1
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
2
|
Rana S, Upadhyay LSB. Methylene Blue Assisted Electrochemical Detection of Bacterial Biofilm. Indian J Microbiol 2023; 63:299-306. [PMID: 37781013 PMCID: PMC10533774 DOI: 10.1007/s12088-023-01084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/27/2023] [Indexed: 10/03/2023] Open
Abstract
This paper presents a novel electrochemical transduction method for the rapid and straightforward detection of bacterial biofilm. Briefly, fifteen isolates from various sources were collected and evaluated for their ability to generate biofilm. The Congo red-based agar method and the tube test were used for preliminary screening. A microtiter experiment was also performed to quantitatively examine the screening results and validate the outcomes of the proposed methylene blue-based electrochemical detection method. Electrochemical sensing was performed on the two selected isolates using methylene blue as a redox indicator. For optimization goals, several methylene blue concentrations were studied. Methylene blue at a concentration of 0.4 mM was used for the analysis conclusion. The developed electrochemical method displayed a linear R2 value of 0.9747. The new electrochemical approach demonstrated great sensitivity and rapid response compared to conventional microtiter test methods.
Collapse
Affiliation(s)
- Sonali Rana
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010 India
| | - Lata Sheo Bachan Upadhyay
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010 India
| |
Collapse
|
3
|
Liu J, Liu B, Liu J, He XD, Yuan J, Ghassemlooy Z, Torun H, Fu YQ, Dai X, Ng WP, Binns R, Wu Q. Integrated label-free erbium-doped fiber laser biosensing system for detection of single cell Staphylococcus aureus. Talanta 2023; 257:124385. [PMID: 36827941 DOI: 10.1016/j.talanta.2023.124385] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
A critical challenge to realize ultra-high sensitivity with optical fiber interferometers for label free biosensing is to achieve high quality factors (Q-factor) in liquid. In this work a high Q-factor of 105, which significantly improves the detection resolution is described based on a structure of single mode -core-only -single mode fiber (SCS) with its multimode (or Mach-Zehnder) interference effect as a filter that is integrated into an erbium-doped fiber laser (EDFL) system for excitation. In the case study, the section of core-only fiber is functionalized with porcine immunoglobulin G (IgG) antibodies, which could selectively bind to bacterial pathogen of Staphylococcus aureus (S. aureus). The developed microfiber-based biosensing platform called SCS-based EDFL biosensors can effectively detect concentrations of S. aureus from 10 to 105 CFU/mL, with a responsivity of 0.426 nm wavelength shift in the measured spectrum for S. aureus concentration of 10 CFU/mL. The limit of detection (LoD) is estimated as 7.3 CFU/mL based on the measurement of S. aureus with minimum concentration of 10 CFU/mL. In addition, when a lower concentration of 1 CFU/mL is applied to the biosensor, a wavelength shift of 0.12 nm is observed in 10% of samples (1/10), indicating actual LoD of 1 CFU/mL for the proposed biosensor. Attributed to its good sensitivity, stability, reproducibility and specificity, the proposed EDFL based biosensing platform has great potentials for diagnostics.
Collapse
Affiliation(s)
- Jiandong Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Bin Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Juan Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xing-Dao He
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Jinhui Yuan
- Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing, 100083, China
| | - Zabih Ghassemlooy
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Hamdi Torun
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Yong-Qing Fu
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Xuewu Dai
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Wai Pang Ng
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Richard Binns
- Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Qiang Wu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China; Optical Communications Research Group. Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom.
| |
Collapse
|
4
|
Aptamer-Based Electrochemical Biosensors for the Detection of Salmonella: A Scoping Review. Diagnostics (Basel) 2022; 12:diagnostics12123186. [PMID: 36553193 PMCID: PMC9777869 DOI: 10.3390/diagnostics12123186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The development of rapid, accurate, and efficient detection methods for Salmonella can significantly control the outbreak of salmonellosis that threatens global public health. Despite the high sensitivity and specificity of the microbiological, nucleic-acid, and immunological-based methods, they are impractical for detecting samples outside of the laboratory due to the requirement for skilled individuals and sophisticated bench-top equipment. Ideally, an electrochemical biosensor could overcome the limitations of these detection methods since it offers simplicity for the detection process, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The present scoping review aims to assess the current trends in electrochemical aptasensors to detect and quantify Salmonella. This review was conducted according to the latest Preferred Reporting Items for Systematic review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. A literature search was performed using aptamer and Salmonella keywords in three databases: PubMed, Scopus, and Springer. Studies on electrochemical aptasensors for detecting Salmonella published between January 2014 and January 2022 were retrieved. Of the 787 studies recorded in the search, 29 studies were screened for eligibility, and 15 studies that met the inclusion criteria were retrieved for this review. Information on the Salmonella serovars, targets, samples, sensor specification, platform technologies for fabrication, electrochemical detection methods, limit of detection (LoD), and detection time was discussed to evaluate the effectiveness and limitations of the developed electrochemical aptasensor platform for the detection of Salmonella. The reported electrochemical aptasensors were mainly developed to detect Salmonella enterica Typhimurium in chicken meat samples. Most of the developed electrochemical aptasensors were fabricated using conventional electrodes (13 studies) rather than screen-printed electrodes (SPEs) (two studies). The developed aptasensors showed LoD ranges from 550 CFU/mL to as low as 1 CFU/mL within 5 min to 240 min of detection time. The promising detection performance of the electrochemical aptasensor highlights its potential as an excellent alternative to the existing detection methods. Nonetheless, more research is required to determine the sensitivity and specificity of the electrochemical sensing platform for Salmonella detection, particularly in human clinical samples, to enable their future use in clinical practice.
Collapse
|
5
|
Eilers A, Witt S, Walter J. Aptamer-Modified Nanoparticles in Medical Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:161-193. [PMID: 32157319 DOI: 10.1007/10_2020_124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since aptamers have been selected against a broad range of target structures of medical interest and nanoparticles are available with diverse properties, aptamer-modified nanoparticles can be used in various diagnostic and therapeutic applications. While the aptamer is responsible for specificity and affinity of the conjugate, the nanoparticles' function varies from signal generation in diagnostic approaches to drug loading in drug delivery systems. Within this chapter different medical applications of aptamer-modified nanoparticles will be summarized and underlying principles will be described.
Collapse
Affiliation(s)
- Alina Eilers
- Institut für Technische Chemie, Hannover, Germany
| | - Sandra Witt
- Institut für Technische Chemie, Hannover, Germany
| | | |
Collapse
|
6
|
Abstract
Bacterial infections are urgent threats to human health, especially in light of rising rates of antibiotic resistance, and their ubiquity demands the development of efficient diagnostic platforms. Electrochemical biosensors for point-of-care testing are garnering interest due to their speed, sensitivity, and selectivity as well as their inexpensive, user-friendly operation. These biosensors have the potential to make significant commercial and clinical impacts. In this Viewpoint, we discuss recent advances in the electrochemical detection of pathogenic bacteria using both direct and alternating current. We focus on platforms that detect whole microbes, as these sensors are specific, fast, and easy to operate.
Collapse
Affiliation(s)
- Amruta A. Karbelkar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ariel L. Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
|
8
|
Pathania PK, Saini JK, Vij S, Tewari R, Sabherwal P, Rishi P, Suri CR. Aptamer functionalized MoS 2-rGO nanocomposite based biosensor for the detection of Vi antigen. Biosens Bioelectron 2018; 122:121-126. [PMID: 30245324 DOI: 10.1016/j.bios.2018.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 11/18/2022]
Abstract
We report a novel aptamer functionalized MoS2-rGO based electrochemical method for Vi polysaccharide antigen mediated detection of enteric fever. Herein, highly selective anti-Vi aptamers were screened from a pool of oligonucleotides using a microtitre based SELEX approach and characterized for its specificity and stability. The MoS2-rGO nanocomposite was synthesized using a liquid assisted exfoliation by taking optimum ratio of MoS2 and rGO. The nanocomposite presented synergistic effect owing to easy biomolecular functionalization and enhanced conductivity. The screened anti-Vi aptamers were embedded on the MoS2-rGO nanocomposite via thiol linkage to give a stable biointerface. The developed aptasensor was characterized and further evaluated for its performance with different concentrations of Vi antigen using ferrocene labeled boronic acid as an electroactive probe. The aptasensor responded linearly in the range between 0.1 ng mL-1 to 1000 ng mL-1with a detection limit of 100 pg mL-1, and did not show any cross-reactivity with other bacterial polysaccharides indicating high specificity. The applicability of the developed aptasensor was further validated in urine and sera specimens spiked with Vi antigen.
Collapse
Affiliation(s)
- Preeti Kumari Pathania
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Jai Kumar Saini
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Shania Vij
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Rupinder Tewari
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Priyanka Sabherwal
- Institute of Nanoscience and Technology, Habitat Center, Phase 10, Mohali 160062, India.
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh 160014, India.
| | - C Raman Suri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.
| |
Collapse
|
9
|
Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures. Molecules 2017; 22:molecules22122070. [PMID: 29186905 PMCID: PMC6149766 DOI: 10.3390/molecules22122070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is an established procedure for developing short single-stranded nucleic acid ligands called aptamers against a target of choice. This approach has also been used for developing aptamers specific to whole cells named Cell-SELEX. Aptamers selected by Cell-SELEX have the potential to act as cell specific therapeutics, cell specific markers or cell specific drug delivery and imaging agents. However, aptamer development is a laborious and time-consuming process which is often challenging due to the requirement of frequent optimization of various steps involved in Cell-SELEX procedures. This review provides an insight into various procedures for selection, aptamer enrichment, regeneration and aptamer-binding analysis, in addition to a very recent update on all aptamers selected by Cell-SELEX procedures.
Collapse
|