1
|
Xu Y, Jin X, Khan MA, Paiva-Santos AC, Makvandi P. Electroconductive bioplatform based on dextrin for the immobilization of hemoglobin: Application for electrochemical monitoring of H 2O 2. ENVIRONMENTAL RESEARCH 2023; 235:116700. [PMID: 37479214 DOI: 10.1016/j.envres.2023.116700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
A novel biodegradable dextrin-based nanocomposite, involving polypyrrole (PPy) and hydrophilic dextrin (Dex) (PPy@Dex) was prepared using in-situ radical chemical polymerization technique. The obtained PPy@Dex bionanocomposite was fully characterized by FT-IR, XRD, FESEM, and DSC methods. The exceptional properties such as biocompatibility, high surface area, the proper functional group on the surface, and outstanding electrical conductivity of synthesized bionanocomposite made it a superior candidate over biomolecules immobilization. Electrochemical observations revealed that the PPy@Dex-coated glassy carbon electrode (GCE) demonstrated improved performance, making it a suitable substrate for immobilizing hemoglobin (Hb) and constructing an efficient biosensor. The resulting biosensor, named Hb-PPy@Dex/GCE, exhibited high activity in the reduction of hydrogen peroxide (H2O2). Amperometric examinations demonstrated an extensive linear range from 2 to 350 μM for Hb-PPy@Dex/GCE. The detection limit of the proposed approach was calculated to be 0.54 μM, following the S/N = 3 protocol.
Collapse
Affiliation(s)
- Yi Xu
- Department of Science & Technology, Department of Urology, Nano Medical Innovation & Collaboration Group (NMICG), The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xuru Jin
- Department of Respiratory and Critical Care Medicine, Nano Medical Innovation & Collaboration Group (NMICG), The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China.
| |
Collapse
|
2
|
Synthesis of Copper and Silver Nanoparticles by Using Microwave-Assisted Ionic Liquid Crystal Method and Their Application for Nonenzymatic Hydrogen Peroxide Determination. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Recent development of magnetic nanomaterial-supported M(Salen) composites as recyclable heterogeneous catalysts. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01549-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Yin N, Ai Y, Xu Y, Ouyang Y, Yang P. Preparation of magnetic biomass-carbon aerogel and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07392-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Yang Y, Sun Y, Jin M, Bai R, Liu Y, Wu Y, Wang W, Feng X, Li S. Fabrication of Superoxide Dismutase (SOD) Imprinted Poly(ionic liquid)s via eATRP and its Application in Electrochemical Sensor. ELECTROANAL 2020. [DOI: 10.1002/elan.201900764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yifei Yang
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Yue Sun
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Mingzhu Jin
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Ru Bai
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Yutong Liu
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Yingqi Wu
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Wei Wang
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Xuewei Feng
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Siyu Li
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| |
Collapse
|
6
|
Heydaryan K, Almasi Kashi M, Sharifi N, Ranjbar-Azad M. Efficiency improvement in non-enzymatic H2O2 detection induced by the simultaneous synthesis of Au and Ag nanoparticles in an RGO/Au/Fe3O4/Ag nanocomposite. NEW J CHEM 2020. [DOI: 10.1039/d0nj00526f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing a quick and precise technique for hydrogen peroxide (H2O2) detection would open up a new class of technologies for biological, medical and chemical applications.
Collapse
Affiliation(s)
- Kamran Heydaryan
- Institute of Nanoscience and Nanotechnology
- University of Kashan
- Kashan 87317
- Iran
| | - Mohammad Almasi Kashi
- Institute of Nanoscience and Nanotechnology
- University of Kashan
- Kashan 87317
- Iran
- Department of Physics, University of Kashan
| | - Nafiseh Sharifi
- Institute of Nanoscience and Nanotechnology
- University of Kashan
- Kashan 87317
- Iran
| | | |
Collapse
|
7
|
Li L, Wang F, Shao Z, Liu J, Zhang Q, Jiao W. Chitosan and carboxymethyl cellulose-multilayered magnetic fluorescent systems for reversible protein immobilization. Carbohydr Polym 2018; 201:357-366. [DOI: 10.1016/j.carbpol.2018.08.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
|
8
|
Zhang X, Bao N, Luo X, Ding SN. Patchy gold coated Fe 3O 4 nanospheres with enhanced catalytic activity applied for paper-based bipolar electrode-electrochemiluminescence aptasensors. Biosens Bioelectron 2018; 114:44-51. [PMID: 29778001 DOI: 10.1016/j.bios.2018.05.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022]
Abstract
In this work, novel multifunctional patchy gold coated Fe3O4 hybrid nanoparticles (PG-Fe3O4 NPs) have been successfully synthesized in aqueous medium via a facile adsorption-reduction method. A rational formation mechanism has been proposed by monitoring the morphological evolution. The PG-Fe3O4 NPs retained the good magnetic property and exhibited excellent catalytical effeciency towards the electrochemical reduction of hydrogen peroxide. Chronoamperometric and amperometric experiments indicated a relatively high catalytic rate constant of 3.13 × 105 M-1 s-1, a high sensitivity of 578.87 µA mM-1 cm-2 and a low Michaelis-Menten constant of 462 µM. Meanwhile, the introduction of patchy gold could help biofunctionalization via Au-S bond for different biodetection and biosensing purposes. Here, as an example, thiol-terminated aptamers were immobilized onto the patchy gold part as a signal probe to detect carcinoembryonic antigen (CEA). A related paper-based bipolar electrode-electrochemiluminescence (pBPE-ECL) aptasensor was fabricated as the low-cost, disposable and miniature platform. To improve the sensitivity, Au nanodendrites were electrodeposited at the BPE cathode as the matrix for Apt1 immobilization. This aptasensor showed a wide linear range of 0.1 pg mL-1-15 ng mL-1 with a low detection limit of 0.03 pg mL-1, remaining competitive against other ones, and also demonstrating the PG-Fe3O4 NPs have promising potential for catalysis and bioassays.
Collapse
Affiliation(s)
- Xin Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ning Bao
- School of Public Health, Nantong University, 226019 Nantong, Jiangsu, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
9
|
Baghayeri M, Veisi H, Farhadi S, Beitollahi H, Maleki B. Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1298-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Liang J, Wei M, Wang Q, Zhao Z, Liu A, Yu Z, Tian Y. Sensitive Electrochemical Determination of Hydrogen Peroxide Using Copper Nanoparticles in a Polyaniline Film on a Glassy Carbon Electrode. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1343832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jing Liang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, China
| | - Maochao Wei
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, China
| | - Qiang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, China
| | - Zongshan Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, China
| | - Aifeng Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, China
| | - Zhuanni Yu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, China
| | - Yong Tian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, China
| |
Collapse
|
11
|
Enhanced and tunable oxygen carrier and amperometric sensor based on a glassy carbon electrode assembly of a hemoglobin-chitosan-Fe3O4 composite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2137-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Baghayeri M, Rouhi M, Lakouraj MM, Amiri-Aref M. Bioelectrocatalysis of hydrogen peroxide based on immobilized hemoglobin onto glassy carbon electrode modified with magnetic poly(indole-co-thiophene) nanocomposite. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Shu Y, Chen J, Xu Q, Wei Z, Liu F, Lu R, Xu S, Hu X. MoS2 nanosheet–Au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells. J Mater Chem B 2017; 5:1446-1453. [DOI: 10.1039/c6tb02886a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MoS2–Au hybrids were utilized to construct a sensitive H2O2 electrochemical biosensor for the determination of H2O2 released from living cells.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Jingyuan Chen
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Qin Xu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Zhen Wei
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Fengping Liu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Rui Lu
- Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
- School of Veterinary Medicine
- Yangzhou University
- Yangzhou 225002
- China
| | - Sheng Xu
- Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
- School of Veterinary Medicine
- Yangzhou University
- Yangzhou 225002
- China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|
14
|
Wu W, Jiang CZ, Roy VAL. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. NANOSCALE 2016; 8:19421-19474. [PMID: 27812592 DOI: 10.1039/c6nr07542h] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iron oxide nanoparticles (NPs) hold great promise for future biomedical applications because of their magnetic properties as well as other intrinsic properties such as low toxicity, colloidal stability, and surface engineering capability. Numerous related studies on iron oxide NPs have been conducted. Recent progress in nanochemistry has enabled fine control over the size, crystallinity, uniformity, and surface properties of iron oxide NPs. This review examines various synthetic approaches and surface engineering strategies for preparing naked and functional iron oxide NPs with different physicochemical properties. Growing interest in designed and surface-engineered iron oxide NPs with multifunctionalities was explored in in vitro/in vivo biomedical applications, focusing on their combined roles in bioseparation, as a biosensor, targeted-drug delivery, MR contrast agents, and magnetic fluid hyperthermia. This review outlines the limitations of extant surface engineering strategies and several developing strategies that may overcome these limitations. This study also details the promising future directions of this active research field.
Collapse
Affiliation(s)
- Wei Wu
- Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China. and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Chang Zhong Jiang
- School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Vellaisamy A L Roy
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China.
| |
Collapse
|
15
|
The hemoglobin-modified electrode with chitosan/Fe3O4 nanocomposite for the detection of trichloroacetic acid. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-015-3097-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Amiri-Aref M, Raoof JB, Kiekens F, De Wael K. Mixed hemi/ad-micelles coated magnetic nanoparticles for the entrapment of hemoglobin at the surface of a screen-printed carbon electrode and its direct electrochemistry and electrocatalysis. Biosens Bioelectron 2015; 74:518-25. [DOI: 10.1016/j.bios.2015.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 11/27/2022]
|
17
|
Baghayeri M, Veisi H. Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens Bioelectron 2015; 74:190-8. [DOI: 10.1016/j.bios.2015.06.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/22/2015] [Accepted: 06/07/2015] [Indexed: 01/10/2023]
|
18
|
Han E, Yang Y, He Z, Cai J, Zhang X, Dong X. Development of tyrosinase biosensor based on quantum dots/chitosan nanocomposite for detection of phenolic compounds. Anal Biochem 2015; 486:102-6. [DOI: 10.1016/j.ab.2015.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/19/2022]
|
19
|
A third-generation biosensor for hydrogen peroxide based on the immobilization of horseradish peroxidase on a disposable carbon nanotubes modified screen–printed electrode. Mikrochim Acta 2015. [DOI: 10.1007/s00604-014-1444-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Direct electrochemistry of hemoglobin in a renewable mesoporous carbon ceramic electrode: a new kind of hydrogen peroxide biosensor. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1403-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Yu CL, Lo NC, Cheng H, Tsuda T, Sakamoto T, Chen YH, Kuwabata S, Chen PY. An ionic liquid-Fe3O4 nanoparticles-graphite composite electrode used for nonenzymatic electrochemical determination of hydrogen peroxide. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Molecularly imprinted magnetic nanoparticles for determination of the herbicide chlorotoluron by gate-controlled electro-catalytic oxidation of hydrazine. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1326-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Yagati AK, Choi JW. Protein Based Electrochemical Biosensors for H2O2Detection Towards Clinical Diagnostics. ELECTROANAL 2014. [DOI: 10.1002/elan.201400037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Baghayeri M, Nazarzadeh Zare E, Mansour Lakouraj M. A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens Bioelectron 2014; 55:259-65. [DOI: 10.1016/j.bios.2013.12.033] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/29/2013] [Accepted: 12/11/2013] [Indexed: 11/16/2022]
|
25
|
Li F, Nie M, He X, Fei J, Ding Y, Feng B. Direct electrochemistry and electrocatalysis of hemoglobin on a glassy carbon electrode modified with poly(ethylene glycol diglycidyl ether) and gold nanoparticles on a quaternized cellulose support. A sensor for hydrogen peroxide and nitric oxide. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1228-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
New synthesis of gold nanocorals using a diazonium compound, and their application to an electrochemiluminescent assay of hydrogen peroxide. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1111-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Ren L, Dong J, Cheng X, Xu J, Hu P. Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1064-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|