factor and/or target for treatment in larger patient populations. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Alexander Breen
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Bournemouth, BH5 2DF, UK
| | - Fiona Mellor
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Bournemouth, BH5 2DF, UK
| | - Alan Breen
- Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB, UK.
| |
Collapse
|
21
|
Zanjani-Pour S, Meakin JR, Breen A, Breen A. Estimation of in vivo inter-vertebral loading during motion using fluoroscopic and magnetic resonance image informed finite element models. J Biomech 2018; 70:134-139. [DOI: 10.1016/j.jbiomech.2017.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022]
|
22
|
Anterior Trunk Mobility Does Not Predict Disability in Elderly Women With Acute Low Back Pain: Brazilian Back Complaints in the Elders (BACE-Brazil) Study Results. Spine (Phila Pa 1976) 2017; 42:1552-1558. [PMID: 28296815 DOI: 10.1097/brs.0000000000002151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Cross-sectional, ancillary study of an international multicenter epidemiological study. OBJECTIVE To investigate the relationship of the anterior trunk mobility with self-report and physical performance measures in elderly women with acute low back pain (LBP). SUMMARY OF BACKGROUND DATA LBP is one of the most prevalent pain complaints in the elderly population. It is postulated that the increased range of motion of limited joints of the trunk may improve LBP and functionality of patients. Recent studies have, however, questioned the association between trunk range of motion and the functional status. METHODS The present study included a convenience sample of elderly women from the community aged 60 years and older who presented with a new (acute) episode of LBP. Volunteers with severe diseases and visual, hearing and mobility losses, or cognitive impairment were excluded. Trunk mobility was assessed by the fingertip-to-floor test. Functionality was assessed by the Roland-Morris Questionnaire (RMQ) and gait speed test. Statistical analysis was performed by using hierarchical linear regression model. RESULTS Data from 459 elderly women, mean age of 69.0 (6.1) years old, were used to describe this report. The additional predictive value for the inclusion of independent variable trunk mobility was only 4.4% in the RMQ score and 1.5% in the gait speed test, respectively. A reduced hierarchical linear regression model showed that the significant predictors for RMQ and gait speed test were body mass index, pain intensity, and trunk mobility. CONCLUSION This was the first study to investigate the relationship between trunk mobility and functionality in elderly women with acute LBP. The results suggest that these clinical parameters are independent from each other. LEVEL OF EVIDENCE N/A.
Collapse
|
23
|
Breen A, Breen A. Uneven intervertebral motion sharing is related to disc degeneration and is greater in patients with chronic, non-specific low back pain: an in vivo, cross-sectional cohort comparison of intervertebral dynamics using quantitative fluoroscopy. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:145-153. [PMID: 28555313 DOI: 10.1007/s00586-017-5155-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/03/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Evidence of intervertebral mechanical markers in chronic, non-specific low back pain (CNSLBP) is lacking. This research used dynamic fluoroscopic studies to compare intervertebral angular motion sharing inequality and variability (MSI and MSV) during continuous lumbar motion in CNSLBP patients and controls. Passive recumbent and active standing protocols were used and the relationships of these variables to age and disc degeneration were assessed. METHODS Twenty patients with CNSLBP and 20 matched controls received quantitative fluoroscopic lumbar spine examinations using a standardised protocol for data collection and image analysis. Composite disc degeneration (CDD) scores comprising the sum of Kellgren and Lawrence grades from L2-S1 were obtained. Indices of intervertebral motion sharing inequality (MSI) and variability (MSV) were derived and expressed in units of proportion of lumbar range of motion from outward and return motion sequences during lying (passive) and standing (active) lumbar bending and compared between patients and controls. Relationships between MSI, MSV, age and CDD were assessed by linear correlation. RESULTS MSI was significantly greater in the patients throughout the intervertebral motion sequences of recumbent flexion (0.29 vs. 0.22, p = 0.02) and when flexion, extension, left and right motion were combined to give a composite measure (1.40 vs. 0.92, p = 0.04). MSI correlated substantially with age (R = 0.85, p = 0.004) and CDD (R = 0.70, p = 0.03) in lying passive investigations in patients and not in controls. There were also substantial correlations between MSV and age (R = 0.77, p = 0.01) and CDD (R = 0.85, p = 0.004) in standing flexion in patients and not in controls. CONCLUSION Greater inequality and variability of motion sharing was found in patients with CNSLBP than in controls, confirming previous studies and suggesting a biomechanical marker for the disorder at intervertebral level. The relationship between disc degeneration and MSI was augmented in patients, but not in controls during passive motion and similarly for MSV during active motion, suggesting links between in vivo disc mechanics and pain generation.
Collapse
Affiliation(s)
- Alan Breen
- Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB, UK.
| | - Alexander Breen
- Institute for Musculoskeletal Research and Clinical Implementation, Anglo-European College of Chiropractic, Bournemouth, BH5 2DF, UK
| |
Collapse
|
24
|
Mahato NK, Montuelle S, Goubeaux C, Cotton J, Williams S, Thomas J, Clark BC. Quantification of intervertebral displacement with a novel MRI-based modeling technique: Assessing measurement bias and reliability with a porcine spine model. Magn Reson Imaging 2016; 38:77-86. [PMID: 28027908 DOI: 10.1016/j.mri.2016.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to develop a novel magnetic resonance imaging (MRI)-based modeling technique for measuring intervertebral displacements. Here, we present the measurement bias and reliability of the developmental work using a porcine spine model. Porcine lumbar vertebral segments were fitted in a custom-built apparatus placed within an externally calibrated imaging volume of an open-MRI scanner. The apparatus allowed movement of the vertebrae through pre-assigned magnitudes of sagittal and coronal translation and rotation. The induced displacements were imaged with static (T1) and fast dynamic (2D HYCE S) pulse sequences. These images were imported into animation software, in which these images formed a background 'scene'. Three-dimensional models of vertebrae were created using static axial scans from the specimen and then transferred into the animation environment. In the animation environment, the user manually moved the models (rotoscoping) to perform model-to-'scene' matching to fit the models to their image silhouettes and assigned anatomical joint axes to the motion-segments. The animation protocol quantified the experimental translation and rotation displacements between the vertebral models. Accuracy of the technique was calculated as 'bias' using a linear mixed effects model, average percentage error and root mean square errors. Between-session reliability was examined by computing intra-class correlation coefficients (ICC) and the coefficient of variations (CV). For translation trials, a constant bias (β0) of 0.35 (±0.11) mm was detected for the 2D HYCE S sequence (p=0.01). The model did not demonstrate significant additional bias with each mm increase in experimental translation (β1Displacement=0.01mm; p=0.69). Using the T1 sequence for the same assessments did not significantly change the bias (p>0.05). ICC values for the T1 and 2D HYCE S pulse sequences were 0.98 and 0.97, respectively. For rotation trials, a constant bias (β0) of 0.62 (±0.12)° was detected for the 2D HYCE S sequence (p<0.01). The model also demonstrated an additional bias (β1Displacement) of 0.05° with each degree increase in the experimental rotation (p<0.01). Using T1 sequence for the same assessments did not significantly change the bias (p>0.05). ICC values for the T1 and 2D HYCE S pulse sequences were recorded 0.97 and 0.91, respectively. This novel quasi-static approach to quantifying intervertebral relationship demonstrates a reasonable degree of accuracy and reliability using the model-to-image matching technique with both static and dynamic sequences in a porcine model. Future work is required to explore multi-planar assessment of real-time spine motion and to examine the reliability of our approach in humans.
Collapse
Affiliation(s)
- Niladri K Mahato
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Ohio University, Athens, OH 45701, United States.
| | - Stephane Montuelle
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, United States.
| | - Craig Goubeaux
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH 45701, United States; Department of Mechanical Engineering, Ohio University, Athens, OH 45701, United States.
| | - John Cotton
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH 45701, United States; Department of Mechanical Engineering, Ohio University, Athens, OH 45701, United States.
| | - Susan Williams
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Ohio University, Athens, OH 45701, United States.
| | - James Thomas
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Ohio University, Athens, OH 45701, United States; School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, United States.
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Ohio University, Athens, OH 45701, United States; Department of Geriatric Medicine, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
25
|
Breen A, Breen A. Accuracy and repeatability of quantitative fluoroscopy for the measurement of sagittal plane translation and finite centre of rotation in the lumbar spine. Med Eng Phys 2016; 38:607-614. [PMID: 27129784 DOI: 10.1016/j.medengphy.2016.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/17/2016] [Accepted: 03/19/2016] [Indexed: 11/17/2022]
Abstract
Quantitative fluoroscopy (QF) was developed to measure intervertebral mechanics in vivo and has been found to have high repeatability and accuracy for the measurement of intervertebral rotations. However, sagittal plane translation and finite centre of rotation (FCR) are potential measures of stability but have not yet been fully validated for current QF. This study investigated the repeatability and accuracy of QF for measuring these variables. Repeatability was assessed from L2-S1 in 20 human volunteers. Accuracy was investigated using 10 consecutive measurements from each of two pairs of linked and instrumented dry human vertebrae as reference; one which tilted without translation and one which translated without tilt. The results found intra- and inter-observer repeatability for translation to be 1.1mm or less (SEM) with fair to substantial reliability (ICC 0.533-0.998). Intra-observer repeatability of FCR location for inter-vertebral rotations of 5° and above ranged from 1.5mm to 1.8mm (SEM) with moderate to substantial reliability (ICC 0.626-0.988). Inter-observer repeatability for FCR ranged from 1.2mm to 5.7mm, also with moderate to substantial reliability (ICC 0.621-0.878). Reliability was substantial (ICC>0.81) for 10/16 measures for translation and 5/8 for FCR location. Accuracy for translation was 0.1mm (fixed centre) and 2.2mm (moveable centre), with an FCR error of 0.3mm(x) and 0.4mm(y) (fixed centre). This technology was found to have a high level of accuracy and with a few exceptions, moderate to substantial repeatability for the measurement of translation and FCR from fluoroscopic motion sequences.
Collapse
Affiliation(s)
- Alexander Breen
- Institute for Musculoskeletal Research and Clinical Implementation, Anglo-European College of Chiropractic, 13-15 Parkwood Road, Bournemouth, Dorset BH5 2DF, UK
| | - Alan Breen
- School of Design Engineering and Computing, Bournemouth University, Talbot Campus, Poole, Dorset BH12 5BB, UK.
| |
Collapse
|
26
|
du Rose A, Breen A. Relationships between lumbar inter-vertebral motion and lordosis in healthy adult males: a cross sectional cohort study. BMC Musculoskelet Disord 2016; 17:121. [PMID: 26964535 PMCID: PMC4785734 DOI: 10.1186/s12891-016-0975-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/04/2016] [Indexed: 12/26/2022] Open
Abstract
Background Intervertebral motion impairment is widely thought to be related to chronic back disability, however, the movements of inter-vertebral pairs are not independent of each other and motion may also be related to morphology. Furthermore, maximum intervertebral range of motion (IV-RoMmax) is difficult to measure accurately in living subjects. The purpose of this study was to explore possible relationships between (IV-RoMmax) and lordosis, initial attainment rate and IV-RoMmax at other levels during weight-bearing flexion using quantitative fluoroscopy (QF). Methods Continuous QF motion sequences were recorded during controlled active sagittal flexion of 60° in 18 males (mean age 27.6 SD 4.4) with no history of low back pain in the previous year. IV-RoMmax, lordotic angle, and initial attainment rate at all inter-vertebral levels from L2-S1 were extracted. Relationships between IV-RoMmax and the other variables were explored using correlation coefficients, and simple linear regression was used to determine the effects of any significant relationships. Within and between observer repeatability of IV-RoMmax and initial attainment rate measurements were assessed in a sub-set of ten participants, using the intra-class correlation coefficient (ICC) and standard error of measurement (SEM). Results QF measurements were highly repeatable, the lowest ICC for IV-RoMmax, being 0.94 (0.80–0.99) and highest SEM (0.76°). For initial attainment rate the lowest ICC was 0.84 (0.49–0.96) and the highest SEM (0.036). The results also demonstrated significant positive and negative correlations between IV-RoMmax and IV-RoMmax at other lumbar levels (r = −0.64–0.65), lordosis (r = −0.52–0.54), and initial attainment rate (r = −0.64–0.73). Simple linear regression analysis of all significant relationships showed that these predict between 28 and 42 % of the variance in IV-RoMmax. Conclusions This study found weak to moderate effects of individual kinematic variables and lumbar lordosis on IV-RoMmax at other intervertebral levels. These effects, when combined, may be important when such levels are being considered by healthcare professionals as potential sources of pain generation. Multivariate investigations in larger samples are warranted. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-0975-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alister du Rose
- Institute for Musculoskeletal Research and Clinical Implementation, Anglo-European College of Chiropractic, Parkwood Road, Bournemouth, BH5 2DF, UK. .,Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, BH12 5BB, UK.
| | - Alan Breen
- Institute for Musculoskeletal Research and Clinical Implementation, Anglo-European College of Chiropractic, Parkwood Road, Bournemouth, BH5 2DF, UK.,Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, BH12 5BB, UK
| |
Collapse
|
27
|
du Rose A, Breen A. Relationships between Paraspinal Muscle Activity and Lumbar Inter-Vertebral Range of Motion. Healthcare (Basel) 2016; 4:healthcare4010004. [PMID: 27417592 PMCID: PMC4934538 DOI: 10.3390/healthcare4010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 11/16/2022] Open
Abstract
Control of the lumbar spine requires contributions from both the active and passive sub-systems. Identifying interactions between these systems may provide insight into the mechanisms of low back pain. However, as a first step it is important to investigate what is normal. The purpose of this study was to explore the relationships between the lumbar inter-vertebral range of motion and paraspinal muscle activity during weight-bearing flexion in healthy controls using quantitative fluoroscopy (QF) and surface electromyography (sEMG). Contemporaneous lumbar sEMG and QF motion sequences were recorded during controlled active flexion of 60° using electrodes placed over Longissimus thoracis pars thoracis (TES), Longissimus thoracis pars lumborum (LES), and Multifidus (LMU). Normalised root mean square (RMS) sEMG amplitude data were averaged over five epochs, and the change in amplitude between epochs was calculated. The sEMG ratios of LMU/LES LMU/TES and LES/TES were also determined. QF was used to measure the maximum inter-vertebral range of motion from L2-S1, and correlation coefficients were calculated between sEMG amplitude variables and these measurements. Intra- and inter-session sEMG amplitude repeatability was also assessed for all three paraspinal muscles. The sEMG amplitude measurements were highly repeatable, and sEMG amplitude changes correlated significantly with L4-5 and L5-S1 IV-RoMmax (r = -0.47 to 0.59). The sEMG amplitude ratio of LES/TES also correlated with L4-L5 IV-RoMmax (r = -0.53). The relationships found may be important when considering rehabilitation for low back pain.
Collapse
Affiliation(s)
- Alister du Rose
- Institute for Musculoskeletal Research and Clinical Implementation, Anglo-European College of Chiropractic, Parkwood Road, Bournemouth BH5 2DF, UK.
- Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole BH12 5B, UK.
| | - Alan Breen
- Institute for Musculoskeletal Research and Clinical Implementation, Anglo-European College of Chiropractic, Parkwood Road, Bournemouth BH5 2DF, UK.
| |
Collapse
|
28
|
Staub BN, Holman PJ, Reitman CA, Hipp J. Sagittal plane lumbar intervertebral motion during seated flexion-extension radiographs of 658 asymptomatic nondegenerated levels. J Neurosurg Spine 2015; 23:731-8. [PMID: 26296193 DOI: 10.3171/2015.3.spine14898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Evaluation of lumbar stability is fundamentally dependent on a clear understanding of normal lumbar motion. There are inconsistencies in reported lumbar motion across previously published studies, and it is unclear which provide the most reliable reference data. New technology now allows valid and reliable determination of normal lumbar intervertebral motion (IVM). The object of this study was to provide normative reference data for lumbar IVM and center of rotation (COR) using validated computer-assisted measurement tools.
METHODS
Sitting flexion-extension radiographs were obtained in 162 asymptomatic volunteers and then analyzed using a previously validated and widely used computerized image analysis method. Each lumbar level was subsequently classified as “degenerated” or “nondegenerated” using the Kellgren-Lawrence classification. Of the 803 levels analyzed, 658 were nondegenerated (Kellgren-Lawrence grade < 2). At each level of the lumbar spine, the magnitude of intervertebral rotation and translation, the ratio of translation per degree of rotation (TPDR), and the position of the COR were calculated in the nondegenerative cohort. Translations were calculated in millimeters and percentage endplate width.
RESULTS
All parameters were significantly dependent on the intervertebral level. The upper limit of the 95% CIs for anteroposterior intervertebral translation in this asymptomatic cohort ranged from 2.1 mm (6.2% endplate width) to 4.6 mm (13.3% endplate width). Intervertebral rotation upper limits ranged from 16.3° to 23.5°. The upper limits for TPDR ranged from 0.49% to 0.82% endplate width/degree. The COR coordinates were clustered in level-dependent patterns.
CONCLUSIONS
New normal values for IVM, COR, and the ratio of TPDR in asymptomatic nondegenerative lumbar levels are proposed, providing a reference for future interpretation of sagittal plane motion in the lumbar spine.
Collapse
Affiliation(s)
- Blake N. Staub
- 1Department of Neurosurgery, Houston Methodist Neurological Institute, Methodist Hospital
| | - Paul J. Holman
- 1Department of Neurosurgery, Houston Methodist Neurological Institute, Methodist Hospital
| | | | - John Hipp
- 3Medical Metrics Inc., Houston, Texas
| |
Collapse
|
29
|
Branney J, Breen AC. Does inter-vertebral range of motion increase after spinal manipulation? A prospective cohort study. Chiropr Man Therap 2014; 22:24. [PMID: 25035795 PMCID: PMC4102240 DOI: 10.1186/s12998-014-0024-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/18/2014] [Indexed: 01/06/2023] Open
Abstract
Background Spinal manipulation for nonspecific neck pain is thought to work in part by
improving inter-vertebral range of motion (IV-RoM), but it is difficult to measure
this or determine whether it is related to clinical outcomes. Objectives This study undertook to determine whether cervical spine flexion and extension
IV-RoM increases after a course of spinal manipulation, to explore relationships
between any IV-RoM increases and clinical outcomes and to compare palpation with
objective measurement in the detection of hypo-mobile segments. Method Thirty patients with nonspecific neck pain and 30 healthy controls matched for age
and gender received quantitative fluoroscopy (QF) screenings to measure flexion
and extension IV-RoM (C1-C6) at baseline and 4-week follow-up between September
2012-13. Patients received up to 12 neck manipulations and completed NRS, NDI and
Euroqol 5D-5L at baseline, plus PGIC and satisfaction questionnaires at follow-up.
IV-RoM accuracy, repeatability and hypo-mobility cut-offs were determined. Minimal
detectable changes (MDC) over 4 weeks were calculated from controls. Patients and
control IV-RoMs were compared at baseline as well as changes in patients over 4
weeks. Correlations between outcomes and the number of manipulations received and
the agreement (Kappa) between palpated and QF-detected of hypo-mobile segments
were calculated. Results QF had high accuracy (worst RMS error 0.5o) and repeatability (highest SEM 1.1o,
lowest ICC 0.90) for IV-RoM measurement. Hypo-mobility cut offs ranged from 0.8o
to 3.5o. No outcome was significantly correlated with increased IV-RoM above MDC
and there was no significant difference between the number of hypo-mobile segments
in patients and controls at baseline or significant increases in IV-RoMs in
patients. However, there was a modest and significant correlation between the
number of manipulations received and the number of levels and directions whose
IV-RoM increased beyond MDC (Rho=0.39, p=0.043). There was also no agreement
between palpation and QF in identifying hypo-mobile segments (Kappa
0.04-0.06). Conclusions This study found no differences in cervical sagittal IV-RoM between patients with
non-specific neck pain and matched controls. There was a modest dose-response
relationship between the number of manipulations given and number of levels
increasing IV-RoM - providing evidence that neck manipulation has a mechanical
effect at segmental levels. However, patient-reported outcomes were not related to
this.
Collapse
Affiliation(s)
- Jonathan Branney
- Institute of Musculoskeletal Research & Clinical Implementation, Anglo-European College of Chiropractic, 13-15 Parkwood Road, Bournemouth BH5 2DF, UK ; The School of Health & Social Care, Bournemouth University, Royal London House, Christchurch Road, Bournemouth BH1 3LT, UK
| | - Alan C Breen
- Institute of Musculoskeletal Research & Clinical Implementation, Anglo-European College of Chiropractic, 13-15 Parkwood Road, Bournemouth BH5 2DF, UK
| |
Collapse
|