1
|
Vasudevan M, Perumal V, Karuppanan S, Ovinis M, Bothi Raja P, Gopinath SCB, Immanuel Edison TNJ. A Comprehensive Review on Biopolymer Mediated Nanomaterial Composites and Their Applications in Electrochemical Sensors. Crit Rev Anal Chem 2022; 54:1871-1894. [PMID: 36288094 DOI: 10.1080/10408347.2022.2135090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Biopolymers are an attractive green alternative to conventional polymers, owing to their excellent biocompatibility and biodegradability. However, their amorphous and nonconductive nature limits their potential as active biosensor material/substrate. To enhance their bio-analytical performance, biopolymers are combined with conductive materials to improve their physical and chemical characteristics. We review the main advances in the field of electrochemical biosensors, specifically the structure, approach, and application of biopolymers, as well as their conjugation with conductive nanoparticles, polymers and metal oxides in green-based noninvasive analytical biosensors. In addition, we reviewed signal measurement, substrate bio-functionality, biochemical reaction, sensitivity, and limit of detection (LOD) of different biopolymers on various transducers. To date, pectin biopolymer, when conjugated with either gold nanoparticles, polypyrrole, reduced graphene oxide, or multiwall carbon nanotubes forming nanocomposites on glass carbon electrode transducer, tends to give the best LOD, highest sensitivity and can detect multiple analytes/targets. This review will spur new possibilities for the use of biosensors for medical diagnostic tests.
Collapse
Affiliation(s)
- Mugashini Vasudevan
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Saravanan Karuppanan
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Mark Ovinis
- School of Engineering and the Built Environment, Birmingham City University, Birmingham, UK
| | - Pandian Bothi Raja
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Kangar 01000 & Faculty of Chemical Engineering & Technology, Arau 02600, Universiti Malaysia Perlis, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau 02600, Pauh Campus, Perlis, Malaysia
| | | |
Collapse
|
2
|
Song S, Li H, Liu P, Peng X. Applications of cellulose-based composites and their derivatives for microwave absorption and electromagnetic shielding. Carbohydr Polym 2022; 287:119347. [DOI: 10.1016/j.carbpol.2022.119347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
|
3
|
Venkatesh K, Muthukutty B, Chen SM, Karuppasamy P, Haidyrah AS, Karuppiah C, Yang CC, Ramaraj SK. Spinel CoMn2O4 nano-/micro-spheres embedded RGO nanosheets modified disposable electrode for the highly sensitive electrochemical detection of metol. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Highly selective and sensitive electrochemical determination of cysteine based on complexation with gold nanoparticle–modified copper-based metal organic frameworks. Anal Bioanal Chem 2022; 414:2343-2353. [DOI: 10.1007/s00216-021-03852-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
|
5
|
Moulaee K, Neri G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. BIOSENSORS 2021; 11:502. [PMID: 34940259 PMCID: PMC8699811 DOI: 10.3390/bios11120502] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 05/05/2023]
Abstract
The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.
Collapse
Affiliation(s)
- Kaveh Moulaee
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 16846-13114, Iran
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
6
|
Tajik S, Dourandish Z, Jahani PM, Sheikhshoaie I, Beitollahi H, Shahedi Asl M, Jang HW, Shokouhimehr M. Recent developments in voltammetric and amperometric sensors for cysteine detection. RSC Adv 2021; 11:5411-5425. [PMID: 35423079 PMCID: PMC8694840 DOI: 10.1039/d0ra07614g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022] Open
Abstract
This review article aims to provide an overview of the recent advances in the voltammetric and amperometric sensing of cysteine (Cys). The introduction summarizes the important role of Cys as an essential amino acid, techniques for its sensing, and the utilization of electrochemical methods and chemically modified electrodes for its determination. The main section covers voltammetric and amperometric sensing of Cys based on glassy carbon electrodes, screen printed electrodes, and carbon paste electrodes, modified with various electrocatalytic materials. The conclusion section discusses the current challenges of Cys determination and the future perspectives.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | | | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Mehdi Shahedi Asl
- Marine Additive Manufacturing Centre of Excellence (MAMCE), University of New Brunswick Fredericton NB E3B 5A1 Canada
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
7
|
Dolinska J, Holdynski M, Pieta P, Lisowski W, Ratajczyk T, Palys B, Jablonska A, Opallo M. Noble Metal Nanoparticles in Pectin Matrix. Preparation, Film Formation, Property Analysis, and Application in Electrocatalysis. ACS OMEGA 2020; 5:23909-23918. [PMID: 32984711 PMCID: PMC7513339 DOI: 10.1021/acsomega.0c03167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 05/23/2023]
Abstract
Stable polymeric materials with embedded nano-objects, retaining their specific properties, are indispensable for the development of nanotechnology. Here, a method to obtain Pt, Pd, Au, and Ag nanoparticles (ca. 10 nm, independent of the metal) by the reduction of their ions in pectin, in the absence of additional reducing agents, is described. Specific interactions between the pectin functional groups and nanoparticles were detected, and they depend on the metal. Bundles and protruding nanoparticles are present on the surface of nanoparticles/pectin films. These films, deposited on the electrode surface, exhibit electrochemical response, characteristic for a given metal. Their electrocatalytic activity toward the oxidation of a few exemplary organic molecules was demonstrated. In particular, a synergetic effect of simultaneously prepared Au and Pt nanoparticles in pectin films on glucose electro-oxidation was found.
Collapse
Affiliation(s)
- Joanna Dolinska
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Marcin Holdynski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Piotr Pieta
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Wojciech Lisowski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Tomasz Ratajczyk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Barbara Palys
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
| | - Anna Jablonska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
| | - Marcin Opallo
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
8
|
Yarkaeva YA, Dubrovskii DI, Zil’berg RA, Maistrenko VN. Voltammetric Sensors and Sensor System Based on Gold Electrodes Modified with Polyarylenephthalides for Cysteine Recognition. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s102319352007006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Ranganathan P, Mutharani B, Chen SM, Sireesha P. Biocompatible chitosan-pectin polyelectrolyte complex for simultaneous electrochemical determination of metronidazole and metribuzin. Carbohydr Polym 2019; 214:317-327. [PMID: 30926003 DOI: 10.1016/j.carbpol.2019.03.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022]
Abstract
Development of novel biocompatible sensor material suitable for modest, cost-effective, and rapid practical application is a demanding research interest in the field of electroanalytical chemistry. In this context, for the first time, we utilized biocompatible chitosan-pectin biopolyelectrolyte (CS-PC BPE) complex for the simultaneous electroreduction of an important antibiotic drug (metronidazole-MNZ) and herbicide (metribuzin-MTZ). This sensor reveals an attractive welfares such as simplicity, biocompatibility, and low production cost. Under optimized experimental conditions, the electroanalytical investigation confirmed that CS-PC BPE modified glassy carbon electrode (CS-PC BPE/GCE) was found to sense MNZ and MTZ in the nanomolar range. Moreover, as-prepared CS-PC BPE/GCE exhibited prominent selectivity, stability, and reproducibility. Additionally, the possible MNZ and MTZ sensing mechanism of CS-PC BPE/GCE have been discussed in detail. Lastly, real sample analysis was also carried out and revealed from several investigations that the CS-PC BPE/GCE is a good electrochemical sensor system for the detection of targeted analytes.
Collapse
Affiliation(s)
- Palraj Ranganathan
- Institute of Organic and Polymeric Materials and Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Bhuvanenthiran Mutharani
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Pedaballi Sireesha
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
| |
Collapse
|
10
|
Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G. Biopolymer-Aerogele und -Schäume: Chemie, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shanyu Zhao
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Wim J. Malfait
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Natalia Guerrero-Alburquerque
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Matthias M. Koebel
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Gustav Nyström
- Angewandte Holzforschung; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
- Departement Gesundheitswissenschaften und Technologie; ETH Zürich; Schmelzbergstrasse 9 CH-8092 Zürich Schweiz
| |
Collapse
|
11
|
Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew Chem Int Ed Engl 2018; 57:7580-7608. [DOI: 10.1002/anie.201709014] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Shanyu Zhao
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Natalia Guerrero-Alburquerque
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Gustav Nyström
- Applied Wood Materials Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Department of Health Science and Technology; ETH Zurich; Schmelzbergstrasse 9 CH-8092 Zürich Switzerland
| |
Collapse
|
12
|
Yusoff N, Rameshkumar P, Mohamed Noor A, Huang NM. Amperometric determination of L-cysteine using a glassy carbon electrode modified with palladium nanoparticles grown on reduced graphene oxide in a Nafion matrix. Mikrochim Acta 2018; 185:246. [DOI: 10.1007/s00604-018-2782-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
|
13
|
Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of l-cysteine. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.102] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Li H, Ye L, Wang Y, Xie C. A glassy carbon electrode modified with hollow cubic cuprous oxide for voltammetric sensing of L-cysteine. Mikrochim Acta 2017; 185:5. [PMID: 29594497 DOI: 10.1007/s00604-017-2578-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/18/2017] [Indexed: 11/28/2022]
Abstract
This paper reports on an electrochemical sensing system for L-cysteine. It is based on the use of hollow cubic Cu2O particles that were prepared in two steps. First, the Cu2O/ polystyrene (PS) composites were prepared by a surface ion exchange strategy for in-situ reductive deposition on the surface of carboxy-capped PS particles. Thereafter, the PS particles were removed from the Cu2O/PS composites by treatment with tetrahydrofuran (THF). The resulting hollow cubic Cu2O particles were placed in a Nafion matrix on a glassy carbon electrode (GCE) which exhibits high surface area, good site accessibility and excellent electrocatalytic activity for L-cysteine. The cyclic voltammetric response of the modified GCE to L-cysteine is about 2.8-fold stronger than when using a GCE modified with pure Cu2O. The detection limit for L-cysteine is lower by about 1 order of magnitude, and the working voltage is rather low (-0.08 V vs. Ag/AgCl). An excellent electrochemical selectivity for L-cysteine over other amino acids was also achieved. The method was successfully applied to the determination of L-cysteine in pharmaceutical samples. Graphical abstract An electrochemical sensing system for the detection of L-cysteine in amino acid injections has been established by using the hollow cubic Cu2O particles as recognition element.
Collapse
Affiliation(s)
- Huaifen Li
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Lingling Ye
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Yanwei Wang
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Chenggen Xie
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China.
| |
Collapse
|
15
|
Awasthi R, Kulkarni GT, Ramana MV, de Jesus Andreoli Pinto T, Kikuchi IS, Molim Ghisleni DD, de Souza Braga M, De Bank P, Dua K. Dual crosslinked pectin-alginate network as sustained release hydrophilic matrix for repaglinide. Int J Biol Macromol 2017; 97:721-732. [PMID: 28115226 DOI: 10.1016/j.ijbiomac.2017.01.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022]
Abstract
Repaglinide, an oral antidiabetic agent, has a rapid onset of action and short half-life of approximately 1h. Developing a controlled and prolonged release delivery system is required to maintain its therapeutic plasma concentration and to eliminate its adverse effects particularly hypoglycemia. The present study aimed to develop controlled release repaglinide loaded beads using sodium alginate and pectin with dual cross-linking for effective control of drug release. The prepared beads were characterized for size, percentage drug entrapment efficiency, in vitro drug release and the morphological examination using scanning electron microscope. For the comparative study, the release profile of a marketed conventional tablet of repaglinide (Prandin® tablets 2mg, Novo Nordisk) was determined by the same procedure as followed for beads. The particle size of beads was in the range of 698±2.34-769±1.43μm. The drug entrapment efficiency varied between 55.24±4.61 to 82.29±3.42%. The FTIR results suggest that there was no interaction between repaglinide and excipients. The XRD and DSC results suggest partial molecular dispersion and amorphization of the drug throughout the system. These results suggest that repaglinide did not dissolve completely in the polymer composition and seems not to be involved in the cross-linking reaction. The percent drug release was decreased with higher polymer concentrations. In conclusion, the developed beads could enhance drug entrapment efficiency, prolong the drug release and enhance bioavailability for better control of diabetes.
Collapse
Affiliation(s)
- Rajendra Awasthi
- NKBR College of Pharmacy & Research Centre, Meerut - Hapur Road, Meerut, 245 206, Uttar Pradesh, India.
| | - Giriraj T Kulkarni
- Amity Institute of Pharmacy, Amity University, Sec 125, Noida, 201303, Uttar Pradesh, India
| | | | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Rua Professor Lineu Prestes, 05508-000, Brazil
| | - Irene Satiko Kikuchi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Rua Professor Lineu Prestes, 05508-000, Brazil
| | - Daniela Dal Molim Ghisleni
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Rua Professor Lineu Prestes, 05508-000, Brazil
| | - Marina de Souza Braga
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Rua Professor Lineu Prestes, 05508-000, Brazil
| | - Paul De Bank
- Department of Pharmacy and Pharmacology, The University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Kamal Dua
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India; School of Pharmacy and Biomedical Sciences, The University of Newcastle, Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
16
|
Ko YC, Lin TL, Yeh CT, Sun NK, Shyue JJ, Liu GY, Chou SW, Liu YC, Hsu CH, Ho ML. Silver nanoprism-based paper as a ratiometric sensor for extending biothiol detection in serum. NEW J CHEM 2017. [DOI: 10.1039/c7nj02863f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A paper-based method with selectivity and a wider linear range for the detection of l-Cys in serum using DTNB-modified Ag nanoprisms (AgP-DTNB).
Collapse
Affiliation(s)
- Yu-Chien Ko
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Tien-Li Lin
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Chiu-Ting Yeh
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Ning-Kuei Sun
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Science, Academia Sinica
- Taipei 115
- Taiwan
| | - Guang-Yang Liu
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Shang-Wei Chou
- National Taiwan University, Department of Chemistry
- Taipei 106
- Taiwan
| | - Yu-Ci Liu
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Chia-Hui Hsu
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| | - Mei-Lin Ho
- Department of Chemistry, Soochow University
- Taipei 111
- Taiwan
| |
Collapse
|
17
|
Kohila rani K, Devasenathipathy R, Wang SF, Subramanian KS. Highly Sensitive Hydrazine Sensor Based on Co(OH)2Nanoflakes Electrochemically Deposited on MWCNTs. ELECTROANAL 2016. [DOI: 10.1002/elan.201600674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karuppasamy Kohila rani
- Department of Materials and Mineral Resources Engineering; National Taipei University of Technology; Taipei Taiwan
| | - Rajkumar Devasenathipathy
- Department of Materials and Mineral Resources Engineering; National Taipei University of Technology; Taipei Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering; National Taipei University of Technology; Taipei Taiwan
| | - K. Sundara Subramanian
- Department of mechanical engineering; Velammal college of engineering and technology; Madurai India
| |
Collapse
|
18
|
Hussain MM, Rahman MM, Asiri AM. Sensitive L-leucine sensor based on a glassy carbon electrode modified with SrO nanorods. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1983-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Wang Y, Wang W, Li G, Liu Q, Wei T, Li B, Jiang C, Sun Y. Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1974-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Pushpamalar J, Veeramachineni AK, Owh C, Loh XJ. Biodegradable Polysaccharides for Controlled Drug Delivery. Chempluschem 2016; 81:504-514. [DOI: 10.1002/cplu.201600112] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/30/2016] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Cally Owh
- Institute of Materials Research and Engineering (IMRE); A*STAR; 3 Research Link Singapore 117602 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE); A*STAR; 3 Research Link Singapore 117602 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117576 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| |
Collapse
|
21
|
Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of l -cysteine. Biosens Bioelectron 2016; 77:1112-8. [DOI: 10.1016/j.bios.2015.10.088] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 01/03/2023]
|
22
|
WITHDRAWN: Selective electrochemical detection of cysteine using silver - polydopamine composite. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Amperometric L-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-015-1737-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Thota R, Ganesh V. Simple and facile preparation of silver–polydopamine (Ag–PDA) core–shell nanoparticles for selective electrochemical detection of cysteine. RSC Adv 2016. [DOI: 10.1039/c6ra06994k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple one-step method for the preparation of silver–polydopamine (Ag–PDA) core–shell nanoparticles is proposed and its application for non-enzymatic electrochemical detection of cysteine is demonstrated.
Collapse
Affiliation(s)
- Raju Thota
- Electrodics and Electrocatalysis (EEC) Division
- CSIR – Central Electrochemical Research Institute (CSIR – CECRI)
- Karaikudi – 630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - V. Ganesh
- Electrodics and Electrocatalysis (EEC) Division
- CSIR – Central Electrochemical Research Institute (CSIR – CECRI)
- Karaikudi – 630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|