1
|
Mandali PK, Prabakaran A, Annadurai K, Krishnan UM. Trends in Quantification of HbA1c Using Electrochemical and Point-of-Care Analyzers. SENSORS (BASEL, SWITZERLAND) 2023; 23:1901. [PMID: 36850502 PMCID: PMC9965793 DOI: 10.3390/s23041901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Glycated hemoglobin (HbA1c), one of the many variants of hemoglobin (Hb), serves as a standard biomarker of diabetes, as it assesses the long-term glycemic status of the individual for the previous 90-120 days. HbA1c levels in blood are stable and do not fluctuate when compared to the random blood glucose levels. The normal level of HbA1c is 4-6.0%, while concentrations > 6.5% denote diabetes. Conventionally, HbA1c is measured using techniques such as chromatography, spectroscopy, immunoassays, capillary electrophoresis, fluorometry, etc., that are time-consuming, expensive, and involve complex procedures and skilled personnel. These limitations have spurred development of sensors incorporating nanostructured materials that can aid in specific and accurate quantification of HbA1c. Various chemical and biological sensing elements with and without nanoparticle interfaces have been explored for HbA1c detection. Attempts are underway to improve the detection speed, increase accuracy, and reduce sample volumes and detection costs through different combinations of nanomaterials, interfaces, capture elements, and measurement techniques. This review elaborates on the recent advances in the realm of electrochemical detection for HbA1c detection. It also discusses the emerging trends and challenges in the fabrication of effective, accurate, and cost-effective point-of-care (PoC) devices for HbA1c and the potential way forward.
Collapse
Affiliation(s)
- Pavan Kumar Mandali
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Amrish Prabakaran
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Kasthuri Annadurai
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
2
|
Kunene K, Sayegh S, Weber M, Sabela M, Voiry D, Iatsunskyi I, Coy E, Kanchi S, Bisetty K, Bechelany M. Smart electrochemical immunosensing of aflatoxin B1 based on a palladium nanoparticle-boron nitride-coated carbon felt electrode for the wine industry. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Field-Effect Capacitors Decorated with Ligand-Stabilized Gold Nanoparticles: Modeling and Experiments. BIOSENSORS 2022; 12:bios12050334. [PMID: 35624635 PMCID: PMC9139043 DOI: 10.3390/bios12050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Nanoparticles are recognized as highly attractive tunable materials for designing field-effect biosensors with enhanced performance. In this work, we present a theoretical model for electrolyte-insulator-semiconductor capacitors (EISCAP) decorated with ligand-stabilized charged gold nanoparticles. The charged AuNPs are taken into account as additional, nanometer-sized local gates. The capacitance-voltage (C–V) curves and constant-capacitance (ConCap) signals of the AuNP-decorated EISCAPs have been simulated. The impact of the AuNP coverage on the shift of the C–V curves and the ConCap signals was also studied experimentally on Al–p-Si–SiO2 EISCAPs decorated with positively charged aminooctanethiol-capped AuNPs. In addition, the surface of the EISCAPs, modified with AuNPs, was characterized by scanning electron microscopy for different immobilization times of the nanoparticles.
Collapse
|
4
|
Zhan Z, Li Y, Zhao Y, Zhang H, Wang Z, Fu B, Li WJ. A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin. BIOSENSORS 2022; 12:bios12040221. [PMID: 35448281 PMCID: PMC9024622 DOI: 10.3390/bios12040221] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 05/17/2023]
Abstract
Glycated hemoglobin (HbA1c) is the gold standard for measuring glucose levels in the diagnosis of diabetes due to the excellent stability and reliability of this biomarker. HbA1c is a stable glycated protein formed by the reaction of glucose with hemoglobin (Hb) in red blood cells, which reflects average glucose levels over a period of two to three months without suffering from the disturbance of the outside environment. A number of simple, high-efficiency, and sensitive electrochemical sensors have been developed for the detection of HbA1c. This review aims to highlight current methods and trends in electrochemistry for HbA1c monitoring. The target analytes of electrochemical HbA1c sensors are usually HbA1c or fructosyl valine/fructosyl valine histidine (FV/FVH, the hydrolyzed product of HbA1c). When HbA1c is the target analyte, a sensor works to selectively bind to specific HbA1c regions and then determines the concentration of HbA1c through the quantitative transformation of weak electrical signals such as current, potential, and impedance. When FV/FVH is the target analyte, a sensor is used to indirectly determine HbA1c by detecting FV/FVH when it is hydrolyzed by fructosyl amino acid oxidase (FAO), fructosyl peptide oxidase (FPOX), or a molecularly imprinted catalyst (MIC). Then, a current proportional to the concentration of HbA1c can be produced. In this paper, we review a variety of representative electrochemical HbA1c sensors developed in recent years and elaborate on their operational principles, performance, and promising future clinical applications.
Collapse
Affiliation(s)
- Zhikun Zhan
- School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yang Li
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
- Correspondence: (Y.Z.); (W.J.L.)
| | - Hongyu Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
| | - Zhen Wang
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Boya Fu
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
- Correspondence: (Y.Z.); (W.J.L.)
| |
Collapse
|
5
|
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Muzahidul I. Anik
- Department of Chemical Engineering University of Rhode Island South Kingstown Rhode Island USA
| | - Niaz Mahmud
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| |
Collapse
|
6
|
Sharma P, Panchal A, Yadav N, Narang J. Analytical techniques for the detection of glycated haemoglobin underlining the sensors. Int J Biol Macromol 2020; 155:685-696. [PMID: 32229211 DOI: 10.1016/j.ijbiomac.2020.03.205] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022]
Abstract
The increase in concentrations of blood glucose results arise in the proportion of glycated haemoglobin. Therefore, the percentage of glycated haemoglobin in the blood could function as a biomarker for the average glucose level over the past three months and can be used to detect diabetes. The study of glycated haemoglobin tends to be complex as there are about three hundred distinct assay techniques available for evaluating glycated haemoglobin which contributes to some differences in the recorded values from the similar samples. This review outlines distinct analytical methods that have evolved in the recent past for precise recognition of the glycated - proteins.
Collapse
Affiliation(s)
- Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Anupriya Panchal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
7
|
Shahbazmohammadi H, Sardari S, Omidinia E. An amperometric biosensor for specific detection of glycated hemoglobin based on recombinant engineered fructosyl peptide oxidase. Int J Biol Macromol 2019; 142:855-865. [PMID: 31622711 DOI: 10.1016/j.ijbiomac.2019.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 11/27/2022]
Abstract
Here, we present a specific biosensor based on the detection of glycated hemoglobin (HbA1c) proteolytic digestion product, fructosyl valyl histidine (Fru-ValHis). A recombinant engineered fructosyl peptide oxidase (FPOX) enzyme with improved specificity was immobilized on the electrode surface modified by chitosan (CHIT), graphene oxide (GO) and gold nanoparticles (AuNPs). The biosensor exhibited a linear response toward different concentrations of Fru-ValHis ranging from 0.1 to 2 mM with a sensitivity of 8.45 µA mM-1 cm-2. Detection limit of the current biosensor for Fru-ValHis was 0.3 µM as the lowest quantity required giving a signal to a background. Analytical recovery of added Fru-ValHis in whole blood was 95.1-98.35% for FPOX/AuNPs/GO/CHIT/FTO electrode. For Fru-ValHis determination by FPOX-AuNPs-GO-CHIT/FTO electrode, within-run coefficient of variation (CV) was between 1.3% and 2.4% and between run CV was between 2.1% and 3.5%. A significant change in electron transfer resistance after the incubation of FPOX-modified electrode with Fru-ValHis was observed, while no response was achieved with control, indicating specific measurement of Fru-ValHis. Moreover, designed biosensor measured HbA1c in human blood samples and the results were well agreed with that obtained with NORUDIA™ N HbA1c diagnostic kit. Overall, suitable specificity of the engineered FPOX made the bioelectrode responded well to the Fru-ValHis level, which demonstrates a promising application for specific detection of HbA1c biomarker.
Collapse
Affiliation(s)
- Hamid Shahbazmohammadi
- Enzyme Technology Laboratory, Department of Biochemistry, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Soroush Sardari
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eskandar Omidinia
- Enzyme Technology Laboratory, Department of Biochemistry, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Kaur J, Jiang C, Liu G. Different strategies for detection of HbA1c emphasizing on biosensors and point-of-care analyzers. Biosens Bioelectron 2018; 123:85-100. [PMID: 29903690 DOI: 10.1016/j.bios.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Measurement of glycosylated hemoglobin (HbA1c) is a gold standard procedure for assessing long term glycemic control in individuals with diabetes mellitus as it gives the stable and reliable value of blood glucose levels for a period of 90-120 days. HbA1c is formed by the non-enzymatic glycation of terminal valine of hemoglobin. The analysis of HbA1c tends to be complicated because there are more than 300 different assay methods for measuring HbA1c which leads to variations in reported values from same samples. Therefore, standardization of detection methods is recommended. The review outlines the current research activities on developing assays including biosensors for the detection of HbA1c. The pros and cons of different techniques for measuring HbA1c are outlined. The performance of current point-of-care HbA1c analyzers available on the market are also compared and discussed. The future perspectives for HbA1c detection and diabetes management are proposed.
Collapse
Affiliation(s)
- Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, Department of Chemistry, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
9
|
Current Status of HbA1c Biosensors. SENSORS 2017; 17:s17081798. [PMID: 28777351 PMCID: PMC5579747 DOI: 10.3390/s17081798] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/08/2023]
Abstract
Glycated hemoglobin (HbA1c) is formed via non-enzymatic glycosylation reactions at the α–amino group of βVal1 residues in the tetrameric Hb, and it can reflect the ambient glycemic level over the past two to three months. A variety of HbA1c detection methods, including chromatography, immunoassay, enzymatic measurement, electrochemical sensor and capillary electrophoresis have been developed and used in research laboratories and in clinics as well. In this review, we summarize the current status of HbA1c biosensors based on the recognition of the sugar moiety on the protein and also their applications in the whole blood sample measurements.
Collapse
|
10
|
Akiba U, Anzai JI. Recent Progress in Electrochemical Biosensors for Glycoproteins. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2045. [PMID: 27916961 PMCID: PMC5191026 DOI: 10.3390/s16122045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.
Collapse
Affiliation(s)
- Uichi Akiba
- Graduate School of Engineering and Science, Akita University, 1-1 Tegatagaluenn-machi, Akita 010-8502, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramakim, Sendai 980-8578, Japan.
| |
Collapse
|
11
|
|
12
|
|
13
|
Wang B, Anzai JI. Recent Progress in Electrochemical HbA1c Sensors: A Review. MATERIALS (BASEL, SWITZERLAND) 2015; 8:1187-1203. [PMID: 28787996 PMCID: PMC5455452 DOI: 10.3390/ma8031187] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022]
Abstract
This article reviews recent progress made in the development of electrochemical glycated hemoglobin (HbA1c) sensors for the diagnosis and management of diabetes mellitus. Electrochemical HbA1c sensors are divided into two categories based on the detection protocol of the sensors. The first type of sensor directly detects HbA1c by binding HbA1c on the surface of an electrode through bio-affinity of antibody and boronic acids, followed by an appropriate mode of signal transduction. In the second type of sensor, HbA1c is indirectly determined by detecting a digestion product of HbA1c, fructosyl valine (FV). Thus, the former sensors rely on the selective binding of HbA1c to the surface of the electrodes followed by electrochemical signaling in amperometric, voltammetric, impedometric, or potentiometric mode. Redox active markers, such as ferrocene derivatives and ferricyanide/ferrocyanide ions, are often used for electrochemical signaling. For the latter sensors, HbA1c must be digested in advance by proteolytic enzymes to produce the FV fragment. FV is electrochemically detected through catalytic oxidation by fructosyl amine oxidase or by selective binding to imprinted polymers. The performance characteristics of HbA1c sensors are discussed in relation to their use in the diagnosis and control of diabetic mellitus.
Collapse
Affiliation(s)
- Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan 250012, Shandong, China.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
14
|
Electrochemical biosensors based on ferroceneboronic Acid and its derivatives: a review. BIOSENSORS-BASEL 2014; 4:243-56. [PMID: 25587421 PMCID: PMC4264357 DOI: 10.3390/bios4030243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/03/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022]
Abstract
We review recent progress in the development of electrochemical biosensors based on ferroceneboronic acid (FcBA) and ferrocene (Fc)-modified boronic acids. These compounds can be used to construct electrochemical biosensors because they consist of a binding site (i.e., a boronic acid moiety) and an electrochemically active part (i.e., an Fc residue). By taking advantage of the unique properties of FcBA and its derivatives, electrochemical sensors sensitive to sugars, glycated hemoglobin (HbA1c), fluoride (F(-)) ions, and so forth have been widely studied. FcBA-based sugar sensors rely on the selective binding of FcBA to 1,2- or 1,3-diol residues of sugars through the formation of cyclic boronate ester bonds. The redox properties of FcBA-sugar adduct differ from those of free FcBA, which forms the basis of the electrochemical determination of sugars. Thus, non-enzymatic glucose sensors are now being actively studied using FcBA and Fc-modified boronic acids as redox markers. Using a similar principle, HbA1c can be detected by FcBA-based electrochemical systems because it contains hydrocarbon chains on the polypeptide chain. HbA1c sensors are useful for monitoring blood glucose levels over the preceding 8-12 weeks. In addition, FcBA and Fc-modified boronic acids have been used for the detection of F(-) ions due to the selective binding of boronic acid to F(-) ions. F(-)-ion sensors may be useful alternatives to conventional ion-selective electrodes sensitive to F(-) ion. Furthermore, FcBA derivatives have been studied to construct lectin; steroids; nucleotides; salicylic acid; and bacteria sensors. One of the limitations of FcBA-based sensors comes from the fact that FcBA derivatives are added in sample solutions as reagents. FcBA derivatives should be immobilized on the surface of electrodes for developing reagentless sensors.
Collapse
|