1
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. A Short Review on Miniaturized Biosensors for the Detection of Nucleic Acid Biomarkers. BIOSENSORS 2023; 13:412. [PMID: 36979624 PMCID: PMC10046286 DOI: 10.3390/bios13030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Even today, most biomarker testing is executed in centralized, dedicated laboratories using bulky instruments, automated analyzers, and increased analysis time and expenses. The development of miniaturized, faster, low-cost microdevices is immensely anticipated for substituting for these conventional laboratory-oriented assays and transferring diagnostic results directly onto the patient's smartphone using a cloud server. Pioneering biosensor-based approaches might make it possible to test biomarkers with reliability in a decentralized setting, but there are still a number of issues and restrictions that must be resolved before the development and use of several biosensors for the proper understanding of the measured biomarkers of numerous bioanalytes such as DNA, RNA, urine, and blood. One of the most promising processes to address some of the issues relating to the growing demand for susceptible, quick, and affordable analysis techniques in medical diagnostics is the creation of biosensors. This article critically discusses a short review of biosensors used for detecting nucleic acid biomarkers, and their use in biomedical prognostics will be addressed while considering several essential characteristics.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- School of Electronics and Communication Engineering, KLE Technological University, Vidyanagar, Hubballi 580023, Karnataka, India
- Medical Physics Department, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, USA
| | - Narasimha H. Ayachit
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
2
|
Yao L, Jiang Y, Tan Z, Wu W. Construction of Very Low-Cost Loop Polymerase Chain Reaction System Based on Proportional-Integral-Derivative Temperature Control Optimization Algorithm and Its Application in Gene Detection. ACS OMEGA 2022; 7:46003-46011. [PMID: 36570205 PMCID: PMC9773339 DOI: 10.1021/acsomega.2c02975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/12/2022] [Indexed: 06/17/2023]
Abstract
Real-time polymerase chain reaction (PCR) technology is essential in nucleic acid detection and point-of-care testing (POCT). However, nowadays, the classical qPCR instrument has the deficiency of its bulky volume, high cost, and inconvenience to use; hence, a low-cost and easy-to-use PCR equipment was thus developed consisting of a hardware subsystem as well as a software subsystem based on an improved proportional-integral-derivative (PID) system. The proposed system not only could hold self-setting reaction cycles of temperature rising and falling automatically but also the temperature during the constant temperature stage was regulated steady based on improved temperature control algorithm, which proved its great effect compared with the reaction temperature derived from an infrared thermal imaging camera. The experimental results in gene detection research also could indicate its applicability and stability of our developed PCR system by using the amplification curve analysis, the melting curve analysis, and agarose gel electrophoresis analysis compared with the commercial PCR instrument, which illustrates the great potential application value of the proposed PCR system.
Collapse
Affiliation(s)
- Liping Yao
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou510500, China
| | - Yangyang Jiang
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou510500, China
| | - Zhongwei Tan
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou510500, China
| | - Wenming Wu
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou510500, China
- State
Key Laboratory of Microelectronics and Integrated Circuits, Fudan University, Shanghai200433, China
| |
Collapse
|
3
|
Lan Z, Guo Y, Wang K, Zhang Y, Chen Y, Zheng D, Xu X, Wu W. Hundreds-Dollar-Level Multiplex Integrated RT-qPCR Quantitative System for Field Detection. BIOSENSORS 2022; 12:706. [PMID: 36140090 PMCID: PMC9496240 DOI: 10.3390/bios12090706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic poses a threat to global health. Due to its high sensitivity, specificity, and stability, real-time fluorescence quantitative (real-time PCR) detection has become the most extensively used approach for diagnosing SARS-CoV-2 pneumonia. According to a report from the World Health Organization, emerging and underdeveloped nations lack nucleic acid detection kits and polymerase chain reaction (PCR) instruments for molecular biological detection. In addition, sending samples to a laboratory for testing may result in considerable delays between sampling and diagnosis, which is not favorable to the timely prevention and control of new crown outbreaks. Concurrently, there is an urgent demand for accurate PCR devices that do not require a laboratory setting, are more portable, and are capable of completing testing on-site. Hence, we report on HDLRT-qPCR, a new, low-cost, multiplexed real-time fluorescence detection apparatus that we have developed for on-site testing investigations of diverse diseases in developing nations. This apparatus can complete on-site testing rapidly and sensitively. The entire cost of this instrument does not exceed USD 760. In order to demonstrate the applicability of our PCR instrument, we conducted testing that revealed that we achieved gradient amplification and melting curves comparable to those of commercially available equipment. Good consistency characterized the testing outcomes. The successful detection of target genes demonstrates the reliability of our inexpensive PCR diagnostic technique. With this apparatus, there is no need to transport samples to a central laboratory; instead, we conduct testing at the sampling site. This saves time on transportation, substantially accelerates overall testing speed, and provides results within 40 min.
Collapse
Affiliation(s)
- Zhihao Lan
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yu Guo
- School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kangning Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yipeng Zhang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Youyun Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Dezhou Zheng
- College of Applied Physics and Materials, Wuyi University, Jiangmen 529000, China
| | - Xiaolong Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
| | - Wenming Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
- State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Cost-Effective Multiplex Fluorescence Detection System for PCR Chip. SENSORS 2021; 21:s21216945. [PMID: 34770252 PMCID: PMC8588286 DOI: 10.3390/s21216945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
The lack of portability and high cost of multiplex real-time PCR systems limits the device to be used in POC. To overcome this issue, this paper proposes a compact and cost-effective fluorescence detection system that can be integrated to a multiplex real-time PCR equipment. An open platform camera with embedded lens was used instead of photodiodes or an industrial camera. A compact filter wheel using a sliding tape is integrated, and the excitation LEDs are fixed at a 45° angle near the PCR chip, eliminating the need of additional filter wheels. The results show precise positioning of the filter wheel with an error less than 20 μm. Fluorescence detection results using a reference dye and standard DNA amplification showed comparable performance to that of the photodiode system.
Collapse
|
5
|
An J, Jiang Y, Shi B, Wu D, Wu W. Low-Cost Battery-Powered and User-Friendly Real-Time Quantitative PCR System for the Detection of Multigene. MICROMACHINES 2020; 11:mi11040435. [PMID: 32326194 PMCID: PMC7231343 DOI: 10.3390/mi11040435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
Real-time polymerase chain reaction (PCR) is the standard for nucleic acid detection and plays an important role in many fields. A new chip design is proposed in this study to avoid the use of expensive instruments for hydrophobic treatment of the surface, and a new injection method solves the issue of bubbles formed during the temperature cycle. We built a battery-powered real-time PCR device to follow polymerase chain reaction using fluorescence detection and developed an independently designed electromechanical control system and a fluorescence analysis software to control the temperature cycle, the photoelectric detection coupling, and the automatic analysis of the experimental data. The microchips and the temperature cycling system cost USD 100. All the elements of the device are available through open access, and there are no technical barriers. The simple structure and manipulation allows beginners to build instruments and perform PCR tests after only a short tutorial. The device is used for analysis of the amplification curve and the melting curve of multiple target genes to demonstrate that our instrument has the same accuracy and stability as a commercial instrument.
Collapse
Affiliation(s)
- Junru An
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China; (J.A.); (Y.J.); (B.S.); (D.W.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yangyang Jiang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China; (J.A.); (Y.J.); (B.S.); (D.W.)
| | - Bing Shi
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China; (J.A.); (Y.J.); (B.S.); (D.W.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Di Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China; (J.A.); (Y.J.); (B.S.); (D.W.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Wenming Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China; (J.A.); (Y.J.); (B.S.); (D.W.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- Correspondence: ; Tel.: +86-431-8670-8159
| |
Collapse
|
6
|
Wu D, Shi B, Li B, Wu W. A Novel Self-Activated Mechanism for Stable Liquid Transportation Capable of Continuous-Flow and Real-time Microfluidic PCRs. MICROMACHINES 2019; 10:E350. [PMID: 31141967 PMCID: PMC6630683 DOI: 10.3390/mi10060350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/27/2019] [Indexed: 11/16/2022]
Abstract
The self-activated micropump capable of velocity-stable transport for both single-phased plug and double-phased droplet through long flow distance inside 3D microchannel is one dream of microfluidic scientists. While several types of passive micropumps have been developed based on different actuation mechanisms, until today, it is still one bottleneck to realize such a satisfied self-activated micropump for the stable delivery of both single and double-phased liquid inside long microchannel (e.g., several meters), due to the lack of innovative mechanism in previous methods. To solve this problem, in this article, we propose a new self-activated pumping mechanism. Herein, an end-opened gas-impermeable quartz capillary is utilized for passive transport. Mechanism of this micropump is systemically studied by both the mathematical modeling and the experimental verifications. Based on the flow assays, it totally confirmed a different pumping principle in this paper, as compared with our previous works. The R2 value of the overall flow rates inside the 3D microchannel is confirmed as high as 0.999, which is much more homogeneous than other passive pumping formats. Finally, this novel micropump is applied to continuous-flow real-time PCRs (both plug-type and microdroplet-type), with the amplification efficiency reaching 91.5% of the commercial PCR cycler instrument.
Collapse
Affiliation(s)
- Di Wu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Beijing, China.
| | - Bing Shi
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Beijing, China.
| | - Bin Li
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Beijing, China.
| | - Wenming Wu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Wu D, Wu W. Battery Powered Portable Thermal Cycler for Continuous-Flow Polymerase Chain Reaction Diagnosis by Single Thermostatic Thermoelectric Cooler and Open-Loop Controller. SENSORS 2019; 19:s19071609. [PMID: 30987195 PMCID: PMC6479314 DOI: 10.3390/s19071609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022]
Abstract
Temperature control is the most important and fundamental part of a polymerase chain reaction (PCR). To date, there have been several methods to realize the periodic heating and cooling of the thermal-cycler system for continuous-flow PCR reactions, and three of them were widely used: the thermo-cycled thermoelectric cooler (TEC), the heating block, and the thermostatic heater. In the present study, a new approach called open-loop controlled single thermostatic TEC was introduced to control the thermal cycle during the amplification process. Differing from the former three methods, the size of this microdevice is much smaller, especially when compared to the microdevice used in the heating block method. Furthermore, the rising and cooling speed of this method is much rapider than that in a traditional TEC cycler, and is nearly 20-30% faster than a single thermostatic heater. Thus, a portable PCR system was made without any external heat source, and only a Teflon tube-wrapped TEC chip was used to achieve the continuous-flow PCR reactions. This provides an efficient way to reduce the size of the system and simplify it. In addition, through further experiments, the microdevice is not only found to be capable of amplification of a PCR product from Human papillomavirus type 49 (Genbank ref: X74480.1) and Rubella virus (RUBV), but also enables clinical diagnostics, such as a test for hepatitis B virus.
Collapse
Affiliation(s)
- Di Wu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130000, China.
| | - Wenming Wu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130000, China.
| |
Collapse
|
8
|
Regan DP, Howell C. Droplet manipulation with bioinspired liquid-infused surfaces: A review of recent progress and potential for integrated detection. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Shi B, He G, Wu W. A PCR microreactor machinery with passive micropump and battery-powered heater for thermo-cycled amplifications of clinical-level and multiplexed DNA targets. Mikrochim Acta 2018; 185:467. [DOI: 10.1007/s00604-018-3007-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
|
10
|
Chen W, Fang X, Ye X, Li H, Cao H, Kong J. DNA nanomachine-assisted magnetic bead based target recycling and isothermal amplification for sensitive fluorescence determination of interferon-γ. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2511-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|