1
|
Bercea M, Lupu A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024; 10:260. [PMID: 38667679 PMCID: PMC11048858 DOI: 10.3390/gels10040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or shrink as a function of the environmental free glucose content are suitable systems for monitoring blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the development of sensors based on reversible binding to glucose molecules represents a continuous challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically binding glucose and mannose makes Con A as a suitable natural receptor for the development of smart glucose-responsive materials. During the last few years, Con A was used to develop smart materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
2
|
Priyanga N, Sasikumar K, Raja AS, Pannipara M, Al-Sehemi AG, Michael RJV, Kumar MP, Alphonsa AT, Kumar GG. 3D CoMoO 4 nanoflake arrays decorated disposable pencil graphite electrode for selective and sensitive enzyme-less electrochemical glucose sensors. Mikrochim Acta 2022; 189:200. [PMID: 35474402 DOI: 10.1007/s00604-022-05270-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) cobalt molybdate (CoMoO4) hierarchical nanoflake arrays on pencil graphite electrode (PGE) (CoMoO4/PGE) are actualized via one-pot hydrothermal technique. The morphological features comprehend that the CoMoO4 nanoflake arrays expose the 3D, open, porous, and interconnected network architectures on PGE. The formation and growth mechanisms of CoMoO4 nanostructures on PGE are supported with different structural and morphological characterizations. The constructed CoMoO4/PGE is operated as an electrocatalytic probe in enzyme-less electrochemical glucose sensor (ELEGS), confronting the impairments of cost- and time-obsessed conventional electrode polishing and catalyst amendment progressions and obliged the employment of a non-conducting binder. The wide-opened interior and exterior architectures of CoMoO4 nanoflake arrays escalate the glucose utilization efficacy, whilst the intertwined nanoflakes and graphitic carbon layers, respectively, of CoMoO4 and PGE articulate the continual electron mobility and catalytically active channels of CoMoO4/PGE. It jointly escalates the ELEGS concerts of CoMoO4/PGE including high sensitivity (1613 μA mM-1 cm-2), wide linear glucose range (0.0003-10 mM), and low detection limit (0.12 µM) at a working potential of 0.65 V (vs. Ag/AgCl) together with the good recovery in human serum. Thus, the fabricated CoMoO4/PGE extends exclusive virtues of modest electrode production, virtuous affinity, swift response, and excellent sensitivity and selectivity, exposing innovative prospects to reconnoitring the economically viable ELEGSs with binder-free, affordable cost, and expansible 3D electrocatalytic probes.
Collapse
Affiliation(s)
- N Priyanga
- PG and Research Department of Chemistry, G.T.N Arts College (Autonomous), Dindigul, 624005, Tamil Nadu, India.,Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - K Sasikumar
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur, 635601, Tamil Nadu, India
| | - A Sahaya Raja
- PG and Research Department of Chemistry, G.T.N Arts College (Autonomous), Dindigul, 624005, Tamil Nadu, India.
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science (RCAMS) and Department of Chemistry, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS) and Department of Chemistry, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - R Jude Vimal Michael
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur, 635601, Tamil Nadu, India
| | - M Praveen Kumar
- Department of Materials Science and Engineering, University of Concepcion, Región del Bío Bío, Chile
| | - A Therasa Alphonsa
- PG and Research Department of Chemistry, Government Arts College, C.Mutlur, Chidambaram, 608102, Tamil Nadu, India
| | - G Gnana Kumar
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
3
|
Nano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes (C60). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2404-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
4
|
Luo Y, Wang Q, Li J, Xu F, Sun L, Bu Y, Zou Y, Kraatz HB, Rosei F. Tunable hierarchical surfaces of CuO derived from metal–organic frameworks for non-enzymatic glucose sensing. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00104j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile thermal treatment is conducted to prepare nanosphere stacking CuO derived from Cu-MOF, which achieves good glucose sensing performance and is expected to be effective for developing non-enzyme and non-invasive glucose sensors.
Collapse
Affiliation(s)
- Yumei Luo
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
- School of Electronic Engineering and Automation
| | - Qingyong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
| | - Jinghua Li
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
| | - Fen Xu
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
| | - Lixian Sun
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
- School of Electronic Engineering and Automation
| | - Yiting Bu
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
| | - Yongjin Zou
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
| | - Heinz-Bernhard Kraatz
- Department Physics & Environment Science
- University of Toronto Scarborough
- Toronto
- Canada
| | - Federico Rosei
- Institut National de la Recherche Scientifique—Énergie
- Matériaux et Télécommunications
- QC
- Canada
| |
Collapse
|
5
|
Dhanjai, Balla P, Sinha A, Wu L, Lu X, Tan D, Chen J. Co3O4 nanoparticles supported mesoporous carbon framework interface for glucose biosensing. Talanta 2019; 203:112-121. [DOI: 10.1016/j.talanta.2019.05.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/04/2019] [Accepted: 05/12/2019] [Indexed: 01/24/2023]
|
6
|
Bai L, Chen Y, Liu X, Zhou J, Cao J, Hou L, Guo S. Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Anal Chim Acta 2019; 1080:75-83. [PMID: 31409477 DOI: 10.1016/j.aca.2019.06.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains the top fatal infection continuing to threat public health, and the present detection method for MTB is facing great challenges with the global TB burden. In response to this issue, a novel electrochemical DNA biosensor was developed for detecting the IS6110 fragment within MTB. For the first time, the nanohybrid of gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet (Au-nano-C60/NGS) directly served as a new signal tag to generate signal response without additional redox molecules and subsequently labeled with signal probes (SPs) to form tracer label to achieve signal amplification. Additionally, a biotin-avidin system was introduced to immobilize abundant capture probes (CPs), further improving the sensitivity of the proposed biosensor. After a typical sandwich hybridization, the proposed electrochemical DNA biosensor was incubated with tetraoctylammonium bromide (TOAB), which was used as a booster to induce the intrinsic redox activity of the tracer label, resulting in a discriminating current response. The proposed electrochemical DNA biosensor shows a broad linear range for MTB determination from 10 fM to 10 nM with a low limit of detection (LOD) of 3 fM. In addition, this proposed biosensor not only distinguishes mismatched DNA sequence, but also differentiates MTB from other pathogenic agents. More importantly, it has been preliminarily applied in clinical detection and displayed excellent ability to identify the PCR products of clinical samples. There is great potential for this developed method to be used in early diagnosis and monitor of TB.
Collapse
Affiliation(s)
- Lijuan Bai
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinzhu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jing Zhou
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jun Cao
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, PR China
| | - Liang Hou
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
7
|
Chinnadayyala SR, Park I, Cho S. Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Mikrochim Acta 2018; 185:250. [DOI: 10.1007/s00604-018-2770-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
8
|
Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Mikrochim Acta 2018; 185:89. [PMID: 29594390 DOI: 10.1007/s00604-017-2626-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
This review (with 210 references) summarizes recent developments in the design of voltammetric chemical sensors and biosensors based on the use of carbon nanomaterials (CNMs). It is divided into subsections starting with an introduction into the field and a description of its current state. This is followed by a large section on various types of voltammetric sensors and biosensors using CNMs with subsections on sensors based on the use of carbon nanotubes, graphene, graphene oxides, graphene nanoribbons, fullerenes, ionic liquid composites with CNMs, carbon nanohorns, diamond nanoparticles, carbon dots, carbon nanofibers and mesoporous carbon. The third section gives conclusion and an outlook. Tables are presented on the application of such sensors to voltammetric detection of neurotransmitters, metabolites, dietary minerals, proteins, heavy metals, gaseous molecules, pharmaceuticals, environmental pollutants, food, beverages, cosmetics, commercial goods and drugs of abuse. The authors also describe advanced approaches for the fabrication of robust functional carbon nano(bio)sensors for voltammetric quantification of multiple targets. Graphical Abstract Featuring execellent electrical, catalytic and surface properies, CNMs have gained enormous attention for designing voltammetric sensors and biosensors. Functionalized CNM-modified electrode interfaces have demonstrated their prominent role in biological, environmental, pharmaceutical, chemical, food and industrial analysis.
Collapse
|
9
|
Dhanjai, Sinha A, Lu X, Wu L, Tan D, Li Y, Chen J, Jain R. Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Mikrochim Acta 2017; 185:49. [PMID: 29594566 DOI: 10.1007/s00604-017-2609-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.
Collapse
|
11
|
Zhu J, Gong X, Zhang M, Zheng C, Chen N, Sandford G, Wu Q, Huang W, Gao D. Preparation of non-covalent Metalloporphyrin/C60Composite and its Electrocatalysis to Hydrogen Peroxide. ELECTROANAL 2016. [DOI: 10.1002/elan.201600495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Zhu
- Key Laboratory of Flexible Electronics (KLOFE) &; Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xiaojie Gong
- Key Laboratory of Flexible Electronics (KLOFE) &; Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Mengdan Zhang
- Key Laboratory of Flexible Electronics (KLOFE) &; Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Chaoyue Zheng
- Key Laboratory of Flexible Electronics (KLOFE) &; Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Naiwu Chen
- Key Laboratory of Flexible Electronics (KLOFE) &; Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Graham Sandford
- Department of Chemistry; Durham University; South Road Durham DH1 3LE U.K
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) &; Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) &; Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Deqing Gao
- Key Laboratory of Flexible Electronics (KLOFE) &; Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Centre for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
12
|
Kochana J, Wapiennik K, Knihnicki P, Pollap A, Janus P, Oszajca M, Kuśtrowski P. Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products. Anal Bioanal Chem 2016; 408:5199-210. [PMID: 27209590 PMCID: PMC4925687 DOI: 10.1007/s00216-016-9612-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 11/21/2022]
Abstract
A voltammetric biosensor based on tyrosinase (TYR) was developed for determination of tyramine. Carbon material (multi-walled carbon nanotubes or mesoporous carbon CMK-3-type), polycationic polymer-i.e., poly(diallyldimethylammonium chloride) (PDDA), and Nafion were incorporated into titania dioxide sol (TiO2) to create an immobilization matrix. The features of the formed matrix were studied by scanning electron microscopy (SEM) and cyclic voltammetry (CV). The analytical performance of the developed biosensor was evaluated with respect to linear range, sensitivity, limit of detection, long-term stability, repeatability, and reproducibility. The biosensor exhibited electrocatalytic activity toward tyramine oxidation within a linear range from 6 to 130 μM, high sensitivity of 486 μA mM(-1) cm(-2), and limit of detection of 1.5 μM. The apparent Michaelis-Menten constant was calculated to be 66.0 μM indicating a high biological affinity of the developed biosensor for tyramine. Furthermore, its usefulness in determination of tyramine in food product samples was also verified. Graphical abstract Different food samples were analyzed to determine tyramine using biosensor based on tyrosinase.
Collapse
Affiliation(s)
- Jolanta Kochana
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland.
| | - Karolina Wapiennik
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Paweł Knihnicki
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Aleksandra Pollap
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Paula Janus
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Marcin Oszajca
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| |
Collapse
|
13
|
Ye C, Zhong X, Wang MQ, Chai Y, Yuan R. Cyclovoltammetric acetylcholinesterase activity assay after inhibition and subsequent reactivation by using a glassy carbon electrode modified with palladium nanorods composited with functionalized C60 fullerene. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1888-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|