1
|
Mousavizadegan M, Hosseini M, Sheikholeslami MN, Ganjali MR. A fluorescent sensor array based on antibiotic-stabilized metal nanoclusters for the multiplex detection of bacteria. Mikrochim Acta 2024; 191:293. [PMID: 38691169 DOI: 10.1007/s00604-024-06374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
To address the need for facile, rapid detection of pathogens in water supplies, a fluorescent sensing array platform based on antibiotic-stabilized metal nanoclusters was developed for the multiplex detection of pathogens. Using five common antibiotics, eight different nanoclusters (NCs) were synthesized including ampicillin stabilized copper NCs, cefepime stabilized gold and copper NCs, kanamycin stabilized gold and copper NCs, lysozyme stabilized gold NCs, and vancomycin stabilized gold/silver and copper NCs. Based on the different interaction of each NC with the bacteria strains, unique patterns were generated. Various machine learning algorithms were employed for pattern discernment, among which the artificial neural networks proved to have the highest performance, with an accuracy of 100%. The developed prediction model performed well on an independent test dataset and on real samples gathered from drinking water, tap water and the Anzali Lagoon water, with prediction accuracy of 96.88% and 95.14%, respectively. This work demonstrates how generic antibiotics can be implemented for NC synthesis and used as recognition elements for pathogen detection. Furthermore, it displays how merging machine learning techniques can elevate sensitivity of analytical devices.
Collapse
Affiliation(s)
- Maryam Mousavizadegan
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439817435, Iran.
| | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran
| |
Collapse
|
2
|
Chifor E, Bordeianu I, Anastasescu C, Calderon-Moreno JM, Bratan V, Eftemie DI, Anastasescu M, Preda S, Plavan G, Pelinescu D, Ionescu R, Stoica I, Zaharescu M, Balint I. Bioactive Coatings Based on Nanostructured TiO 2 Modified with Noble Metal Nanoparticles and Lysozyme for Ti Dental Implants. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3186. [PMID: 36144974 PMCID: PMC9502567 DOI: 10.3390/nano12183186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
This work presents the synthesis of nanostructured TiO2 modified with noble metal nanoparticles (Au, Ag) and lysozyme and coated on titanium foil. Moreover, the specific structural and functional properties of the resulting inorganic and hybrid materials were explored. The purpose of this study was to identify the key parameters for developing engineered coatings on titanium foil appropriate for efficient dental implants with intrinsic antibacterial activity. TiO2 nanoparticles obtained using the sol-gel method were deposited on Ti foil and modified with Au/Ag nanoparticles. Morphological and structural investigations (scanning electron and atomic force microscopies, X-ray diffraction, photoluminescence, and UV-Vis spectroscopies) were carried out for the characterization of the resulting inorganic coatings. In order to modify their antibacterial activity, which is essential for safe dental implants, the following aspects were investigated: (a) singlet oxygen (1O2) generation by inorganic coatings exposed to visible light irradiation; (b) the antibacterial behavior emphasized by titania-based coatings deposited on titanium foil (TiO2/Ti foil; Au-TiO2/Ti foil, Ag-TiO2/Ti foil); (c) the lysozyme bioactivity on the microbial substrate (Micrococcus lysodeicticus) after its adsorption on inorganic surfaces (Lys/TiO2/Ti foil; Lys/Au-TiO2/Ti foil, Lys/Ag-TiO2/Ti foil); (d) the enzymatic activity of the above-mentioned hybrids materials for the hydrolysis reaction of a synthetic organic substrate usually used for monitoring the lysozyme biocatalytic activity, namely, 4-Methylumbelliferyl β-D-N,N',N″-triacetylchitotrioside [4-MU-β- (GlcNAc)3]. This was evaluated by identifying the presence of a fluorescent reaction product, 7-hydroxy-4-metyl coumarin (4-methylumbelliferone).
Collapse
Affiliation(s)
- Emilian Chifor
- Faculty of Medicine of the Ovidius University, Aleea Universitatii nr.1, 900470 Constanţa, Romania
- “Strungareata” SRL, Strada Garii nr. 24, 800217 Galati, Romania
| | - Ion Bordeianu
- Faculty of Medicine of the Ovidius University, Aleea Universitatii nr.1, 900470 Constanţa, Romania
| | - Crina Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Jose Maria Calderon-Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Veronica Bratan
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Diana-Ioana Eftemie
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Silviu Preda
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Gabriel Plavan
- Faculty of Biology, “Alexandru Ioan Cuza” University, 700505 Iasi, Romania
| | - Diana Pelinescu
- Faculty of Biology, Intrarea Portocalilor 1-3, Sector 5, 060101 Bucharest, Romania
| | - Robertina Ionescu
- Faculty of Biology, Intrarea Portocalilor 1-3, Sector 5, 060101 Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, Intrarea Portocalilor 1-3, Sector 5, 060101 Bucharest, Romania
| | - Maria Zaharescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Ioan Balint
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
3
|
Jiang D, Yang C, Fan Y, Polly Leung HM, Inthavong K, Zhang Y, Li Z, Yang M. Ultra-sensitive photoelectrochemical aptamer biosensor for detecting E. coli O157:H7 based on nonmetallic plasmonic two-dimensional hydrated defective tungsten oxide nanosheets coupling with nitrogen-doped graphene quantum dots (dWO 3•H 2O@N-GQDs). Biosens Bioelectron 2021; 183:113214. [PMID: 33836431 DOI: 10.1016/j.bios.2021.113214] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Light absorption and interfacial engineering of photoactive materials play vital roles in photoexcited electron generation and electron transport, and ultimately boost the performance of photoelectrochemical (PEC) biosensing. In this work, a novel high-performance photoelectrochemical (PEC) biosensing platform was fabricated based on nonmetallic plasmonic tungsten oxide hydrate nanosheets (WO3•H2O) coupling with nitrogen doped graphene quantum dots (N-GQDs) by a facile one-step hydrothermal approach. The localized surface plasmon resonance (LSPR) properties were achieved by oxygen vacancy engineered WO3·H2O (dWO3•H2O), which could greatly extend the light absorption from visible light to near-infrared light. Moreover, by coupling with N-GQDs, the as-fabricated heterojunction (dWO3•H2O@N-GQD) provided a much enhanced photoelectric response due to the efficient charge transfer. By conjugation with E.coli O157:H7 aptamer, a novel PEC aptasensor based on dWO3•H2O@N-GQD heterojunction was fabricated with a high sensitivity for detection of E.coli O157:H7. The limit of detection (LOD) of this PEC aptasensor is 0.05 CFU/mL with a linear detection range from 0.1 to 104 CFU/mL. Moreover, high reproducibility and good accuracy could also be achieved for analysis in milk samples. This work could provide a promising platform for the development of PEC bioanalysis and offer an insight into the non-metallic plasmonic materials based heterojunctions for high-performances PEC biosensing.
Collapse
Affiliation(s)
- Ding Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, PR China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Cuiqi Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Hang-Mei Polly Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Kiao Inthavong
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology University, Melbourne, Victoria, 3000, Australia
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology University, Melbourne, Victoria, 3000, Australia
| | - Zhiyang Li
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, PR China.
| |
Collapse
|
4
|
Wang H, Zhao X, Yang H, Cao L, Deng W, Tan Y, Xie Q. Three-dimensional macroporous gold electrodes superior to conventional gold disk electrodes in the construction of an electrochemical immunobiosensor for Staphylococcus aureus detection. Analyst 2020; 145:2988-2994. [PMID: 32129334 DOI: 10.1039/c9an02392e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, a three-dimensional macroporous gold (3DMG) electrode is demonstrated to be a better choice than a conventional gold disk electrode in the construction of an electrochemical immunobiosensor for Staphylococcus aureus (S. aureus) detection. The 3DMG electrode was prepared on a gold disk electrode by one-step electrodeposition using hydrogen bubbles as dynamic templates. The 3DMG electrode has a high electrochemically active surface area with pore sizes ranging from 20 to 50 μm, and these unique features are conducive to the immobilization of primary antibodies and the capture of S. aureus. Secondary antibodies (Ab2) and alkaline phosphatase (ALP) were immobilized on mesoporous silica nanospheres (MSNs), and the resulting ALP-MSNs-Ab2 composites were utilized as signal tags to construct a sandwich-type electrochemical immunobiosensor. S. aureus was measured based on alkaline phosphatase-catalyzed silver deposition and differential pulse voltammetric detection. The linear range is from 5 to 109 CFU mL-1, and the detection limit is 2 CFU mL-1 for S. aureus detection. Due to the signal amplification of the 3DMG electrode, the sensitivity of the immunobiosensor constructed on the 3DMG electrode is 9 times that of an immunobiosensor constructed on a gold disc electrode. The proposed biosensor was successfully applied for detecting S. aureus in milk samples.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Xiao Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Hui Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Lin Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
5
|
Cai R, Yin F, Zhang Z, Tian Y, Zhou N. Functional chimera aptamer and molecular beacon based fluorescent detection of Staphylococcus aureus with strand displacement-target recycling amplification. Anal Chim Acta 2019; 1075:128-136. [PMID: 31196418 DOI: 10.1016/j.aca.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 01/09/2023]
Abstract
A fluorescent detection of Staphylococcus aureus (S. aureus) is established based on a finely designed functional chimera sequence, a molecular beacon (MB), and strand displacement target recycling. The chimera sequence, which consists of the aptamer sequence of S. aureus and the complementary sequence of MB, can form a hairpin structure due to the existence of intramolecular complementary regions. When S. aureus is present, it binds to the aptamer region of the chimera, opens the hairpin and unlocks the complementary sequence of MB. Subsequently, the MB is opened and intensive fluorescence signal is restored. To increase the sensitivity of the detection, signal amplification is achieved through strand displacement-based target recycling. With the catalysis of Nb. Bpu10I nicking endonuclease and Bsm DNA polymerase, the MB sequence can be cleaved and then elongated to form a complete duplex with the chimera, during which S. aureus is displaced from the chimera and proceeded to the next round of the reaction. This assay displays a linear correlation between the fluorescence intensity and the logarithm of the concentration of S. aureus within a broad concentration range from 80 CFU/mL to 8 × 106 CFU/mL. The detection limit of 39 CFU/mL can be derived. The assay was applied to detect S. aureus in different water samples, and satisfactory recovery and repeatability were achieved. Hence the designed chimera sequence and established assay have potential application in environmental pollution monitoring.
Collapse
Affiliation(s)
- Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fan Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhongwen Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaping Tian
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Zeng Y, Zhang D, Qi P. Combination of a flow cytometric bead system with 16S rRNA-targeted oligonucleotide probes for bacteria detection. Anal Bioanal Chem 2019; 411:2161-2168. [PMID: 30859270 DOI: 10.1007/s00216-019-01651-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
Here we report a bacteria detection method based on a flow cytometric bead system and 16S rRNA-targeted oligonucleotide probes. Polymerase chain reaction (PCR) was first used to acquire bacterial DNA including bacteria-specific sequences. Half of the resulting target DNA was then captured by a capture probe immobilized on a magnetic microbead (MB) surface. The other half of the target DNA was hybridized with a fluorescence-labeled signal probe. In this manner, a sandwich DNA hybridization involving a MB-based capture probe, the target DNA, and a signal probe was realized. The MB carriers modified with reporter dye were analyzed one by one by flow cytometry through a capillary. Using PCR amplicons and this flow cytometric bead system, a detection limit of 180 cfu mL-1 was achieved, along with high selectivity that permitted the discrimination of different targets when challenged with control bacteria targets and multiplexing capabilities that enabled the simultaneous detection of two kinds of bacteria. Given these advantages, the developed method can be used for the highly sensitive and specific PCR amplicon analysis of DNA extracted from a fresh bacterial culture, as well as multiplex target analysis. Graphical abstract The flow cytometric bead system with 16S rRNA-targeted oligonucleotide probes for bacteria detection developed in this work. This system is highly specific and sensitive, with a detection limit of 180 cfu mL-1 bacteria.
Collapse
Affiliation(s)
- Yan Zeng
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China.,Center for Ocean Megascience, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China.,Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, Shandong, China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China. .,Center for Ocean Megascience, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China. .,Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, Shandong, China.
| | - Peng Qi
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China. .,Center for Ocean Megascience, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, China. .,Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, Shandong, China.
| |
Collapse
|
7
|
Khonsari YN, Sun S. A novel label free electrochemiluminescent aptasensor for the detection of lysozyme. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:146-152. [DOI: 10.1016/j.msec.2018.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 02/05/2023]
|
8
|
Yi J, Qin Q, Wang Y, Zhang R, Bi H, Yu S, Liu B, Qiao L. Identification of pathogenic bacteria in human blood using IgG-modified Fe 3O 4 magnetic beads as a sorbent and MALDI-TOF MS for profiling. Mikrochim Acta 2018; 185:542. [PMID: 30415312 DOI: 10.1007/s00604-018-3074-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022]
Abstract
A method is described for fast identification of bacteria by combining (a) the enrichment of bacterial cells by using magnetite (Fe3O4) magnetic beads modified with human IgG (IgG@Fe3O4) and (b) MALDI-TOF MS analysis. IgG has affinity to protein A, protein G, protein L and glycans on the surface of bacterial cells, and IgG@Fe3O4. It therefore is applicable to the preconcentration of a range of bacterial species. The feasibility of the method has been demonstrated by collecting six species of pathogenic bacteria (Gram-positives: Staphylococcus aureus and Kocuria rosea; Gram-negatives: Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae and Pseudomonas aeruginosa). Bacteria with concentrations as low as 10 CFU·mL-1 in spiked water samples were extracted by this sorbent with recovery rates of >50%. After enrichment, bacteria on the IgG@Fe3O4 sorbent were further identified by MALDI-TOF MS. Bacteria in concentrations as low as 105 CFU in 100 μL of human whole blood can be identified by the method. Compared to other blood culture based tests, the culture time is shortened by 40% (from ~10 h to ~6 h), and the plate culture procedure (overnight) is avoided. After short blood culture, the enrichment and identification can be finished in one hour. The IgG@Fe3O4 is of practical value in clinical diagnosis and may be combined with other identification methods, e.g. PCR, Raman spectroscopy, infrared spectroscopy, etc. Graphical abstract A non-targeted, fast and sensitive assay for bacterial identification from human blood has been developed based on the enrichment of bacteria by IgG@Fe3O4 and identification by MALDI-TOF MS.
Collapse
Affiliation(s)
- Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Shanghai, 200433, China
| | - Yan Wang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Rutan Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
| | - Shaoning Yu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
9
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
10
|
Lee H, Hwang J, Park Y, Kwon D, Lee S, Kang I, Jeon S. Immunomagnetic separation and size-based detection of Escherichia coli O157 at the meniscus of a membrane strip. RSC Adv 2018; 8:26266-26270. [PMID: 35541965 PMCID: PMC9082759 DOI: 10.1039/c8ra04739a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023] Open
Abstract
We developed a facile method for the detection of pathogenic bacteria using gold-coated magnetic nanoparticle clusters (Au@MNCs) and porous nitrocellulose strips. Au@MNCs were synthesized and functionalized with half-fragments of Escherichia coli O157 antibodies. After the nanoparticles were used to capture E. coli O157 in milk and dispersed in a buffer solution, one end of a test strip was dipped into the solution. Due to the size difference between the E. coli–Au@MNC complexes (approximately 1 μm) and free Au@MNCs (approximately 180 nm), only E. coli–Au@MNC complexes accumulated at the meniscus of the test strip and induced a color change. The color intensity of the meniscus was proportional to the E. coli concentration, and the detection limit for E. coli in milk was 103 CFU mL−1 by the naked eye. The presence of E. coli–Au@MNC complexes at the meniscus was confirmed using a real-time PCR assay. The developed method was highly selective for E. coli when compared with Salmonella typhimurium, Listeria monocytogenes, and Staphylococcus aureus. E. coli–Au/MNC complexes accumulate at the meniscus of the test strip where the flow velocity reaches a maximum.![]()
Collapse
Affiliation(s)
- Hyeonjeong Lee
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Jeongin Hwang
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Yunsung Park
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Donghoon Kwon
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sanghee Lee
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Inseok Kang
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| |
Collapse
|
11
|
A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Mikrochim Acta 2017; 185:30. [DOI: 10.1007/s00604-017-2573-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
|
12
|
Ye W, Chen T, Mao Y, Tian F, Sun P, Yang M. The effect of pore size in an ultrasensitive DNA sandwich-hybridization assay for the Escherichia coli O157:H7 gene based on the use of a nanoporous alumina membrane. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2530-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Jin SA, Heo Y, Lin LK, Deering AJ, Chiu GTC, Allebach JP, Stanciu LA. Gold decorated polystyrene particles for lateral flow immunodetection of Escherichia coli O157:H7. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2524-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Zheng L, Wan Y, Qi P, Sun Y, Zhang D, Yu L. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection. Talanta 2017; 167:600-606. [DOI: 10.1016/j.talanta.2017.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 11/17/2022]
|
15
|
Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1854-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|