1
|
Three-Dimensional Dendritic Au-Ag Substrate for On-Site SERS Detection of Trace Molecules in Liquid Phase. NANOMATERIALS 2022; 12:nano12122002. [PMID: 35745341 PMCID: PMC9229001 DOI: 10.3390/nano12122002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The development of a facile surface-enhanced Raman scattering (SERS) sensor for the on-site detection of trace molecules in liquid phase is a compelling need. In this paper, a three-dimensional (3D) dendritic Au–Ag nanostructure was constructed by a two-step electro displacement reaction in a capillary tube for the on-site liquid phase detection of trace molecules. The multiplasmon resonance mechanism of the dendritic Au–Ag structure was simulated using the finite-difference time domain (FDTD) method. It was confirmed that the highly branched 3D structure promoted the formation of high-density “hot spots” and interacted with the gold nanoparticles at the dendrite tip, gap, and surface to maximize the spatial electric field, which allowed for high signal intensification to be observed. More importantly, the unique structure of the capillary made it possible to achieve the on-site detection of trace molecules in liquids. Using Rhodamine 6G (R6G) solution as a model molecule, the 3D dendritic Au–Ag substrate exhibited a high detection sensitivity (10−13 mol/L). Furthermore, the developed sensor was applied to the detection of antibacterial agents, ciprofloxacin (CIP), with clear Raman characteristic peaks observed even at concentrations as low as 10−9 mol/L. The results demonstrated that the 3D dendritic Au–Ag sensor could successfully realize the rapid on-site SERS detection of trace molecules in liquids, providing a promising platform for ultrasensitive and on-site liquid sample analysis.
Collapse
|
2
|
Wang C, Zhang H, Wang C. Sensitive detection of ferbam by coupling solid phase microextraction with surface enhanced Raman spectroscopy based on Au nano-glass capillary. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120960. [PMID: 35158138 DOI: 10.1016/j.saa.2022.120960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, we developed an innovative approach that combines solid phase microextraction (SPME) with surface-enhanced Raman spectroscopy (SERS) to detect pesticide ferbam rapidly. An Au nano-glass capillary was fabricated by coating template-freely synthesized three-dimensional network Au nanostructures (3D-NW AuNSs) on the roughened surface of glass capillary and used for SPME and SERS respectively. Significant Raman signals were obtained by the SPME-SERS method, followed by detection of ferbam in water and orange juice samples with only 1 min SPME process. Results showed that Au nano-glass capillaries could achieve the detection of ferbam with limit of detection of 0.05 μg/L, and coefficient of determination (R2) of 0.9913. The recovery of predicted results was in the range of 88.46-103.29% and the relative standard deviation (RSD) was 3.5-8.2%. This study demonstrated potential capability of the SPME-SERS method for rapid (within 1 min) and sensitive detection of organic compounds in complex matrices. The SERS-active Au nano-glass capillary is easy to carry and operate, and is expected to play a role in the detection of trace pollutants.
Collapse
Affiliation(s)
- Cuiping Wang
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Huan Zhang
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Chunrong Wang
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| |
Collapse
|
3
|
Bhargava A, Bansal A, Goyal V, Bansal P. A review on tea quality and safety using emerging parameters. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Hao X, Liu W, Zhang Y, Kang W, Niu L, Ai L. A novel and rapid method to detect chlorpromazine hydrochloride in biological sample based on SERS. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Zhao C, Shi R, Wu J, Luo X, Liu X. Point-of-Care Detection of Salivary Nitrite Based on the Surface Plasmon-Assisted Catalytic Coupling Reaction of Aromatic Amines. BIOSENSORS 2021; 11:bios11070223. [PMID: 34356694 PMCID: PMC8301788 DOI: 10.3390/bios11070223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 05/05/2023]
Abstract
Rapid quantification of nitrite (NO2-) in food, drink and body fluids is of significant importance for both food safety and point-of-care (POA) applications. However, conventional nitrite analytical methods are complicated, constrained to sample content, and time-consuming. Inspired by a nitrite-triggered surface plasmon-assisted catalysis (SPAC) reaction, a rapid point-of-care detection salivary nitrate was developed in this work. NO2- ions can trigger the rapid conversion of p-aminothiophenol (PATP) to p,p'-dimercaptozaobenzene (DMAB) on gold nanoparticles (GNPs) under light illumination, and the emerged new bands at ca. 1140, 1390, 1432 cm-1 originating from DMAB can be used to the quantification of nitrite. Meanwhile, to make the method entirely suitable for on-site fast screen or point-of-care application, the technique is needed to be further optimized. The calibration graph for nitrates was linear in the range of 1-100 µM with a correlation coefficient of 0.9579. The limit of detection was 1 µM. The facile method could lead to a further understanding of the progression and treatment of periodontitis and to guide professionals in planning on-site campaigns to effectively control periodontal diseases.
Collapse
Affiliation(s)
- Chen Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (C.Z.); (R.S.); (J.W.); (X.L.)
| | - Ruyi Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (C.Z.); (R.S.); (J.W.); (X.L.)
| | - Jiale Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (C.Z.); (R.S.); (J.W.); (X.L.)
| | - Xuan Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (C.Z.); (R.S.); (J.W.); (X.L.)
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (C.Z.); (R.S.); (J.W.); (X.L.)
- College of Mechanical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: ; Tel.: +86-571-88982820
| |
Collapse
|
6
|
Choi M, Kang T, Choi SH, Byun KM. Dual modal plasmonic substrates based on a convective self-assembly technique for enhancement in SERS and LSPR detection. OPTICS EXPRESS 2021; 29:6179-6187. [PMID: 33726144 DOI: 10.1364/oe.419051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
In this study, surface-enhanced Raman scattering (SERS) scheme is combined with localized surface plasmon resonance (LSPR) detection on a thin gold film with stripe patterns of gold nanoparticles (GNPs) via convective self-assembly (CSA) method. The potential of dual modal plasmonic substrates was evaluated by binding 4-ABT and IgG analytes, respectively. SERS experiments presented not only a high sensitivity with a detection limit of 4.7 nM and an enhancement factor of 1.34 × 105, but an excellent reproducibility with relative standard deviation of 5.5%. It was found from plasmonic sensing experiments by immobilizing IgG onto GNP-mediated gold film that detection sensitivity was improved by more than 211%, compared with a conventional bare gold film. Our synergistic SERS-LSPR approach based on a simple and cost-effective CSA method could open a route for sensitive, reliable and reproducible dual modal detection to expand the application areas.
Collapse
|
7
|
Perumal J, Wang Y, Attia ABE, Dinish US, Olivo M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: a review of recent advancements. NANOSCALE 2021; 13:553-580. [PMID: 33404579 DOI: 10.1039/d0nr06832b] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The growing demand for reliable and robust methodology in bio-chemical sensing calls for the continuous advancement of sensor technologies. Over the last two decades, surface-enhanced Raman spectroscopy (SERS) has emerged as one of the most promising analytical techniques for sensitive and trace analysis or detection in biomedical and agri-food applications. SERS overcomes the inherent sensitivity limitation associated with Raman spectroscopy, which provides vibrational "fingerprint" spectra of molecules that makes it unique and versatile among other spectroscopy techniques. This paper comprehensively reviews the recent advancements of SERS for biomedical, food and agricultural applications over the last 6 years, and we envision that, in the near future, some of these platforms have the potential to be translated as a point-of-care and rapid sensor for real-life end-user applications. The merits and limitations of various SERS sensor designs are analysed and discussed based on critical features such as sensitivity, specificity, usability, repeatability and reproducibility. We conclude by highlighting the opportunities and challenges in the field while stressing the technological gaps to be addressed in realizing commercially viable point-of-care SERS sensors for practical biomedical and agri-food technological applications.
Collapse
Affiliation(s)
- Jayakumar Perumal
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - Yusong Wang
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - U S Dinish
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| |
Collapse
|
8
|
Yu XL, Sun DW, He Y. Emerging techniques for determining the quality and safety of tea products: A review. Compr Rev Food Sci Food Saf 2020; 19:2613-2638. [PMID: 33336976 DOI: 10.1111/1541-4337.12611] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/30/2022]
Abstract
Spectroscopic techniques, electrochemical methods, nanozymes, computer vision, and modified chromatographic techniques are the emerging techniques for determining the quality and safety parameters (e.g., physical, chemical, microbiological, and classified parameters, as well as inorganic and organic contaminants) of tea products (such as fresh tea leaves, commercial tea, tea beverage, tea powder, and tea bakery products) effectively. By simplifying the sample preparation, speeding up the detection process, reducing the interference of other substances contained in the sample, and improving the sensitivity and accuracy of the current standard techniques, the abovementioned emerging techniques achieve rapid, cost-effective, and nondestructive or slightly destructive determination of tea products, with some of them providing real-time detection results. Applying these emerging techniques in the whole industry of tea product processing, right from the picking of fresh tea leaves, fermentation of tea leaves, to the sensory evaluation of commercial tea, as well as developing portable devices for real-time and on-site determination of classified and safety parameters (e.g., the geographical origin, grade, and content of contaminants) will not only eliminate the strong dependence on professionals but also help mechanize the production of tea products, which deserves further research. Conducting a review on the application of spectroscopic techniques, electrochemical methods, nanozymes, computer vision, and modifications of chromatographic techniques for quality and safety determination of tea products may serve as guide for other types of foods and beverages, offering potential techniques for their detection and evaluation, which would promote the development of the food industry.
Collapse
Affiliation(s)
- Xiao-Lan Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Da-Wen Sun
- School of Biosystems Engineering, University College Dublin, Dublin, Ireland
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
9
|
Wang J, Liu K, Jin S, Jiang L, Liang P. A Review of Chinese Raman Spectroscopy Research Over the Past Twenty Years. APPLIED SPECTROSCOPY 2020; 74:130-159. [PMID: 30646745 DOI: 10.1177/0003702819828360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper introduces the major Chinese research groups in the fields of biomedicine, food safety, environmental testing, material research, archaeological and cultural relics, gem identification, forensic science, and other research areas of Raman spectroscopy and combined methods spanning the two decades from 1997 to 2017. Briefly summarized are the research directions and contents of the major Chinese Raman spectroscopy research groups, giving researchers engaged in Raman spectroscopy research a more comprehensive understanding of the state of Chinese Raman spectroscopy research and future development trends to further develop Raman spectroscopy and its applications.
Collapse
Affiliation(s)
- Jie Wang
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Kaiyuan Liu
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Shangzhong Jin
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Li Jiang
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Pei Liang
- Department of Optical and Electronic Technology, China Jiliang University, China
| |
Collapse
|
10
|
Jiang J, Zou S, Li Y, Zhao F, Chen J, Wang S, Wu H, Xu J, Chu M, Liao J, Zhang Z. Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants. Mikrochim Acta 2019; 186:603. [PMID: 31385118 DOI: 10.1007/s00604-019-3695-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
A flexible adhesive tape decorated with SERS-active silver nanorods (AgNRs) in the form of an array nanostructure is described. The tape was constructed by transferring the AgNRs nanostructures from silicon to the transparent tape by a "paste & peel off" procedure. The transparent, sticky, and flexible properties of commercial tapes allow almost any SERS-inactive irregular surface to be detected in-situ by pasting the SERS tape onto the position to be analyzed. Three examples for an analytical application are presented, viz. determination of (a) tetramethylthiuram disulfide and thiabendazole (two pesticides), (b) colorants in the gel of a writing pen, and (c) the fluorophore Rhodamine B. The tetramethylthiuram disulfide on apple surface was rapidly detected with a LOD of 28.8 ng·cm-2. The AgNRs effectively quenched the fluorescence of the matrix and fluorophores, this enabling the colorants and Rhodamine B to be identified. The results demonstrated that the SERS tape can be used for versatile in-situ detection. Conceivably, it may find applications in food analysis, non-invasive identification, environmental monitoring, and in other areas of daily life. Graphic abstract A flexible and adhesive SERS active tape decorated with silver nanorods (AgNRs) arrays was constructed through a "paste & peel off" method. It can be used as a versatile in situ analysis platform for various applications.
Collapse
Affiliation(s)
- Jiaolai Jiang
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Sumeng Zou
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yingru Li
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Fengtong Zhao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jun Chen
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Shaofei Wang
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Haoxi Wu
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Jingsong Xu
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Mingfu Chu
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China
| | - Junsheng Liao
- Institute of Materials, China Academy of Engineering Physics, P. O. Box No.9-11, Mianyang, Sichuan, 621907, People's Republic of China.
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
11
|
Dias Soares JM, de Oliveira HP. Silver-based surface enhanced Raman spectroscopy devices for detection of organophosphorus pesticides traces. Biotechnol Prog 2019; 35:e2809. [PMID: 30895736 DOI: 10.1002/btpr.2809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/18/2023]
Abstract
The detection of traces of substances by surface-sensitive techniques such as surface enhanced Raman spectroscopy (SERS) explores the interaction of adsorbed molecules on plasmonic surfaces to improve the limit of detection of analytes. This article is an overview about recent development in SERS substrates applied in the detection of organophosphorus pesticides on plasmonic surfaces (arrays of metal nanoparticles). The morphology, roughness, chemical functionalization degree, and aggregation level of plasmonic centers are some of the critical parameters to be controlled in the optimization of SERS signal from specific analytes.
Collapse
Affiliation(s)
- Juliana M Dias Soares
- RENORBIO, Biotechnology Graduate Program, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Helinando P de Oliveira
- RENORBIO, Biotechnology Graduate Program, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil.,Materials Science Graduate Program, Institute of Materials Science, Universidade Federal do Vale do São Francisco, Juazeiro, Bahia, Brazil
| |
Collapse
|
12
|
A needle-like reusable surface-enhanced Raman scattering substrate, and its application to the determination of acetamiprid by combining SERS and thin-layer chromatography. Mikrochim Acta 2018; 185:504. [DOI: 10.1007/s00604-018-3034-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
13
|
SERS detection of ceftriaxone and sulfadimethoxine using copper nanoparticles temporally protected by porous calcium carbonate. Mikrochim Acta 2018; 185:481. [DOI: 10.1007/s00604-018-3018-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022]
|
14
|
Vianna PG, Grasseschi D, Domingues SH, de Matos CJS. Real-time optofluidic surface-enhanced Raman spectroscopy based on a graphene oxide/gold nanorod nanocomposite. OPTICS EXPRESS 2018; 26:22698-22708. [PMID: 30184926 DOI: 10.1364/oe.26.022698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate a glass microcapillary fiber as an optofluidic platform for surface enhanced Raman spectroscopy (SERS), the inner walls of which are coated with a graphene oxide (GO)/gold nanorod (AuNR) nanocomposite. A simple thermal method is used for the coating, allowing for the continuous deposition of the nanocomposite without surface functionalization. We show that the AuNRs can be directly and nondestructively identified on the GO inside the capillaries via identification of the Au-Br SERS peak, as Br- ions from the AuNR synthesis remain on their surface. The coated microcapillary platform is, then, used as a stable SERS substrate for the detection of Rhodamine 6G (R6G) and Rhodamine 640 (RH640) at concentrations down to 10-7 and 10-9 M, respectively. As the required sample volumes are as low as a few hundred nanoliters, down to ~75 femtograms of analyte can be detected. The fiber also allows for the detection of the molecules at acquisition times as low as 0.05 s, indicating the platform's suitability for real-time sensing.
Collapse
|
15
|
Quantification of trace chemicals in unknown complex systems by SERS. Talanta 2018; 186:452-458. [DOI: 10.1016/j.talanta.2018.04.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/23/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022]
|
16
|
Shi R, Liu X, Ying Y. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6525-6543. [PMID: 28920678 DOI: 10.1021/acs.jafc.7b03075] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is capable of detecting a single molecule with high specificity and has become a promising technique for rapid chemical analysis of agricultural products and foods. With a deeper understanding of the SERS effect and advances in nanofabrication technology, SERS is now on the edge of going out of the laboratory and becoming a sophisticated analytical tool to fulfill various real-world tasks. This review focuses on the challenges that SERS has met in this progress, such as how to obtain a reliable SERS signal, improve the sensitivity and specificity in a complex sample matrix, develop simple and user-friendly practical sensing approach, reduce the running cost, etc. This review highlights the new thoughts on design and nanofabrication of SERS-active substrates for solving these challenges and introduces the recent advances of SERS applications in this area. We hope that our discussion will encourage more researches to address these challenges and eventually help to bring SERS technology out of the laboratory.
Collapse
Affiliation(s)
- Ruyi Shi
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
- Zhejiang A&F University , 88 Huanchengdong Road , Hangzhou , Zhejiang 311300 , China
| |
Collapse
|
17
|
Jiang Y, Sun DW, Pu H, Wei Q. Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Yang C, Xu Y, Wang M, Li T, Huo Y, Yang C, Man B. Multifunctional paper strip based on GO-veiled Ag nanoparticles with highly SERS sensitive and deliverable properties for high-performance molecular detection. OPTICS EXPRESS 2018; 26:10023-10037. [PMID: 29715945 DOI: 10.1364/oe.26.010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of paper-based SERS substrates that can allow multi-component detection in real-word scenarios is of great value for applications in molecule detection under complex conditions. Here, a multifunctional SERS-based paper sensing substrate has been developed through the uniform patterning of high-density arrays of GO-isolated Ag nanoparticles on the hydrophilic porous cellulose paper strip (GO@AgNP@paper). Wet-chemical synthesis was used to provide the cover of SERS hot spots on any part of the paper, not just limited surface deposition. In virtue of the inherent ability of paper to deliver analytes by the capillary force, the detection ability of the GO@AgNP@paper substrate was greatly promoted, allowing as low as 10-19M R6G detection from microliter-volume (50 μL) samples. For the components with different polarity, the paper substrate can be used as an all-in-one machine to achieve the integration of separation and high-sensitive detection for ultralow mixture components, which improves the practical application value of SERS-based paper devices.
Collapse
|
19
|
Yu S, Liu Z, Wang W, Jin L, Xu W, Wu Y. Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals. Talanta 2018; 178:498-506. [DOI: 10.1016/j.talanta.2017.09.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
|
20
|
Huang CC, Chen W. A SERS method with attomolar sensitivity: a case study with the flavonoid catechin. Mikrochim Acta 2018; 185:120. [DOI: 10.1007/s00604-017-2662-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/31/2017] [Indexed: 11/30/2022]
|
21
|
On-site preconcentration of pesticide residues in a drop of seawater by using electrokinetic trapping, and their determination by surface-enhanced Raman scattering. Mikrochim Acta 2017; 185:10. [DOI: 10.1007/s00604-017-2580-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/18/2017] [Indexed: 01/22/2023]
|
22
|
Polymer monoliths with silver nanoparticles-cholesterol conjugate as stationary phases for capillary liquid chromatography. J Chromatogr A 2017; 1526:93-103. [DOI: 10.1016/j.chroma.2017.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 01/03/2023]
|
23
|
Calcium carbonate microparticles with embedded silver and magnetite nanoparticles as new SERS-active sorbent for solid phase extraction. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2426-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Zou S, Hou M, Li J, Ma L, Zhang Z. Semi-quantitative analysis of multiple chemical mixtures in solution at trace level by surface-enhanced Raman Scattering. Sci Rep 2017; 7:6186. [PMID: 28733621 PMCID: PMC5522419 DOI: 10.1038/s41598-017-06543-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/14/2017] [Indexed: 02/07/2023] Open
Abstract
Surface-enhanced Raman scattering (SERS) technology combines with chemometric method of principal component analysis (PCA) was used to calculate the composition of chemical mixtures in solution. We reported here that there exists composition discrepancy between molecules in solution and molecules adsorbed on Ag@Al2O3 nanorods substrates due to difference in adsorption kinetics of each component. We proposed here a way to calculate the adsorption kinetics factor for each component using a standard sample as the reference, with which one could correct the predictions given by PCA. We demonstrate the validity of this approach in estimating the compositions of mixtures with two, three and four components of 1, 4-Benzenedithiol, 2-Naphthalenethiol, 4-Mercaptobenzoic acid, and 4-Mercaptopyridine molecules, with acceptable errors. Furthermore, a general formula applied to more complex mixtures was proposed to calculate compositions in solution.
Collapse
Affiliation(s)
- Sumeng Zou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Mengjing Hou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jianghao Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Lingwei Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R. China.
| |
Collapse
|
25
|
Han C, Li Y, Jia Q, Bradley LH, Gan Y, Yao Y, Qu L, Li H, Zhao Y. On-demand fabrication of surface-enhanced Raman scattering arrays by pen writing, and their application to the determination of melamine in milk. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2307-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Bu Y, Liu K, Hu Y, Kaneti YV, Brioude A, Jiang X, Wang H, Yu A. Bilayer composites consisting of gold nanorods and titanium dioxide as highly sensitive and self-cleaning SERS substrates. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2301-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Fabrication of SERS active gold nanorods using benzalkonium chloride, and their application to an immunoassay for potato virus X. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2102-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
|
29
|
A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1990-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1918-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Lv Y, Tan X, Svec F. Preparation and applications of monolithic structures containing metal-organic frameworks. J Sep Sci 2016; 40:272-287. [DOI: 10.1002/jssc.201600423] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/14/2016] [Accepted: 05/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yongqin Lv
- International Research Center for Soft Matter; Beijing University of Chemical Technology; Beijing China
| | - Xinyi Tan
- College of Chemistry; Jilin University; Changchun China
| | - Frantisek Svec
- International Research Center for Soft Matter; Beijing University of Chemical Technology; Beijing China
| |
Collapse
|
32
|
Qu LL, Geng YY, Bao ZN, Riaz S, Li H. Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1760-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Affiliation(s)
- Xu-dong Wang
- Department
of Chemistry, Fudan University, 200433 Shanghai, P. R. China
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|