1
|
Kiliç A, Aslan M, Önal G, Levent A. Firstly electrochemical investigetions and determination of anticoagulant drug edoxaban at single-use pencil graphite electrode: an eco-friendly and cost effective voltammetric method. Daru 2023; 31:233-241. [PMID: 37695455 PMCID: PMC10624777 DOI: 10.1007/s40199-023-00478-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVES The anticoagulant drug edoxaban has a blood thinning mechanism of action. In this study, a pencil graphite electrode was electrochemically activated at + 1.4 V for 60 s. in a Britton-Robinson (pH 9.0) supporting electrolyte solution. EVIDENCE ACQUISITION A simple, fast, and sensitive electrochemical procedure was developed using cyclic voltammetry and square wave voltammetry techniques. It was observed that edoxaban gave a good oxidation signal with cyclic voltammetry technique at a potential of + 0.98 V (vs. Ag/AgCl). RESULTS This procedure showed a linear response in a Britton-Robinson (pH 9.0) media within the concentration range of 0.2-1.8 µM and limit of detection (LOD) and the limit of quantification (LOQ) values were determined to be 0.073 μM (0.133 μg mL-1) and 0.243 μM (0.443 μg mL-1), respectively. CONCLUSION The method developed in this study was successfully applied to drug and urine samples. The developed voltammetric method was highly selective and gave satisfactory recovery results in urine and pharmaceutical samples. The results of the voltammetric method were compared with the spectroscopic method and it was determined that the results were compatible.
Collapse
Affiliation(s)
- Abdulkadir Kiliç
- Department of Chemistry, Faculty of Sciences, Batman University, Batman, Turkey
| | - Mehmet Aslan
- Graduate School of Education, Chemistry Department, Dicle University, Diyarbakır, Turkey
| | - Günay Önal
- Department of Medical Services and Techniques, Health Services Vocational School, Batman University, Batman, Turkey
| | - Abdulkadir Levent
- Department of Chemistry, Faculty of Sciences, Batman University, Batman, Turkey.
| |
Collapse
|
2
|
Kiliç A, Aslan M, Önal G, Levent A. Firstly electrochemical investigetions and determination of anticoagulant drug edoxaban at single-use pencil graphite electrode: an eco-friendly and cost effective voltammetric method. Daru 2023; 31:233-241. [DOI: https:/doi.org/10.1007/s40199-023-00478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/11/2023] [Indexed: 07/01/2024] Open
|
3
|
Kharlamova MV, Kramberger C. Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:640. [PMID: 36839009 PMCID: PMC9961505 DOI: 10.3390/nano13040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
This paper is dedicated to the discussion of applications of carbon material in electrochemistry. The paper starts with a general discussion on electrochemical doping. Then, investigations by spectroelectrochemistry are discussed. The Raman spectroscopy experiments in different electrolyte solutions are considered. This includes aqueous solutions and acetonitrile and ionic fluids. The investigation of carbon nanotubes on different substrates is considered. The optical absorption experiments in different electrolyte solutions and substrate materials are discussed. The chemical functionalization of carbon nanotubes is considered. Finally, the application of carbon materials and chemically functionalized carbon nanotubes in batteries, supercapacitors, sensors, and nanoelectronic devices is presented.
Collapse
Affiliation(s)
- Marianna V. Kharlamova
- Centre for Advanced Materials Application (CEMEA) of Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 11 Bratislava, Slovakia
| | | |
Collapse
|
4
|
Jose J, Prakash P, Jeyaprabha B, Abraham R, Mathew RM, Zacharia ES, Thomas V, Thomas J. Principle, design, strategies, and future perspectives of heavy metal ion detection using carbon nanomaterial-based electrochemical sensors: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Electrochemical Detection of Sulfite by Electroreduction Using a Carbon Paste Electrode Binder with N-octylpyridinium Hexafluorophosphate Ionic Liquid. Catalysts 2022. [DOI: 10.3390/catal12121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sulfite is a widely used additive in food and beverages, and its maximum content is limited by food regulations. For this reason, determining the sulfite concentration using fast, low-cost techniques is a current challenge. This work describes the behavior of a sensor based on an electrode formed by carbon nanotubes an ionic liquid as binder, which by electrochemical reduction, allows detecting sulfite with a detection limit of 1.6 ± 0.05 mmol L−1 and presents adequate sensitivity. The advantage of detecting sulfite by reduction and not by oxidation is that the presence of antioxidants such as ascorbic acid does not affect the measurement. The electrode shown here is low-cost and easy to manufacture, robust, and stable.
Collapse
|
6
|
Dominguez-Alfaro A, Chau NDQ, Yan S, Mancino D, Pamulapati S, Williams S, Taylor LW, Dewey OS, Pasquali M, Prato M, Bianco A, Criado A. Electrochemical modification of carbon nanotube fibres. NANOSCALE 2022; 14:9313-9322. [PMID: 35579037 DOI: 10.1039/d1nr07495d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Covalent modification of the surface of carbon nanotube fibres (CNTFs) through electrochemical reduction of para-substituted phenyldiazonium salts and electrochemical oxidation of an aliphatic diamine is described. Following these strategies, diverse surface functionalities have been introduced while preserving the fibre bulk properties. The corresponding modified CNTFs were fully characterised by Raman spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-Ray, scanning electron microscopy and electrochemical impedance spectroscopy, exhibiting different surface properties from those of the unmodified CNTFs.
Collapse
Affiliation(s)
- Antonio Dominguez-Alfaro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
| | - Ngoc Do Quyen Chau
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France.
| | - Stephen Yan
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, The Smalley-Curl Institute, The Carbon Hub, Rice University, Houston, TX 77005, USA
| | - Donato Mancino
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
| | - Sushma Pamulapati
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, The Smalley-Curl Institute, The Carbon Hub, Rice University, Houston, TX 77005, USA
| | - Steven Williams
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, The Smalley-Curl Institute, The Carbon Hub, Rice University, Houston, TX 77005, USA
| | - Lauren W Taylor
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, The Smalley-Curl Institute, The Carbon Hub, Rice University, Houston, TX 77005, USA
| | - Oliver S Dewey
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, The Smalley-Curl Institute, The Carbon Hub, Rice University, Houston, TX 77005, USA
| | - Matteo Pasquali
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, The Smalley-Curl Institute, The Carbon Hub, Rice University, Houston, TX 77005, USA
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Department of Chemical and Pharmaceutical Sciences, INSTM, unit of Trieste, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France.
| | - Alejandro Criado
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Rúa As Carballeiras, 15071, A Coruña, Spain.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
| |
Collapse
|
7
|
Motshakeri M, Sharma M, Phillips ARJ, Kilmartin PA. Electrochemical Methods for the Analysis of Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2427-2449. [PMID: 35188762 DOI: 10.1021/acs.jafc.1c06350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The milk and dairy industries are some of the most profitable sectors in many countries. This business requires close control of product quality and continuous testing to ensure the safety of the consumers. The potential risk of contaminants or degradation products and undesirable chemicals necessitates the use of fast, reliable detection tools to make immediate production decisions. This review covers studies on the application of electrochemical methods to milk (i.e., voltammetric and amperometric) to quantify different analytes, as reported over the last 10 to 15 years. The review covers a wide range of analytes, including allergens, antioxidants, organic compounds, nitrogen- and aldehyde containing compounds, biochemicals, heavy metals, hydrogen peroxide, nitrite, and endocrine disruptors. The review also examines pretreatment procedures applied to milk samples and the use of novel sensor materials. Final perspectives are provided on the future of cost-effective and easy-to-use electrochemical sensors and their advantages over conventional methods.
Collapse
Affiliation(s)
- Mahsa Motshakeri
- Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Anthony R J Phillips
- School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Paul A Kilmartin
- Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
8
|
Evaluating the Origin of the Electrocatalytic Activity of Multiwalled Carbon Nanotubes towards Vitamin D3 Oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Mezzasalma SA, Grassi L, Grassi M. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112480. [PMID: 34857266 DOI: 10.1016/j.msec.2021.112480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
The open border between non-living and living matter, suggested by increasingly emerging fields of nanoscience interfaced to biological systems, requires a detailed knowledge of nanomaterials properties. An account of the wide spectrum of phenomena, belonging to physical chemistry of interfaces, materials science, solid state physics at the nanoscale and bioelectrochemistry, thus is acquainted for a comprehensive application of carbon nanotubes interphased with neuron cells. This review points out a number of conceptual tools to further address the ongoing advances in coupling neuronal networks with (carbon) nanotube meshworks, and to deepen the basic issues that govern a biological cell or tissue interacting with a nanomaterial. Emphasis is given here to the properties and roles of carbon nanotube systems at relevant spatiotemporal scales of individual molecules, junctions and molecular layers, as well as to the point of view of a condensed matter or materials scientist. Carbon nanotube interactions with blood-brain barrier, drug delivery, biocompatibility and functionalization issues are also regarded.
Collapse
Affiliation(s)
- Stefano A Mezzasalma
- Ruder Bošković Institute, Materials Physics Division, Bijeniška cesta 54, 10000 Zagreb, Croatia; Lund Institute for advanced Neutron and X-ray Science (LINXS), Lund University, IDEON Building, Delta 5, Scheelevägen 19, 223 70 Lund, Sweden.
| | - Lucia Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| |
Collapse
|
10
|
Altunkaynak Y, Yavuz Ö, Levent A. Firstly electrochemical examination of vildagliptin at disposable graphite sensor: Sensitive determination in drugs and human urine by square-wave voltammetry. Microchem J 2021; 170:106653. [DOI: https:/doi.org/10.1016/j.microc.2021.106653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
|
11
|
Altunkaynak Y, Yavuz Ö, Levent A. Firstly electrochemical examination of vildagliptin at disposable graphite sensor: Sensitive determination in drugs and human urine by square-wave voltammetry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Affiliation(s)
- Beant Kaur Billing
- University Centre for Research and Development Chandigarh University Gharuan Mohali 140413 India
| |
Collapse
|
13
|
Design and fabrication of low potential NADH-sensor based on poly(caffeic acid)@multi-walled carbon nanotubes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Urzúa J, Yañez C, Carbajo J, Mozo J, Squella J. Nitrofluorene derivatives trapped within MWCNTs for electrocatalysis of NADH: Substituent effects on π-π stacking interaction strength. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
A lab-made screen-printed electrode as a platform to study the effect of the size and functionalization of carbon nanotubes on the voltammetric determination of caffeic acid. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zambianco NA, da Silva VA, Orzari LO, Corat EJ, Zanin HG, Silva TA, Buller GA, Keefe EM, Banks CE, Janegitz BC. Determination of tadalafil in pharmaceutical samples by vertically oriented multi-walled carbon nanotube electrochemical sensing device. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Abstract
This study examines how the several major industries, associated with a carbon artifact production, essentially belong to one, closely knit family. The common parents are the geological fossils called petroleum and coal. The study also reviews the major developments in carbon nanotechnology and electrocatalysis over the last 30 years or so. In this context, the development of various carbon materials with size, dopants, shape, and structure designed to achieve high catalytic electroactivity is reported, and among them recent carbon electrodes with many important features are presented together with their relevant applications in chemical technology, neurochemical monitoring, electrode kinetics, direct carbon fuel cells, lithium ion batteries, electrochemical capacitors, and supercapattery.
Collapse
Affiliation(s)
- César A C Sequeira
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
18
|
Rębiś T, Falkowski M, Milczarek G, Goslinski T. Electrocatalytic NADH Sensing using Electrodes Modified with 2‐[2‐(4‐Nitrophenoxy)ethoxy]ethylthio‐Substituted Porphyrazine/Single‐Walled Carbon Nanotube Hybrids. ChemElectroChem 2020. [DOI: 10.1002/celc.202000430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomasz Rębiś
- Institute of Chemistry and Technical ElectrochemistryPoznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Michał Falkowski
- Department of Medicinal ChemistryCollegium Medicum in BydgoszczFaculty of PharmacyNicolaus Copernicus University in Toruń Dr. A. Jurasza 2 85-089 Bydgoszcz Poland
| | - Grzegorz Milczarek
- Institute of Chemistry and Technical ElectrochemistryPoznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Tomasz Goslinski
- Department of Chemical Technology of DrugsPoznan University of Medical Sciences Grunwaldzka 6 60-780 Poznan Poland
| |
Collapse
|
19
|
Esrafili A, Ghambarian M, Tajik M, Baharfar M, Tabibpour M. Polydopamine‐Functionalized Carbon Nanotubes for Pipette‐Tip Micro‐Solid Phase Extraction of Malathion and Parathion from Environmental Samples. ChemistrySelect 2020. [DOI: 10.1002/slct.201904468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ali Esrafili
- Department of Environmental Health EngineeringSchool of Public HealthIran University of Medical Sciences Tehran Iran
- Research Center for Environmental Health TechnologyIran University of Medical Sciences Tehran Iran
| | - Mahnaz Ghambarian
- Iranian Research and Development Center for Chemical Industries, ACECR Tehran Iran
| | - Mohammad Tajik
- School of ChemistryUniversity of New South Wales Sydney New South Wales 2052 Australia
| | - Mahroo Baharfar
- Graduate School of Biomedical EngineeringFaculty of EngineeringUniversity of New South Wales (UNSW) Sydney 2052 Australia
| | - Mahmoud Tabibpour
- Chemistry & Chemical Engineering Research Center of Iran Tehran Iran
| |
Collapse
|
20
|
Carbon nanotubes modified with 5,7-dinitro-8-quinolinol as potentially applicable tool for efficient removal of industrial wastewater pollutants. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Dhara K, Debiprosad RM. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal Biochem 2019; 586:113415. [DOI: 10.1016/j.ab.2019.113415] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
|
22
|
Abstract
This paper summarizes several examples of enzyme immobilization and bioelectrocatalysis at carbon nanotubes (CNTs). CNTs offer substantial improvements on the overall performance of amperometric enzyme electrodes mainly due to their unique structural, mechanical and electronic properties such as metallic, semi-conducting and superconducting electron transport. Unfortunately, their water insolubility restrains the kick-off in some particular fields. However, the chemical functionalization of CNTs, non-covalent and covalent, attracted a remarkable interest over the past several decades boosting the development of electrochemical biosensors and enzymatic fuel cells (EFCs) based on two different types of communications: mediated electron transfer (MET)-type, where the use of redox mediators, small electroactive molecules (freely diffusing or bound to side chains of flexible redox polymers), which are able to shuttle the electrons between the enzyme active site and the electrode (second electron transfer generation system); direct electron transfer (DET)-type between the redox group of the enzyme and the electrode surface (third electron transfer generation system).
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, United States.
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
23
|
Mirzaei P, Bastide S, Aghajani A, Bourgon J, Leroy É, Zhang J, Snoussi Y, Bensghaier A, Hamouma O, Chehimi MM, Cachet-Vivier C. Bimetallic Cu-Rh Nanoparticles on Diazonium-Modified Carbon Powders for the Electrocatalytic Reduction of Nitrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14428-14436. [PMID: 31610116 DOI: 10.1021/acs.langmuir.9b01911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
4-Benzenethiol-functionalized high-surface-area graphite powder was prepared and decorated with bimetallic Cu100-xRhx nanoparticles (NPs) to serve as electrocatalysts for the reduction of nitrates. In the first step, the HSAG powder was grafted with in-situ-generated diazonium compounds from 4-aminothiophenol (ATP) in an acidic medium using NaNO2 for the diazotization process. The surface composition was tuned using different initial quantities of ATP. The surface XPS-determined S/C atomic ratio was found to increase stepwise with the initial quantity of amine. In a second step, the grafted and untreated HSAG powders were decorated with Cu100-xRhx NPs by a wet chemical method and the elemental composition of the end composites was assessed by EDS-SEM and ICP, whereas TEM and EDS-TEM served to characterize the NP morphology and their composition on the nanometer scale. In all cases, the NP size was invariably found to be ∼1.7 nm but with a size distribution becoming narrower under an increasing grafting rate and the global composition enriched in copper. Voltammetry was performed with a cavity microelectrode to evaluate the electrocatalytic performance of the composites for nitrate reduction. Increasing diazonium grafting led to a progressive reduction of the peak current intensity and a shift of the peak potentials toward cathodic values. The maximum intensity was obtained for 0.005 μmol of diazonium salt per mg of HSAG, with a gain of 40% in comparison to the best untreated sample. This improvement and a change in the voltammogram characteristics after grafting seem to result from modifications of the local composition at the level of NPs that differ from the global composition. This work conclusively shows that diazonium surface modification is important not only in attaching electrocatalytic NPs to carbon supports but also in providing a narrower size distribution of the electrocatalysts together with finely tuned catalytic properties.
Collapse
Affiliation(s)
- Peyman Mirzaei
- Univ Paris Est Creteil , CNRS, ICMPE, UMR7182 , F-94320 Thiais , France
- MBA Water Treatment Chemicals Co., Ltd , No. 9 Tadayyon Alley, Shariati Street , Tehran , Iran
| | - Stéphane Bastide
- Univ Paris Est Creteil , CNRS, ICMPE, UMR7182 , F-94320 Thiais , France
| | - Atieh Aghajani
- MBA Water Treatment Chemicals Co., Ltd , No. 9 Tadayyon Alley, Shariati Street , Tehran , Iran
| | - Julie Bourgon
- Univ Paris Est Creteil , CNRS, ICMPE, UMR7182 , F-94320 Thiais , France
| | - Éric Leroy
- Univ Paris Est Creteil , CNRS, ICMPE, UMR7182 , F-94320 Thiais , France
| | - Junxian Zhang
- Univ Paris Est Creteil , CNRS, ICMPE, UMR7182 , F-94320 Thiais , France
| | - Youssef Snoussi
- Univ Paris Est Creteil , CNRS, ICMPE, UMR7182 , F-94320 Thiais , France
- Laboratory of Materials, Molecules and Applications , IPEST, University of Carthage , Sidi Bou Said Road , B.P. 51 2070 La Marsa , Tunisia
| | - Asma Bensghaier
- Univ Paris Est Creteil , CNRS, ICMPE, UMR7182 , F-94320 Thiais , France
- Université de Tunis El Manar , Faculté des Sciences de Tunis, Laboratoire de Chimie (Bio)Organique Structurale et de Polymères - Synthèse et Etudes Physicochimiques (LR99ES14) , 2092 El Manar , Tunisia
| | - Ouezna Hamouma
- Univ Paris Est Creteil , CNRS, ICMPE, UMR7182 , F-94320 Thiais , France
- Laboratoire d'Electrochimie, Corrosion et de Valorisation Énergétique (LECVE), Faculté des Sciences Exactes , Université de Bejaia , 06000 Bejaia , Algeria
| | - Mohamed M Chehimi
- Univ Paris Est Creteil , CNRS, ICMPE, UMR7182 , F-94320 Thiais , France
| | | |
Collapse
|
24
|
Heineman MG, Gonçalves BL, Vicenti JRM, Dias D. Voltammetric Detection of Lead Using Chitosan-tripolyphosphate Crosslinked Electrode. ANAL SCI 2019; 35:1255-1261. [PMID: 31378775 DOI: 10.2116/analsci.19p249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper discusses about the improvement of electrochemical characteristics of graphite paste electrode chemically modified with chitosan through physical crosslinking of the biopolymer with sodium tripolyphosphate. Biopolymer characterizations were performed by scanning electron microscopy, Fourier transform infrared spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical characterization of Pb with graphite paste electrode modified with chitosan crosslinked with sodium tripolyphosphate (GPE-CTS-TPP) showed that the process is quasireversible, controlled by adsorption and involves the transfer of two electrons. Additionally, the physical crosslinking process decreased the electrode resistance as well as improved the electron transfer rate. Once the GPE-CTS-TPP showed enhanced morphological and electrochemical characteristics, it was applied for Pb determination by square wave anodic stripping voltammetry. The method presented appropriate accuracy (recoveries from 95 to 108% and concordance with comparative method between 90 and 107%), high sensitivity (limit of detection and quantification of Pb were 0.73 and 2.44 μg L-1, respectively) and could be applied to analytical determinations.
Collapse
Affiliation(s)
- Mônika G Heineman
- Laboratório de Eletro-Espectro Analítica (LEEA), Escola de Química e Alimentos, Universidade Federal do Rio Grande
| | - Bruna L Gonçalves
- Laboratório de Físico-Química Aplicada e Tecnológica (LAFQAT), Escola de Química e Alimentos, Universidade Federal do Rio Grande
| | - Juliano R M Vicenti
- Laboratório de Físico-Química Aplicada e Tecnológica (LAFQAT), Escola de Química e Alimentos, Universidade Federal do Rio Grande
| | - Daiane Dias
- Laboratório de Eletro-Espectro Analítica (LEEA), Escola de Química e Alimentos, Universidade Federal do Rio Grande
| |
Collapse
|
25
|
Göbel G, Talke A, Ahnert U, Lisdat F. Electrochemical Activity Determination of Catechol‐O‐methyl Transferase by Selective Dopamine Detection. ChemElectroChem 2019. [DOI: 10.1002/celc.201900856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gero Göbel
- Biosystems Technology Institute of Life Sciences and Biomedical Technologies Technical University Wildau Germany
| | | | | | - Fred Lisdat
- Biosystems Technology Institute of Life Sciences and Biomedical Technologies Technical University Wildau Germany
| |
Collapse
|
26
|
Ozturk K, Bakirhan NK, Ozkan SA, Uslu B. Effect of Catalytically Active Zinc Oxide−Carbon Nanotube Composite on Sensitive Assay of Desloratadine Metabolite. ELECTROANAL 2019. [DOI: 10.1002/elan.201900193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kubra Ozturk
- Department of Analytical Chemistry, Faculty of PharmacyAnkara University Turkey
| | - Nurgul K. Bakirhan
- Department of Chemistry, Faculty of Arts & SciencesHitit University Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of PharmacyAnkara University Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of PharmacyAnkara University Turkey
| |
Collapse
|
27
|
Mousavi F, Shamsipur M, Taherpour A(A, Pashabadi A. A rhodium-decorated carbon nanotube cathode material in the dye-sensitized solar cell: Conversion efficiency reached to 11%. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Investigation on acid functionalization of double-walled carbon nanotubes of different lengths on the development of amperometric sensors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
A study of synthesizing stable super-slip carbon nanotubes by grafting octadecylamine. J Colloid Interface Sci 2019; 540:126-133. [DOI: 10.1016/j.jcis.2019.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 11/20/2022]
|
30
|
Mohammed G, Khraibah N, Bashammakh A, El-Shahawi M. Electrochemical sensor for trace determination of timolol maleate drug in real samples and drug residues using Nafion/carboxylated-MWCNTs nanocomposite modified glassy carbon electrode. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Sierra T, Dortez S, González MC, Javier Palomares F, Crevillen AG, Escarpa A. Disposable carbon nanotube scaffold films for fast and reliable assessment of total α1-acid glycoprotein in human serum using adsorptive transfer stripping square wave voltammetry. Anal Bioanal Chem 2018; 411:1887-1894. [DOI: 10.1007/s00216-018-1419-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/19/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
|
32
|
Abellán-Llobregat A, Vidal L, Rodríguez-Amaro R, Canals A, Morallón E. Evaluation of herringbone carbon nanotubes-modified electrodes for the simultaneous determination of ascorbic acid and uric acid. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Abellán-Llobregat A, González-Gaitán C, Vidal L, Canals A, Morallón E. Portable electrochemical sensor based on 4-aminobenzoic acid-functionalized herringbone carbon nanotubes for the determination of ascorbic acid and uric acid in human fluids. Biosens Bioelectron 2018; 109:123-131. [DOI: 10.1016/j.bios.2018.02.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
|
34
|
Rębiś T, Sobczak A, Wierzchowski M, Frankiewicz A, Teżyk A, Milczarek G. An approach for electrochemical functionalization of carbon nanotubes/1-amino-9,10-anthraquinone electrode with catechol derivatives for the development of NADH sensors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
|
36
|
Sheikhmohammadi A, Mohseni SM, khodadadi R, Sardar M, Abtahi M, Mahdavi S, Keramati H, Dahaghin Z, Rezaei S, Almasian M, Sarkhosh M, Faraji M, Nazari S. Application of graphene oxide modified with 8-hydroxyquinoline for the adsorption of Cr (VI) from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.02.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Ghoreishi SM, Behpour M, Ghoreishi FS, Mousavi S. Voltammetric determination of tryptophan in the presence of uric acid and dopamine using carbon paste electrode modified with multi-walled carbon nanotubes. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Chuntib P, Themsirimongkon S, Saipanya S, Jakmunee J. Sequential injection differential pulse voltammetric method based on screen printed carbon electrode modified with carbon nanotube/Nafion for sensitive determination of paraquat. Talanta 2017; 170:1-8. [PMID: 28501144 DOI: 10.1016/j.talanta.2017.03.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022]
Abstract
The screen-printed carbon electrode (SPCE) modified with various nanoparticles has been studied for using as a working electrode in voltammetric technique. The electrochemical behavior of paraquat on different electrodes was studied by cyclic voltammetry (CV), and then differential pulse voltammetry (DPV) has been employed for trace analysis of paraquat based on redox reaction which the peak current was directly proportional to the concentration of paraquat in the solution. The SPCE modified with carbon nanotube dispersed in Nafion and ethanol (SPCE-CNT/Nafion) gave the best result. Sequential injection-differential pulse voltammetric (SI-DPV) method has been developed for more automated analysis and to reduce chemical consumption. The parameters affecting the SI-DPV system such as step potential, modulation amplitude, flow rate, and concentration of sodium chloride as an electrolyte were studied to improve the sensitivity. Under the optimum condition of the system, i.e., Nafion concentration of 1% (w/v), volume of CNT suspension of 2µL, flow rate of 100µLs-1, step potential of 5mV, modulation amplitude of 100mV and concentration of sodium chloride of 1M, a linear calibration graph in the range of 0.54-4.30µM with a good R2 of 0.9955 and a limit of detection of 0.17µM (0.03mgL-1) were achieved. The proposed system shows high tolerance to some possible interfering ions in natural water, surfactant, and other pesticides. The relative standard deviation (RSD) was 4.2% for 11 replicate measurements with the same electrode. The reproducibility for the preparation of 7 modified electrodes was 2.3% RSD. Recoveries of the analysis were obtained in the range of 82-106%. The developed system can be conveniently applied for analysis without pretreatment of the samples.
Collapse
Affiliation(s)
- Prakit Chuntib
- Department of Chemistry and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suwaphid Themsirimongkon
- Department of Chemistry and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surin Saipanya
- Department of Chemistry and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
39
|
Recent trends in electrochemical sensors for multianalyte detection – A review. Talanta 2016; 161:894-916. [DOI: 10.1016/j.talanta.2016.08.084] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023]
|
40
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
41
|
Feng T, Wang Y, Qiao X. Recent Advances of Carbon Nanotubes-based Electrochemical Immunosensors for the Detection of Protein Cancer Biomarkers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600512] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taotao Feng
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps; Shihezi University; Shihezi 832003 PR China
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Yue Wang
- GRINM Semiconductor materials Co., Ltd.; General Research Institute for Nonferrous Metals; Beijing 100088 China
| | - Xiuwen Qiao
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps; Shihezi University; Shihezi 832003 PR China
| |
Collapse
|
42
|
Moscoso R, Inostroza E, Bollo S, Squella JA. Electrocatalysis of NADH on 3,5-Dinitrobenzoic Acid Encapsulated on Multiwalled Carbon Nanotube-Modified Electrode. Electrocatalysis (N Y) 2016. [DOI: 10.1007/s12678-016-0323-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S. Environmental application of nanotechnology: air, soil, and water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13754-88. [PMID: 27074929 DOI: 10.1007/s11356-016-6457-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/09/2016] [Indexed: 05/17/2023]
Abstract
Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).
Collapse
Affiliation(s)
- Rusul Khaleel Ibrahim
- Department of Civil Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Maan Hayyan
- Department of Civil Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohammed Abdulhakim AlSaadi
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603, Kuala Lumpur, Malaysia
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeeb Hayyan
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shaliza Ibrahim
- Department of Civil Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Gusmão R, Sofer Z, Nováček M, Pumera M. Contrasts between Mild and Harsh Oxidation of Carbon Nanotubes in terms of their Properties and Electrochemical Performance. ChemElectroChem 2016. [DOI: 10.1002/celc.201600082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rui Gusmão
- Division of Chemistry & Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
- IPC/I3N; University of Minho, Campus de Azurém; 4800-058 Guimarães Portugal), Chemistry Research Centre, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal
| | - Zdeněk Sofer
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - Michal Nováček
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| |
Collapse
|
45
|
Wang W, Wang L, Zou L, Li G, Ye B. A novel voltammetric sensor based on poly(l-Citrulline)/SWCNTs composite film modified electrode for sensitive determination of picroside II. Talanta 2016; 150:346-54. [PMID: 26838418 DOI: 10.1016/j.talanta.2015.12.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 12/19/2015] [Indexed: 11/19/2022]
Abstract
A novel voltammetric sensor was constructed by simple dripping single-walled carbon nanotubes (SWCNTs) on to the glass carbon electrode (GCE) firstly and electro-polymerizing L-Citrulline film subsequently. The resulting poly(L-Citrulline)/SWCNTs/GCE showed a significant voltammetric response to picroside II due to the synergistic effect of SWCNTs and poly(L-Citrulline) film. The first electroanalytical method of picroside II was proposed with detection linear range from 8.0 × 10(-8) to 5.0 × 10(-6) mol L(-1) and a detection limit of 3 × 10(-8) mol L(-1). The high sensitivity, selectivity and long-term stability made the sensor suitable for the determination of picroside II. Moreover, based on the systematically investigation and some kinetics parameters calculated in the experimentation, the reaction mechanism of picroside II at the poly(L-Citrulline)/SWCNTs modified GCE was obtained reliably. Lastly, the proposed sensor was used for the determination of picroside II in real sample with satisfactory results. This work promoted the potential applications of amino acid materials and SWCNTs in electro-chemical sensors.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lu Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, PR China
| | - Lina Zou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
46
|
Abo-Hamad A, AlSaadi MA, Hayyan M, Juneidi I, Hashim MA. Ionic Liquid-Carbon Nanomaterial Hybrids for Electrochemical Sensor Applications: a Review. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.02.044] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Xue Z, Yin B, Li M, Rao H, Wang H, Zhou X, Liu X, Lu X. Direct electrodeposition of well dispersed electrochemical reduction graphene oxide assembled with nickel oxide nanocomposite and its improved electrocatalytic activity toward 2, 4, 6-Trinitrophenol. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Salehniya H, Amiri M, Mansoori Y. Positively charged carbon nanoparticulate/sodium dodecyl sulphate bilayer electrode for extraction and voltammetric determination of ciprofloxacin in real samples. RSC Adv 2016. [DOI: 10.1039/c6ra03170f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modified electrode was prepared using a layer-by-layer method with functionalized CNPs and SDS. The ability of modified electrode to adsorb ciprofloxacin was investigated. Ciprofloxacin was analyzed in real samples.
Collapse
Affiliation(s)
- Haneie Salehniya
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| | - Mandana Amiri
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| | - Yaghoub Mansoori
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| |
Collapse
|
49
|
Metters JP, Banks CE. Carbon Nanomaterials in Electrochemical Detection. ELECTROCHEMICAL STRATEGIES IN DETECTION SCIENCE 2015. [DOI: 10.1039/9781782622529-00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This chapter overviews the use of carbon nanomaterials in the field of electroanalysis and considers why carbon-based nanomaterials are widely utilized and explores the current diverse range that is available to the practising electrochemist, which spans from carbon nanotubes to carbon nanohorns through to the recent significant attention given to graphene.
Collapse
Affiliation(s)
- Jonathan P. Metters
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University Chester Street Manchester M15 GD UK
| | - Craig E. Banks
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University Chester Street Manchester M15 GD UK
| |
Collapse
|
50
|
Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ. Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chem Rev 2015; 115:10307-77. [DOI: 10.1021/acs.chemrev.5b00267] [Citation(s) in RCA: 929] [Impact Index Per Article: 92.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nan Zhang
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou 350002, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350108, P.R. China
| | - Min-Quan Yang
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou 350002, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350108, P.R. China
| | - Siqi Liu
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou 350002, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350108, P.R. China
| | - Yugang Sun
- Center
for Nanoscale Materials, Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60439, United States
| | - Yi-Jun Xu
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou 350002, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350108, P.R. China
| |
Collapse
|