1
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Song XL, Liu YQ, He FY, Wu YY, Wang DD, Lv H, Wang XS, Sun ZG, Cheng CL, Liao KC, Chen Y. Facile fabrication of carbon nanotube hollow microspheres as a fiber coating for ultrasensitive solid-phase microextraction of phthalic acid esters in tea beverages. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:420-426. [PMID: 38165136 DOI: 10.1039/d3ay01943h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The efficient extraction of phthalic acid esters (PAEs) is challenging due to their extremely low concentration, complicated matrices and hydrophilicity. Herein, hollow microspheres, as an ideal coating, possess significant potential for solid-phase microextraction (SPME) due to their fascinating properties. In this study, multiwalled carbon nanotube hollow microspheres (MWCNT-HMs) were utilized as a fiber coating for the SPME of PAEs from tea beverages. MWCNT-HMs were obtained by dissolving the polystyrene (PS) cores with organic solvents. Interestingly, MWCNT-HMs well maintain the morphology of the MWCNTs@PS precursors. The layer-by-layer (LBL) assembly of MWCNTs on PS microsphere templates was achieved through electrostatic interactions. Six PAEs, di-ethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP), were selected as target analytes for assessing the efficiency of the coating for SPME. The stirring rate, sample solution pH and extraction time were optimized by using the Box-Behnken design. Under optimal working conditions, the proposed MWCNT-HMs/SPME was coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) to achieve high enrichment factors (118-2137), wide linearity (0.0004-10 μg L-1), low limits of detection (0.00011-0.0026 μg L-1) and acceptable recovery (80.2-108.5%) for the detection of PAEs. Therefore, the MWCNT-HM coated fibers are promising alternatives in the SPME method for the sensitive detection of PAEs at trace levels in tea beverages.
Collapse
Affiliation(s)
- Xin-Li Song
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Yu-Qing Liu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Fei-Yan He
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Yi-Yao Wu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Dong-Dong Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Hui Lv
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Xue-Shan Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Zhong-Guan Sun
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Can-Ling Cheng
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Ke-Chao Liao
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Yue Chen
- Department of Criminal Science and Technology, Shandong Police College, Jinan 250014, China
| |
Collapse
|
3
|
[Determination of tetracycline and fluoroquinolone residues in fish by polydopamine nanofiber mat based solid phase extraction combined with ultra performance liquid chromatography-tandem mass spectrometry]. Se Pu 2021; 39:624-632. [PMID: 34227323 PMCID: PMC9404201 DOI: 10.3724/sp.j.1123.2020.12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tetracyclines and fluoroquinolones are common antibacterial drugs used in aquaculture, and their residues may pose a risk to human health. The low concentration of drug residues and complex matrixes such as fats and proteins in aquatic products necessitate the urgent development of efficient sample pretreatment methods. Solid phase extraction (SPE) is the most common sample pretreatment method, in which the core is an adsorbent. Compared with traditional SPE adsorbents, nanofiber mat (NFsM) has more interaction sites because of their large specific surface area. Furthermore, NFsMs modified with specific functional groups can significantly improve the extraction efficiency of tetracyclines and fluoroquinolones. Polydopamine (PDA) is spontaneously synthesized by the oxidative self-polymerization of dopamine-hydrochloride in alkaline solutions (pH>7.5). Because of its rich amino and catechol groups, PDA can form π-π stacking, electrostatic attraction, hydrophobic interaction, and hydrogen bonding interactions with target molecules. By exploiting the above advantages, polystyrene (PS) NFsM, as a template, was prepared by the electrostatic spinning method, and PDA-PS NFsM was obtained by functional modification of PDA through self-polymerization. Fourier transform infrared spectroscopy (FT-IR) and field-emission scanning electron microscopy (FESEM) were used to characterize the synthesized PS NFsM and PDA-PS NFsM. It was proved that PDA was successfully modified on the PS NFsM, with the SEM images revealing a rough outer core shell structure and an inner honeycomb structure. Subsequently, the handmade SPE column with PDA-PS NFsM was completed. A novel and efficient screening analytical method based on PDA-PS NFsM for the simultaneous determination of three tetracyclines (tetracycline (TET), chlortetracycline (CTC), and oxytetracycline (OTC)) and three fluoroquinolones (enrofloxacin (ENR), ciprofloxacin (CIP), and norfloxacin (NOR)) in fish by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The SPE procedure was optimized to develop an efficient method for sample preparation. Evaluate parameters including the amount of NFsM usage, ionic strength, flow rate of the sample solution, composition of eluent, and breakthrough volume were investigated. Only (20±0.1) mg of PDA-PS NFsM was sufficient to completely adsorb the targets, and the analytes retained on NFsM could be eluted by 1 mL of formic acid-ethyl acetate (containing 20% methanol) (1∶99, v/v). The residues were redissolved in 0.1 mL 10% methanol aqueous solution containing 0.2% formic acid. In addition, no adjustment of the pH and ionic strength of the sample solutions was required, and the breakthrough volume was 50 mL. The limits of detection (LODs) and limits of quantification (LOQs) of the six target compounds were measured at 3 times and 10 times the signal-to-noise ratio (S/N), respectively. The LODs and LOQs were 0.3-1.5 μg/kg and 1.0-5.0 μg/kg, respectively. The linear ranges of the six target compounds were LOQ-1000 μg/kg, and the coefficient of determination (R2) was greater than 0.999. To evaluate the accuracy and precision, blank spiked samples at three levels (low, medium, and high) were prepared for the recovery experiments, and each level with six parallel samples (n=6). The recoveries ranged from 94.37% to 102.82%, with intra-day and inter-day relative standard deviations of 2.38% to 8.06% and 4.10% to 9.10%, respectively. To evaluate the purification capacity of PDA-PS NFsM, the matrix effects before and after SPE were calculated and compared. Matrix effects before SPE were -12.98% to -38.68%. After the completion of SPEbased on PDA-PS NFsM, the matrix effect of each target analyte was significantly reduced to -2.15% to -7.36%, which proved the significant matrix removal capacity of PDA-PS NFsM. Finally, the practicality of this method was evaluated by using it to analyze real samples. This SPE method based on PDA-PS NFsM is efficient, practical, and environmentally friendly, and it has great potential for use in the routine monitoring of drug residues in fish.
Collapse
|
4
|
Salve S, Bahiram Y, Jadhav A, Rathod R, Tekade RK. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Crit Rev Anal Chem 2021; 53:46-68. [PMID: 34096402 DOI: 10.1080/10408347.2021.1934651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preparation of the biological samples is one of the most critical steps in sample analysis. In past decades, the liquid-liquid extraction technique has been used to extract the desired analytes from complex biological matrices. However, solid-phase extraction (SPE) gained popularity due to versatility, simplicity, selectivity, reproducibility, high sample recovery %, solvent economy, and time-saving nature. The superior extraction efficiency of SPE can be attributed to the development of advanced techniques, including the nanosorbents technology. The nanosorbent technology significantly simplified the sample preparation, improved the selectivity, diversified the application, and accelerated the sample analysis. This review critically expands on the to-date advancements reported in SPE with particular regards to the nanosorbent technology.
Collapse
Affiliation(s)
- Sushmita Salve
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Yogita Bahiram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amol Jadhav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rajeshwari Rathod
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Chu Q, Liu Y, Jiang S, Zhu Y, Lyu H, Xie Z. A novel adsorbent based on aptamer prepared via “thiol-ene” click for specific recognition of phthalic acid esters. Anal Chim Acta 2021; 1146:109-117. [DOI: 10.1016/j.aca.2020.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
|
6
|
Nurerk P, Chaowana R, Limbut W, Bunkoed O. A hierarchical composite adsorbent of cotton fibers modified with a hydrogel incorporating a metal organic framework and cetyl trimethyl ammonium bromide for the extraction and enrichment of phthalate esters. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Sun Y, Xie L, Feng F, Han Q, Wei L, Tang Z, Kang X. Simultaneous analysis of two urinary biomarkers of oxidative damage to DNA and RNA based on packed-fiber solid phase extraction coupled with high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122358. [PMID: 32920340 DOI: 10.1016/j.jchromb.2020.122358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
Abstract
The determination of the concentrations of urinary biomarkers of oxidative damage to DNA and RNA is difficult due to the low content of targets and the complex matrix of urine. A method using polystyrene/polypyrrole (PS/PPY) electronspun nanofibers as the adsorbent was introduced to the routine urinary treatment and determination of 8-OHdG and 8-oxoG for the first time. And 2-aminoethyl diphenylborate (DPBA) solution was creatively used in the loading and rinsing steps in order to promote the retention of the analytes as well as remove impurities. Under optimal conditions, 8-OHdG, 8-oxoG and IS were separated very well and exhibited a good linearity in the range of 0.5-50 ng mL-1, with correlation coefficients of R2 > 0.996. Limits of detection (LOD) were 0.058 ng mL-1 and 0.093 ng mL-1, and limits of quantification (LOQ) were 0.195 ng mL-1 and 0.309 ng mL-1, respectively. The recoveries were 88.8-104.9%. The proposed method was so simple and economical that it had the potential to be applied to batch quantitative analysis of 8-OHdG and 8-oxoG in urine. And it was successfully applied to real urine samples of cancer patients.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Li Xie
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education), School of Public Health, Southeast University, Nanjing 210096, PR China
| | - Fulin Feng
- Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Qing Han
- Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Lanlan Wei
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education), School of Public Health, Southeast University, Nanjing 210096, PR China
| | - Zigang Tang
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education), School of Public Health, Southeast University, Nanjing 210096, PR China
| | - Xuejun Kang
- Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
8
|
Screen-printed anion-exchange solid-phase extraction: A new strategy for point-of-care determination of angiotensin receptor blockers. Talanta 2020; 222:121518. [PMID: 33167228 DOI: 10.1016/j.talanta.2020.121518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022]
Abstract
A miniaturized system of anion exchange solid phase extraction (SPE) based on a screen-printed electrode was developed as a point of care (POC) device for extraction and quantitative determination of anionic analytes. Nylon 6/polyaniline nanofibers were fabricated by electrospinning and in-situ oxidative polymerization techniques coated on a screen-printed working electrode and characterized by Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) methods. The effects of essential parameters such as desorption conditions, pH of the sample solution, adsorption voltage, adsorption time, and salt concentration on the performance of the method were investigated. To evaluate the performance of the system, angiotensin ΙΙ receptor antagonists, including valsartan, losartan, and irbesartan, were selected as model compounds and analyzed by HPLC/UV after extraction. The limits of detection and quantification were ranging between 0.4 and 0.9 μg L-1 and 1.3-3.0 μg L-1, respectively. The linear dynamic range for Losartan, Irbesartan, and Valsartan was 2-400, 4-1000, and 2-400 μg L-1, respectively, with R2 > 0.991. Finally, the method was applied for the determination of ARA-IIs in human blood plasma samples, and relative recoveries in the range of 89.0-107.8% with relative standard deviation (RSDs (≤8.9% were obtained.
Collapse
|
9
|
Mohammadi SZ, Safari Z, Madady N. Synthesis of Co3O4@SiO2 Core/Shell–Nylon 6 Magnetic Nanocomposite as an Adsorbent for Removal of Congo Red from Wastewater. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01485-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Wu Y, Zhou Q, Yuan Y, Wang H, Tong Y, Zhan Y, Sheng X, Sun Y, Zhou X. Enrichment and sensitive determination of phthalate esters in environmental water samples: A novel approach of MSPE-HPLC based on PAMAM dendrimers-functionalized magnetic-nanoparticles. Talanta 2020; 206:120213. [DOI: 10.1016/j.talanta.2019.120213] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/21/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
|
11
|
Mollahosseini A, Elyasi Y, Rastegari M. Flat membrane-based electromembrane extraction coupled with UV–visible spectrophotometry for the determination of diethylhexyl phthalate in water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Jian N, Zhao M, Liang S, Cao J, Wang C, Xu Q, Li J. High-Throughput and High-Efficient Micro-solid Phase Extraction Based on Sulfonated-Polyaniline/Polyacrylonitrile Nanofiber Mats for Determination of Fluoroquinolones in Animal-Origin Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6892-6901. [PMID: 31125221 DOI: 10.1021/acs.jafc.9b01312] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We herein describe a high-throughput 96-well plate micro-solid phase extraction sample preparation technique based on novel sulfonated-polyaniline/polyacrylonitrile nanofiber mats (sulfonated-PANI/PAN NFMs) for multiresidue detection of fluoroquinolones (FQs) in various animal-origin food samples. Through the double-modification of polyaniline and sulfonic acid, the resulting functionalized sulfonated-PANI/PAN NFMs present high extraction efficiency for FQs. Compared with the existing methods, this approach demonstrates its advantages of being suitable for more sample matrices (milk, animal muscle, liver, kidney, and egg), lower sample amount (0.5 g), lower sorbent requirement (5.0 mg), lower volume of organic solvent (0.7 mL), shorter time (0.2 min per sample), and high sensitivity (0.012-0.06 μg·kg-1). In addition, sulfonated-PANI/PAN NFMs possess excellent reusability which could be reused 10 times without an obvious decrease in extraction efficiency. Combined with ultra performance liquid chromatography-tandem mass spectrometry, the novel sample preparation technique can be expected as an efficient method for routine trace FQ residue monitoring in animal-origin food samples.
Collapse
Affiliation(s)
- Ningge Jian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Meng Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Sihui Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Jiankun Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Chunmin Wang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004 , China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Jian Li
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004 , China
| |
Collapse
|
13
|
Polyaniline immobilized on polycaprolactam nanofibers as a sorbent in electrochemically controlled solid-phase microextraction coupled with HPLC for the determination of angiotensin II receptor antagonists in human blood plasma. Anal Bioanal Chem 2019; 411:3631-3640. [DOI: 10.1007/s00216-019-01845-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 01/25/2023]
|
14
|
Al-Hashimi NN, Awwad AI, Al-Hashimi AN, Mansi IA, Shahin RO, Hamed SH. Functionalized Multi Walled Carbon Nanotubes-Reinforced Hollow Fiber Solid/Liquid Phase Microextraction and HPLC-DAD for Determination of Phenazopyridine in Urine. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180329153443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
A sensitive analytical method based on functionalized multi walled carbon
nanotubes reinforced hollow fiber solid/liquid phase microextraction (F-MWCNTs-HF-SLPME) forwarded
with HPLC-DAD for analyzing phenazopyridine from urine is presented.
Materials and Methods:
The extraction of phenazopyridine is performed using specially designed FMWCNTs-
HF-SLPME device constructed as follows: the functionalized multi walled carbon nanotubes
(F-MWCNTs) were immobilized into the pores of 2.5 cm hollow fiber micro-tube using capillary forces
and ultrasonication, then, the lumen of the micro-tube was filled with 1-octanol with two ends sealed.
Subsequently, the device was placed into 10-mL of urine sample containing the analyte with agitation.
After ending extraction, the device was removed, rinsed, sonicated in 250 µL of organic solvent and
analyzed directly by the separation system.
Results and Conclusion:
Different parameters affecting the performance of the developed method were
optimized. The method showed good linearity with (R2) 0.999 and good repeatability with (RSDs) from
3.7 to 0.9% at analyte concentration ranged from 0.01 to 10 µg L-1 of spiked urine samples. The limit of
detection/ quantitation, LODs/LOQs was 0.02/0.09 µg L-1. In comparison with reference methods, the
developed method is considered as a promising microextraction technique for determination of trace
phenazopyridine in human urine using a common HPLC without further cleanup procedures.
Collapse
Affiliation(s)
- Nabil N. Al-Hashimi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Al-Zarqa 13133, Jordan
| | - Anas I. Awwad
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 150459, Al-Zarqa 13115, Jordan
| | - Aqeel N. Al-Hashimi
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500007, India
| | - Iman A. Mansi
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Al-Zarqa 13133, Jordan
| | - Rand O. Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Al-Zarqa 13133, Jordan
| | - Saja H. Hamed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Al-Zarqa 13133, Jordan
| |
Collapse
|
15
|
Garcia-Alonso S, Perez-Pastor RM. Organic Analysis of Environmental Samples Using Liquid Chromatography with Diode Array and Fluorescence Detectors: An Overview. Crit Rev Anal Chem 2019; 50:29-49. [PMID: 30925844 DOI: 10.1080/10408347.2019.1570461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This overview is focused to provide an useful guide of the families of organic pollutants that can be determined by liquid chromatography operating in reverse phase and ultraviolet/fluorescence detection. Eight families have been classified as the main groups to be considered: carbonyls, carboxyls, aromatics, phenols, phthalates, isocyanates, pesticides and emerging. The references have been selected based on analytical methods used in the environmental field, including both the well-established procedures and those more recently developed.
Collapse
|
16
|
Magnetic Polyamide Nanocomposites for the Microextraction of Benzophenones from Water Samples. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24050953. [PMID: 30857139 PMCID: PMC6429122 DOI: 10.3390/molecules24050953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
Abstract
In this article, the influence of the monomers on the extraction efficiency and the effect of the addition of surfactants during the synthesis have also been considered. The sorption capacity of the resulting nanocomposites has been evaluated, in the dispersive micro-solid phase extraction format, by determining that of six benzophenones in water using ultra performance liquid chromatography (UPLC) combined with photodiode array detection. Under the optimum conditions, the limits of detection were in the range of 0.5–4.3 ng/mL and the repeatability, expressed as the relative standard deviation (RSD), varied between 1.5% and 5.6%. The proposed method has been applied for the analysis of real water samples, providing relative recoveries in the interval of 84–105%
Collapse
|
17
|
Jian N, Qian L, Wang C, Li R, Xu Q, Li J. Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:81-89. [PMID: 30308368 DOI: 10.1016/j.jhazmat.2018.09.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/17/2018] [Accepted: 09/20/2018] [Indexed: 05/17/2023]
Abstract
Core-shell polyaniline/polyacrylonitrile nanofibers mat (PANI/Pan NFsM) was prepared for extraction of hydrophilic non-steroidal anti-inflammatory drugs (NSAIDs) in environmental water. Superior adsorption and desorption performance of PANI/Pan NFsM was confirmed by both static and dynamic adsorption/desorption experiments. These properties proved PANI/Pan NFsM was a potentially efficient and fast solid phase extraction (SPE) adsorbent for NSAIDs. Under the optimized conditions, only 3 mg of PANI/Pan NFsM could easily extract eight target analytes in 10 mL of water sample without any pre-treatment, and the analytes retained on NFsM could be easily eluted by 500 μL of 1% acetic acid methanol for direct UPLC-MS/MS analysis. In addition, each piece of PANI/Pan NFsM could be reused for at least 20 times without performance decline. Possible adsorption mechanisms were also proposed. Practical feasibility was validated through the actual sample analysis.
Collapse
Affiliation(s)
- Ningge Jian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Liangliang Qian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chunmin Wang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004, China
| | - Ruixian Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Jian Li
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004, China.
| |
Collapse
|
18
|
Tang Z, Han Q, Xie L, Chu L, Wang Y, Sun Y, Kang X. Simultaneous determination of five phthalate esters and bisphenol A in milk by packed-nanofiber solid-phase extraction coupled with gas chromatography and mass spectrometry. J Sep Sci 2019; 42:851-861. [DOI: 10.1002/jssc.201800811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Zigang Tang
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education); School of Public Health; Southeast University; Nanjing P. R. China
| | - Qing Han
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| | - Li Xie
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education); School of Public Health; Southeast University; Nanjing P. R. China
| | - Lanling Chu
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education); School of Public Health; Southeast University; Nanjing P. R. China
| | - Yu Wang
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| | - Ying Sun
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| | - Xuejun Kang
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| |
Collapse
|
19
|
A comparison study of nanofiber, microfiber, and new composite nano/microfiber polymers used as sorbents for on-line solid phase extraction in chromatography system. Anal Chim Acta 2018; 1023:44-52. [DOI: 10.1016/j.aca.2018.04.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 01/22/2023]
|
20
|
Three-dimensional nanofiber scaffolds are superior to two-dimensional mats in micro-oriented extraction of chlorobenzenes. Mikrochim Acta 2018; 185:322. [DOI: 10.1007/s00604-018-2858-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/28/2018] [Indexed: 01/21/2023]
|
21
|
Háková M, Raabová H, Havlíková LC, Chocholouš P, Chvojka J, Šatínský D. Testing of nylon 6 nanofibers with different surface densities as sorbents for solid phase extraction and their selectivity comparison with commercial sorbent. Talanta 2018; 181:326-332. [DOI: 10.1016/j.talanta.2018.01.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/01/2022]
|
22
|
Eskandarpour N, Sereshti H. Electrospun polycaprolactam-manganese oxide fiber for headspace-solid phase microextraction of phthalate esters in water samples. CHEMOSPHERE 2018; 191:36-43. [PMID: 29028539 DOI: 10.1016/j.chemosphere.2017.10.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
The nanofibrous polycaprolactam (polyamide 6 (PA6)) incorporated with manganese oxide (MnO) nanoparticles was fabricated by electrospinning and used as a new fiber coating for headspace-solid phase microextraction (HS-SPME) of the selected phthalate esters (PEs) in water samples prior to GC-μECD. The adsorbent was fully characterized using scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). The main parameters that affect the HS-SPME efficiency such as extraction temperature, ionic strength, extraction and desorption times were investigated. The analytical figures of merit were obtained under the optimized conditions as follows: linear dynamic range (LDR), 0.500-5.00 × 102 ng mL-1; relative standard deviations (RSDs, n = 3), 1.86-10.9%; limits of detection (LODs), 0.0400-0.193 ng mL-1. The method was applied for determination of the target analytes in river water, bottled water, mineral water and soda samples and the relative recoveries were obtained between 90.3 and 107%.
Collapse
Affiliation(s)
| | - Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
23
|
Li H, Cao Z, Cao X, Jiang Z, Abd El-Aty AM, Qi Y, Shao H, Jin F, Zheng L, Wang J. Magnetic solid-phase extraction using a mixture of two types of nanoparticles followed by gas chromatography-mass spectrometry for the determination of six phthalic acid esters in various water samples. RSC Adv 2018; 8:39641-39649. [PMID: 35558051 PMCID: PMC9090721 DOI: 10.1039/c8ra08643e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022] Open
Abstract
A mixture of Fe3O4@MIL-100 and Fe3O4@SiO2@polythiophene nanoparticles exhibit high extraction efficiency for PAEs in water.
Collapse
|
24
|
Tang Z, Chu L, Wang Y, Song Y, Liu P, Fan J, Huang J, Liu X, Wei L, Li C, Zhao R, Kang X. Packed-Nanofiber solid phase extraction coupled with gas chromatography-mass spectrometry for the determination of phthalate esters in urines from children. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:342-348. [DOI: 10.1016/j.jchromb.2017.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 11/29/2022]
|
25
|
Development and optimization of a novel sample preparation method cored on functionalized nanofibers mat-solid-phase extraction for the simultaneous efficient extraction of illegal anionic and cationic dyes in foods. Anal Bioanal Chem 2017; 409:5697-5709. [DOI: 10.1007/s00216-017-0510-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
|
26
|
Fernández-Amado M, Prieto-Blanco MC, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D. A comparative study of extractant and chromatographic phases for the rapid and sensitive determination of six phthalates in rainwater samples. CHEMOSPHERE 2017; 175:52-65. [PMID: 28211335 DOI: 10.1016/j.chemosphere.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
Six phthalic acid esters were determined in rainwater samples, from which a very low sample volume was collected. This method combines on-line in-tube solid-phase microextraction coupled to high-performance liquid chromatography with a diode-array detector. In order to obtain a short analysis time and to reduce the consumption of organic solvents, two chromatographic phases (C18 monolithic and cyanopropyl silica) are compared. Although three critical pairs are found, faster separation, good resolution and lower pressures are achieved using C18 monolithic column. In order to achieve a simple and sensitive method, two commercial capillaries (a porous polymer with divinylbenzene-4-vinylpyridine and a liquid-phase capillary with 95% poly(dimethylsiloxane)-5% poly(diphenylsiloxane)) are tested for the extraction process. Due to great differences of hydrophobicity among the six phthalates, the selection of a modifier is necessary for a good extraction. The best conditions are achieved using 5 mL of sample containing 40% methanol in a 70 cm-long porous polymer capillary. The procedural blanks are controlled and taken into account in the calculation of the detection limits. Except for dimethylphthalate, the method detection limits are in the range from 0.2 to 0.9 ng mL-1 and the inter-day precision is between 5.3% and 12.5%. The recoveries were within the range of 71%-101%. Rainwater samples are analyzed in order to examine the dilution effect and washout of phthalates in the atmosphere. Dibutyl phthalate is the predominant phthalate found and di-(2-ethylhexyl) phthalate is detected in all analyzed samples.
Collapse
Affiliation(s)
- M Fernández-Amado
- Universidade da Coruña, Grupo QANAP, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - M C Prieto-Blanco
- Universidade da Coruña, Grupo QANAP, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain.
| | - P López-Mahía
- Universidade da Coruña, Grupo QANAP, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - S Muniategui-Lorenzo
- Universidade da Coruña, Grupo QANAP, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - D Prada-Rodríguez
- Universidade da Coruña, Grupo QANAP, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| |
Collapse
|
27
|
Liu R, Liu Y, Cheng C, Yang Y. Ionic liquid enhanced magnetic solid-phase extraction of phthalate esters in food samples with oleic acid coated-Fe3O4 nanoparticles prior to HPLC. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1302479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ruiqi Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Liu
- Yunnan Salt & Salt Chemical Co., Ltd., Kunming, China
| | - Chunsheng Cheng
- Yunnan Province Food Safety Research Inst., Kunming University of Science and Technology, Kunming, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
28
|
Reyes-Gallardo EM, Lucena R, Cárdenas S. Electrospun nanofibers as sorptive phases in microextraction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Determination of propranolol and carvedilol in urine samples using a magnetic polyamide composite and LC–MS/MS. Bioanalysis 2016; 8:2115-23. [DOI: 10.4155/bio-2016-0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: β-blockers are compounds that bind with adrenoreceptors hindering their interaction with adrenalin and noradrenalin. They are clinically relevant and they are also used in some sport as doping agents. Results: A new method based on the combination of dispersive micro-solid phase extraction and LC–MS/MS has been developed to determine propranolol and carvedilol in urine samples. For this purpose a magnetic-polyamide composite is synthesized and used as sorbent. Working under the optimum conditions, the method provides limits of detection and quantification in the range of 0.1–0.15 μg/l and 0.3–0.5 μg/l, for carvedilol and propranolol, respectively. The precision, expressed as RSD, was better than 9.6% and the relative recoveries varied between 73.7 and 81.3%. Conclusion: The methodology is appropriate for the determination of β-blockers in urine samples at the low microgram per liter range for therapeutic purposes.
Collapse
|
30
|
Song XL, Chen Y, Yuan JP, Qin YJ, Zhao RS, Wang X. Carbon nanotube composite microspheres as a highly efficient solid-phase microextraction coating for sensitive determination of phthalate acid esters in water samples. J Chromatogr A 2016; 1468:17-22. [DOI: 10.1016/j.chroma.2016.09.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/25/2022]
|
31
|
Magnetic molecularly imprinted polymer nanoparticles-based solid-phase extraction coupled with gas chromatography–mass spectrometry for selective determination of trace di-(2-ethylhexyl) phthalate in water samples. Anal Bioanal Chem 2016; 408:7857-7864. [DOI: 10.1007/s00216-016-9889-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/30/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|
32
|
Rapid determination of sulfonamide residues in pork by surface-modified hydrophilic electrospun nanofibrous membrane solid-phase extraction combined with ultra-performance liquid chromatography. Anal Bioanal Chem 2016; 408:5499-511. [DOI: 10.1007/s00216-016-9648-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
33
|
Reyes-Gallardo EM, Lucena R, Cárdenas S, Valcárcel M. Dispersive micro-solid phase extraction of bisphenol A from milk using magnetic nylon 6 composite and its final determination by HPLC-UV. Microchem J 2016. [DOI: 10.1016/j.microc.2015.10.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Abstract
There has been increasing demand for simple, rapid, highly sensitive, inexpensive yet reliable method for detecting predisposition to cancer. Human biomonitoring of exposure to the largest class of chemical carcinogen, polycyclic aromatic hydrocarbons (PAHs) that are rapidly transformed into detectable metabolites (eg, 1-hydroxypyrene), can serve as strong pointers to early detection of predisposition to cancer. Given that any exposure to PAH is assumed to pose a certain risk of cancer, several biomarkers have been employed in biomonitoring these ninth most threatening ranked compounds. They include metabolites in urine, urinary thioethers, urinary mutagenicity, genetoxic end points in lymphocytes, hemoglobin adducts of benzo(a)pyrene, PAH-protein adducts, and PAH-DNA adducts among others. In this chapter, the main focus will be on the urine metabolites since urine samples are easily collected and there is a robust analytical instrument for the determination of their metabolites.
Collapse
|
35
|
Ifegwu OC, Anyakora C, Chigome S, Torto N. Electrospun nanofiber sorbents for the pre-concentration of urinary 1-hydroxypyrene. J Anal Sci Technol 2015. [DOI: 10.1186/s40543-015-0055-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Synthetic polymers have some qualities that make them good candidates for pre concentration of trace analytes biological fluids because of their great potentials to be functionalized and electrospun into nanofibres.
Methods
In this study, Electrospun nanofiber sorbents fabricated from 11 polymers {poly(styrene-co-methacrylic acid), poly(styrene-co-divinylbenzene) (SDVB), poly(styrene-co-acrylamide), poly(styrene-co-p-sodium styrene sulfonate), polystyrene, poly(vinyl benzyl chloride), cellulose acetate, polyethylene terephthalate (PET), polysulfone, nylon 6} were evaluated for the extraction and pre-concentration of 1-hydroxypyrene from a water sample.
Results
Scanning electron microscopy (SEM) studies revealed the formation of continuous fine bead-free and randomly arrayed fibers with their average diameters ranging from 110 to 650 nm. The percentage recoveries were highest for nylon 6 with 72%, SDVB with 70%, whereas PET achieved the lowest recovery at 34%. Under optimized conditions, the analyte followed a linear relationship for all sorbents in the concentration range of 1 to 1,000 μg/L. The coefficient of determination (r
2) was between 0.9990 to 0.9999, with precision (%relative standard deviation (RSD)) ≤ 9.51% (n = 6) for all the analysis. The %RSD for intra- and inter-day precision at three different concentrations, 10, 25, and 50 μg/L, was ≤7.88% for intraday and ≤8.04% inter-day (3 days), respectively, for all evaluated sorbents. The LOD and LOQ were found to be between 0.054 and 0.16 μg/L and 0.18 and 0.53 μg/L, respectively, using a fluorescent detector.
Conclusions
The study suggested that if packed into cartridges, nylon 6 and SDVB nanofiber sorbents could serve as alternatives to the conventional C-18 sorbents in the pre-concentration and clean-up of the tumorigenic biomarker, 1-hydroxypyrene in human urine. The fabrication of selective nanofibers could also extend and simplify sample preparation for organic and biological analytes.
Collapse
|
36
|
Preparation of water stable methyl-modified metal–organic framework-5/polyacrylonitrile composite nanofibers via electrospinning and their application for solid-phase extraction of two estrogenic drugs in urine samples. J Chromatogr A 2015; 1426:24-32. [DOI: 10.1016/j.chroma.2015.11.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/01/2015] [Accepted: 11/09/2015] [Indexed: 02/02/2023]
|
37
|
Qi F, Li X, Yang B, Rong F, Xu Q. Disks solid phase extraction based polypyrrole functionalized core–shell nanofibers mat. Talanta 2015; 144:129-35. [DOI: 10.1016/j.talanta.2015.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
|
38
|
Liu X, Wang C, Wu Q, Wang Z. Porous carbon derived from a metal-organic framework as an efficient adsorbent for the solid-phase extraction of phthalate esters. J Sep Sci 2015; 38:3928-3935. [DOI: 10.1002/jssc.201500690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/04/2015] [Accepted: 09/01/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Xingli Liu
- College of Science; Agricultural University of Hebei; Baoding China
| | - Chun Wang
- College of Science; Agricultural University of Hebei; Baoding China
| | - Qiuhua Wu
- College of Science; Agricultural University of Hebei; Baoding China
| | - Zhi Wang
- College of Science; Agricultural University of Hebei; Baoding China
| |
Collapse
|
39
|
Yang BY, Cao Y, Qi FF, Li XQ, Xu Q. Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics. NANOSCALE RESEARCH LETTERS 2015; 10:207. [PMID: 25991912 PMCID: PMC4431992 DOI: 10.1186/s11671-015-0903-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/16/2015] [Indexed: 05/11/2023]
Abstract
A functionalized nylon6/polypyrrole core-shell nanofibers mat (PA6/PPy NFM) was prepared via situ polymerization on nylon6 electrospun nanofibers mat (PA6 NFM) template and used as an adsorbent to remove atrazine from aqueous solutions. The core-shell structure of PA6/PPy NFM can be clearly proved under scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The effects of initial solution pH and ionic strength, as well as the comparison of the adsorption capacity of functionalized (PA6/PPy NFM) and non-functionalized (PA6 NFM) adsorbent, were examined to reveal the possible adsorption mechanism. The results indicated that π-π interaction and electrostatic interaction should play a key role in the adsorption process. The kinetics and thermodynamics studies also further elucidated the detailed adsorption characteristics of atrazine removal by PA6/PPy NFM. The adsorption of atrazine could be well described by the pseudo-second-order equation. The adsorption equilibrium data was well fitted with the Freundlich isotherm model with a maximum adsorption capacity value of 14.8 mg/g. In addition, the increase of adsorption rate caused by a temperature increase could be felicitously explained by the endothermic reaction. The desorption results showed that the adsorption capacity remained almost unchanged after six adsorption/desorption cycles. These results suggest that PA6/PPy NFM could be employed as an efficient adsorbent for removing atrazine from contaminated water sources.
Collapse
Affiliation(s)
- Bi-Yi Yang
- />Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,87 Dingjiaqiao, Nanjing, 210009 China
| | - Yang Cao
- />Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,87 Dingjiaqiao, Nanjing, 210009 China
| | - Fei-Fei Qi
- />Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,87 Dingjiaqiao, Nanjing, 210009 China
| | - Xiao-Qing Li
- />Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,87 Dingjiaqiao, Nanjing, 210009 China
| | - Qian Xu
- />Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,87 Dingjiaqiao, Nanjing, 210009 China
- />Suzhou Key Laboratory of Environment and Biosafety, Suzhou, 215123 China
| |
Collapse
|
40
|
Qi FF, Cao Y, Wang M, Rong F, Xu Q. Nylon 6 electrospun nanofibers mat as effective sorbent for the removal of estrogens: kinetic and thermodynamic studies. NANOSCALE RESEARCH LETTERS 2014; 9:353. [PMID: 25114645 PMCID: PMC4112980 DOI: 10.1186/1556-276x-9-353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
Nylon 6 electrospun nanofibers mat was prepared via electrospinning for the removal of three estrogens, namely, diethylstilbestrol (DES), dienestrol (DS), and hexestrol (HEX) from aqueous solution. Static adsorption as well as the dynamic adsorption was evaluated by means of batch and dynamic disk flow mode, respectively. The kinetic study indicated that the adsorption of the target compounds could be well fitted by the pseudo-second-order equation, suggesting the intra-particle/membrane diffusion process as the rate-limiting step of the adsorption process. The adsorption equilibrium data were all fitted well to the Freundlich isotherm models, with a maximum adsorption capacity values in the range of 97.71 to 208.95 mg/g, which can be compared to or moderately higher than other sorbents published in the literatures. The dynamic disk mode studies indicated that the mean removal yields of three model estrogens were over 95% with a notable smaller amount of adsorbent (4 mg). Thermodynamic study revealed that the adsorption process was exothermic and spontaneous in nature. Desorption results showed that the adsorption capacity can remain up to 80% after seven times usage. It was suggested that Nylon 6 electrospun nanofibers mat has great potential as a novel effective sorbent material for estrogens removal.
Collapse
Affiliation(s)
- Fei-Fei Qi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 210009 Nanjing, China
| | - Yang Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 210009 Nanjing, China
| | - Min Wang
- Zibo Municipal Center for Disease Control and Prevention, 255026 Zibo, China
| | - Fei Rong
- Suzhou Key Laboratory of Environment and Biosafety, 215123 Suzhou, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 210009 Nanjing, China
- Suzhou Key Laboratory of Environment and Biosafety, 215123 Suzhou, China
| |
Collapse
|
41
|
Zare Jeddi M, Ahmadkhaniha R, Yunesian M, Rastkari N. Magnetic Solid-Phase Extraction Based on Modified Magnetic Nanoparticles for the Determination of Phthalate Diesters in Water Samples. J Chromatogr Sci 2014; 53:385-91. [DOI: 10.1093/chromsci/bmu058] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Liu Q, Zhou Q, Jiang G. Nanomaterials for analysis and monitoring of emerging chemical pollutants. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.02.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
He XM, Zhu GT, Yin J, Zhao Q, Yuan BF, Feng YQ. Electrospun polystyrene/oxidized carbon nanotubes film as both sorbent for thin film microextraction and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Chromatogr A 2014; 1351:29-36. [PMID: 24908155 DOI: 10.1016/j.chroma.2014.05.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 11/16/2022]
Abstract
In the current study, polystyrene/oxidized carbon nanotubes (PS/OCNTs) film was prepared and applied as both an adsorbent of thin film microextraction (TFME) and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the first time. The uniform size of PS/OCNTs film with OCNTs evenly and firmly immobilized in PS was obtained by electrospinning. And a novel TFME device was developed using the prepared PS/OCNTs film to enrich benzo[a]pyrene (BaP) from water, and also BaP and 1-hydroxypyrene (1-OHP) from urine sample. Then the extracted analytes on the PS/OCNTs film were directly applied to MALDI-MS analysis with PS/OCNTs film as the MALDI matrix. Our results show that PS/OCNTs film is a good TFME adsorbent toward the analytes and an excellent matrix for the sensitive determination of BaP and 1-OHP using MALDI-TOF-MS. The employment of PS/OCNTs as the matrix for MALDI can effectively avoid the large variation of signal intensity normally resulting from heterogeneous distribution of the adsorbed analyte on matrix layer, which therefore significantly improve spot-to-spot reproducibility. The introduction of PS in the film can prevent OCNTs from flying out of MALDI plate to damage the equipment. In addition, PS/OCNTs film also largely extended the duration of ion signal of target analyte compared to OCNTs matrix. The developed method was further successfully used to quantitatively determine BaP in environmental water and 1-OHP in urine samples. The results show that BaP and 1-OHP could be easily detected at concentrations of 50pgmL(-1) and 500pgmL(-1), respectively, indicating the high detection sensitivity of this method. For BaP analysis, the linear range was 0.1-20ngmL(-1) with a correlation coefficient of 0.9970 and the recoveries were in the range of 81.3 to 123.4% with the RSD≤8.5% (n=3); for urinary 1-OHP analysis, the linear range was 0.5-20ngmL(-1) with a correlation coefficient of 0.9937 and the recoveries were in the range of 79.2 to 103.4% with the RSD≤7.6% (n=3). Taken together, the developed method provides a simple, rapid, cost-effective and high-throughput approach for the analysis of BaP in environmental water and endogenous 1-OHP in urine samples.
Collapse
Affiliation(s)
- Xiao-Mei He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Gang-Tian Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jia Yin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qin Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
44
|
Bagheri H, Asgari S, Piri-Moghadam H. On-line Micro Solid-Phase Extraction of Clodinafop Propargyl from Water, Soil and Wheat Samples Using Electrospun Polyamide Nanofibers. Chromatographia 2014. [DOI: 10.1007/s10337-014-2660-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Yin L, Lin Y, Jia L. Graphene oxide functionalized magnetic nanoparticles as adsorbents for removal of phthalate esters. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1187-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Khajeh M, Laurent S, Dastafkan K. Nanoadsorbents: Classification, Preparation, and Applications (with Emphasis on Aqueous Media). Chem Rev 2013; 113:7728-68. [DOI: 10.1021/cr400086v] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mostafa Khajeh
- Department of Chemistry, University of Zabol, Mofateh Street, Zabol, Sistan & Balouchestan 98615-538, Iran
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 20, Place du Parc, B-7000 Mons, Belgium
| | - Kamran Dastafkan
- Department of Chemistry, University of Zabol, Mofateh Street, Zabol, Sistan & Balouchestan 98615-538, Iran
| |
Collapse
|
47
|
Zaater MF, Tahboub YR, Al Sayyed AN. Determination of Phthalates in Jordanian Bottled Water using GC–MS and HPLC–UV: Environmental Study. J Chromatogr Sci 2013; 52:447-52. [DOI: 10.1093/chromsci/bmt059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Lv X, Hao Y, Jia Q. Preconcentration Procedures for Phthalate Esters Combined with Chromatographic Analysis. J Chromatogr Sci 2013; 51:632-44. [DOI: 10.1093/chromsci/bmt070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Moradi M, Yamini Y, Tayyebi M, Asiabi H. Ultrasound-assisted liquid-phase microextraction based on a nanostructured supramolecular solvent. Anal Bioanal Chem 2013; 405:4235-43. [DOI: 10.1007/s00216-013-6810-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/25/2012] [Accepted: 01/30/2013] [Indexed: 11/30/2022]
|
50
|
|