Chen H, Wang M, Huang W. Lead Monoxide Nanostructures for Nanophotonics: A Review.
NANOMATERIALS (BASEL, SWITZERLAND) 2023;
13:1842. [PMID:
37368272 DOI:
10.3390/nano13121842]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Black-phosphorus-analog lead monoxide (PbO), as a new emerging 2D material, has rapidly gained popularity in recent years due to its unique optical and electronic properties. Recently, both theoretical prediction and experimental confirmation have revealed that PbO exhibits excellent semiconductor properties, including a tunable bandgap, high carrier mobility, and excellent photoresponse performance, which is undoubtedly of great interest to explore its practical application in a variety of fields, especially in nanophotonics. In this minireview, we firstly summarize the synthesis of PbO nanostructures with different dimensionalities, then highlight the recent progress in the optoelectronics/photonics applications based on PbO nanostructures, and present some personal insights on the current challenges and future opportunities in this research area. It is anticipated that this minireview can pave the way to fundamental research on functional black-phosphorus-analog PbO-nanostructure-based devices to meet the growing demands for next-generation systems.
Collapse