1
|
Abdelhamid MAA, Ki MR, Pack SP. Biominerals and Bioinspired Materials in Biosensing: Recent Advancements and Applications. Int J Mol Sci 2024; 25:4678. [PMID: 38731897 PMCID: PMC11083057 DOI: 10.3390/ijms25094678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Inspired by nature's remarkable ability to form intricate minerals, researchers have unlocked transformative strategies for creating next-generation biosensors with exceptional sensitivity, selectivity, and biocompatibility. By mimicking how organisms orchestrate mineral growth, biomimetic and bioinspired materials are significantly impacting biosensor design. Engineered bioinspired materials offer distinct advantages over their natural counterparts, boasting superior tunability, precise controllability, and the ability to integrate specific functionalities for enhanced sensing capabilities. This remarkable versatility enables the construction of various biosensing platforms, including optical sensors, electrochemical sensors, magnetic biosensors, and nucleic acid detection platforms, for diverse applications. Additionally, bioinspired materials facilitate the development of smartphone-assisted biosensing platforms, offering user-friendly and portable diagnostic tools for point-of-care applications. This review comprehensively explores the utilization of naturally occurring and engineered biominerals and materials for diverse biosensing applications. We highlight the fabrication and design strategies that tailor their functionalities to address specific biosensing needs. This in-depth exploration underscores the transformative potential of biominerals and materials in revolutionizing biosensing, paving the way for advancements in healthcare, environmental monitoring, and other critical fields.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
2
|
Cao H, Xie J, Cheng J, Xu Y, Lu X, Tang J, Zhang X, Wang H. CRISPR Cas12a-Powered Silicon Surface-Enhanced Raman Spectroscopy Ratiometric Chip for Sensitive and Reliable Quantification. Anal Chem 2023; 95:2303-2311. [PMID: 36655772 DOI: 10.1021/acs.analchem.2c03990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sensitive and reliable clustered regularly interspaced short palindromic repeats (CRISPR) quantification without preamplification of the sample remains a challenge. Herein, we report a CRISPR Cas12a-powered silicon surface-enhanced Raman spectroscopy (SERS) ratiometric chip for sensitive and reliable quantification. As a proof-of-concept application, we select the platelet-derived growth factor-BB (PDGF-BB) as the target. We first develop a microfluidic synthetic strategy to prepare homogeneous silicon SERS substrates, in which uniform silver nanoparticles (AgNPs) are in situ grown on a silicon wafer (AgNPs@Si) by microfluidic galvanic deposition reactions. Next, one 5'-SH-3'-ROX-labeled single-stranded DNA (ssDNA) is modified on AgNPs via Ag-S bonds. In our design, such ssDNA has two fragments: one fragment hybridizes to its complementary DNA (5'-Cy3-labeled ssDNA) to form double-stranded DNA (dsDNA) and the other fragment labeled with 6'-carboxy-X-rhodmine (ROX) extends out as a substrate for Cas12a. The cleavage of the ROX-tagged fragment by Cas12a is controlled by the presence or not of PDGF-BB. Meanwhile, Cy3 molecules serving as internal standard molecules still stay at the end of the rigid dsDNA, and their signals remain constant. Thereby, the ratio of ROX signal intensity to Cy3 intensity can be employed for the reliable quantification of PDGF-BB concentration. The developed chip features an ultrahigh sensitivity (e.g., the limit of detection is as low as 3.2 pM, approximately 50 times more sensitive than the fluorescence counterpart) and good reproducibility (e.g., the relative standard deviation is less than 5%) in the detection of PDGF-BB.
Collapse
Affiliation(s)
- Haiting Cao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingxuan Xie
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiayi Cheng
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Tang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaojie Zhang
- Department of Experimental Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
He L, Guo Y, Li Y, Zhu J, Ren J, Wang E. Aptasensors for Biomarker Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Hu X, Zhang D, Zeng Z, Huang L, Lin X, Hong S. Aptamer-Based Probes for Cancer Diagnostics and Treatment. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111937. [PMID: 36431072 PMCID: PMC9695321 DOI: 10.3390/life12111937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers that have the ability to generate unique and diverse tertiary structures that bind to cognate molecules with high specificity. In recent years, aptamer researches have witnessed a huge surge, owing to its unique properties, such as high specificity and binding affinity, low immunogenicity and toxicity, and simplicity of synthesis with negligible batch-to-batch variation. Aptamers may bind to targets, such as various cancer biomarkers, making them applicable for a wide range of cancer diagnosis and treatment. In cancer diagnostic applications, aptamers are used as molecular probes instead of antibodies. They have the potential to detect various cancer-associated biomarkers. For cancer therapeutic purposes, aptamers can serve as therapeutic or delivery agents. The chemical stabilization and modification strategies for aptamers may expand their serum half-life and shelf life. However, aptamer-based probes for cancer diagnosis and therapy still face several challenges for successful clinical translation. A deeper understanding of nucleic acid chemistry, tissue distribution, and pharmacokinetics is required in the development of aptamer-based probes. This review summarizes their application in cancer diagnostics and treatments based on different localization of target biomarkers, as well as current challenges and future prospects.
Collapse
|
5
|
Hartati YW, Irkham I, Zulqaidah S, Syafira RS, Kurnia I, Noviyanti AR, Topkaya SN. Recent advances in hydroxyapatite-based electrochemical biosensors: Applications and future perspectives. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Forouzanfar S, Pala N, Wang C. In-Situ Integration of 3D C-MEMS Microelectrodes with Bipolar Exfoliated Graphene for Label-Free Electrochemical Cancer Biomarkers Aptasensor. MICROMACHINES 2022; 13:104. [PMID: 35056269 PMCID: PMC8780539 DOI: 10.3390/mi13010104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/05/2023]
Abstract
The electrochemical label-free aptamer-based biosensors (also known as aptasensors) are highly suitable for point-of-care applications. The well-established C-MEMS (carbon microelectromechanical systems) platforms have distinguishing features which are highly suitable for biosensing applications such as low background noise, high capacitance, high stability when exposed to different physical/chemical treatments, biocompatibility, and good electrical conductivity. This study investigates the integration of bipolar exfoliated (BPE) reduced graphene oxide (rGO) with 3D C-MEMS microelectrodes for developing PDGF-BB (platelet-derived growth factor-BB) label-free aptasensors. A simple setup has been used for exfoliation, reduction, and deposition of rGO on the 3D C-MEMS microelectrodes based on the principle of bipolar electrochemistry of graphite in deionized water. The electrochemical bipolar exfoliation of rGO resolves the drawbacks of commonly applied methods for synthesis and deposition of rGO, such as requiring complicated and costly processes, excessive use of harsh chemicals, and complex subsequent deposition procedures. The PDGF-BB affinity aptamers were covalently immobilized by binding amino-tag terminated aptamers and rGO surfaces. The turn-off sensing strategy was implemented by measuring the areal capacitance from CV plots. The aptasensor showed a wide linear range of 1 pM-10 nM, high sensitivity of 3.09 mF cm-2 Logc-1 (unit of c, pM), and a low detection limit of 0.75 pM. This study demonstrated the successful and novel in-situ deposition of BPE-rGO on 3D C-MEMS microelectrodes. Considering the BPE technique's simplicity and efficiency, along with the high potential of C-MEMS technology, this novel procedure is highly promising for developing high-performance graphene-based viable lab-on-chip and point-of-care cancer diagnosis technologies.
Collapse
Affiliation(s)
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Chunlei Wang
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
7
|
Li G, Li W, Li S, Li X, Yao X, Xue W, Liang J, Chen J, Zhou Z. A label-free electrochemical aptasensor based on platinum@palladium nanoparticles decorated with hemin-reduced graphene oxide as a signal amplifier for glypican-3 determination. Biomater Sci 2022; 10:6804-6817. [DOI: 10.1039/d2bm01134d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An electrochemical aptasensor for highly sensitive detection of glypican-3 has been developed using the GPC3 aptamer as the biorecognition probe and H-rGO-Pt@Pd NPs as an electroactive reagent.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Wenzhan Li
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Shengnan Li
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Xinhao Li
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Xiaoqing Yao
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China
| | - Wen Xue
- Department of Clinical Laboratory, The 924th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Jiejing Chen
- Department of Clinical Laboratory, The 924th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, China
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| |
Collapse
|
8
|
Forouzanfar S, Khakpour I, Alam F, Pala N, Wang C. Novel application of electrochemical bipolar exfoliated graphene for highly sensitive disposable label-free cancer biomarker aptasensors. NANOSCALE ADVANCES 2021; 3:5948-5958. [PMID: 36132673 PMCID: PMC9418564 DOI: 10.1039/d1na00470k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/05/2021] [Indexed: 05/14/2023]
Abstract
Label-free aptasensors can be a promising point-of-care biosensor for detecting various cancer diseases due to their selectivity, sensitivity, and lower cost of production and operation. In this study, a highly sensitive aptasensor based on gold-covered polyethylene terephthalate electrodes (PET/Au) decorated with bipolar exfoliated graphene is proposed as a possible contender for disposable label-free aptasensor applications. Bipolar electrochemical exfoliation enables simultaneous exfoliation, reduction, and deposition of graphene nanosheets on prospective electrodes. Our comparative study confirms that the bipolar exfoliated graphene deposited on the negative feeding electrode (i.e., reduced graphene oxide) possesses better electrochemical properties for aptasensing. The optimized aptasensor based on bipolar exfoliated graphene deposited on PET/Au electrodes exhibits a highly sensitive response of 4.07 μA log c -1 (unit of c, pM) which is linear in the range of 0.0007-20 nM, and has a low limit of detection of 0.65 pM (S/N = 3). The aptasensor establishes highly selective performance with a stability of 91.2% after 6 days. This study demonstrates that bipolar electrochemistry is a simple yet efficient technique that could provide high-quality graphene for biosensing applications. Considering its simplicity and efficiency, the BPE technique promises the development of feasible and affordable lab-on-chip and point-of-care cancer diagnosis technologies.
Collapse
Affiliation(s)
- Shahrzad Forouzanfar
- Department of Electrical and Computer Engineering, Florida International University USA
| | - Iman Khakpour
- Department of Mechanical and Materials Engineering, Florida International University USA
| | - Fahmida Alam
- Department of Electrical and Computer Engineering, Florida International University USA
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University USA
| | - Chunlei Wang
- Department of Mechanical and Materials Engineering, Florida International University USA
- Center for Study of Matter at Extreme Conditions, Florida International University USA
| |
Collapse
|
9
|
Ahirwar R, Khan N, Kumar S. Aptamer-based sensing of breast cancer biomarkers: a comprehensive review of analytical figures of merit. Expert Rev Mol Diagn 2021; 21:703-721. [PMID: 33877005 DOI: 10.1080/14737159.2021.1920397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Accurate determination of the aberrantly expressed biomarkers such as human epidermal growth factor receptor 2 (HER2), carcinoembryonic antigen (CEA), platelet-derived growth factor (PDGF), mucin 1 (MUC1), and vascular endothelial growth factor VEGF165 have played an essential role in the clinical management of the breast cancer. Assessment of these cancer-specific biomarkers has conventionally relied on time-taking methods like the enzyme-linked immunosorbent assay and immunohistochemistry. However, recent development in the aptamer-based diagnostics has allowed developing tools that may substitute the conventional means of biomarker assessment in breast cancer. Adopting the aptamer-based diagnostic tools (aptasensors) to clinical practices will depend on their analytical performance on clinical samples. AREAS COVERED In this review, we provide an overview of the analytical merits of HER2, CEA, PDGF, MUC1, and VEGF165 aptasensors. Scopus and Pubmed databases were searched for studies reporting aptasensor development for the listed breast cancer biomarkers in the past one decade. Linearity, detection limit, and response time are emphasized. EXPERT OPINION In our opinion, aptasensors have proven to be on a par with the antibody-based methods for detection of various breast cancer biomarkers. Though robust validation of the aptasensors on significant sample size is required, their ability to detect pathophysiological range of biomarkers suggest the possibility of future clinical adoption.
Collapse
Affiliation(s)
- Rajesh Ahirwar
- Department of Environmental Biochemistry, ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Nabab Khan
- Department of Environmental Biochemistry, ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Saroj Kumar
- School of Biosciences, Apeejay Stya University, Gurgaon, India
| |
Collapse
|
10
|
Malecka K, Mikuła E, Ferapontova EE. Design Strategies for Electrochemical Aptasensors for Cancer Diagnostic Devices. SENSORS 2021; 21:s21030736. [PMID: 33499136 PMCID: PMC7866130 DOI: 10.3390/s21030736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Improved outcomes for many types of cancer achieved during recent years is due, among other factors, to the earlier detection of tumours and the greater availability of screening tests. With this, non-invasive, fast and accurate diagnostic devices for cancer diagnosis strongly improve the quality of healthcare by delivering screening results in the most cost-effective and safe way. Biosensors for cancer diagnostics exploiting aptamers offer several important advantages over traditional antibodies-based assays, such as the in-vitro aptamer production, their inexpensive and easy chemical synthesis and modification, and excellent thermal stability. On the other hand, electrochemical biosensing approaches allow sensitive, accurate and inexpensive way of sensing, due to the rapid detection with lower costs, smaller equipment size and lower power requirements. This review presents an up-to-date assessment of the recent design strategies and analytical performance of the electrochemical aptamer-based biosensors for cancer diagnosis and their future perspectives in cancer diagnostics.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (K.M.); (E.M.)
| | - Edyta Mikuła
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (K.M.); (E.M.)
| | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- Correspondence: ; Tel.: +45-87156703
| |
Collapse
|
11
|
Forouzanfar S, Alam F, Pala N, Wang C. Highly sensitive label-free electrochemical aptasensors based on photoresist derived carbon for cancer biomarker detection. Biosens Bioelectron 2020; 170:112598. [PMID: 33035901 DOI: 10.1016/j.bios.2020.112598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
-Label-free electrochemical aptasensors for cancer biomarker detection can be a promising means for early detection of cancer due to their high sensitivity, selectivity, and stability, and low cost. In this study, a highly sensitive and selective label-free electrochemical aptasensor based on carbon microelectromechanical systems (C-MEMS) was developed for the detection of platelet-derived growth factor-BB (PDGF-BB). The active electrodes of the aptasensors were synthesized via carbonization of SU-8 derived electrodes at high temperatures in an oxygen-free furnace. An oxygen-plasma oxidation treatment was used to functionalize the C-MEMS electrodes, which provided efficient covalent immobilization of amino terminated affinity aptamers. The turn-off and turn-on detection strategies-based on capacitance and resistance measurement, respectively-were employed. The capacitance detection strategies exhibited a wide linear response range of 0.01-50 nM, with a high sensitivity of 3.33 mF cm-2 Logc-1 (unit of c, nM) and a low limit of detection of 7 pM (S/N = 3). The resistance detection strategies exhibited an even wider linear response range of 0.005-50 nM, and a lower limit of detection of 1.9 pM (S/N = 3), with a high sensitivity of 1.65 × 103 Ω Logc-1 (unit of c, nM). Both detection strategies provided high selectivity for PDGF-BB and high stability of 90.34% after 10 days. This research demonstrates that the developed label-free electrochemical C-MEMS based PDGF-BB aptasensor is highly sensitive, selective, and robust. This aptasensor is a promising prospect for the highly demanding task of early detection of cancer biomarkers.
Collapse
Affiliation(s)
- Shahrzad Forouzanfar
- Department of Electrical and Computer Engineering, Florida International University, United States.
| | - Fahmida Alam
- Department of Electrical and Computer Engineering, Florida International University, United States
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, United States
| | - Chunlei Wang
- Department of Mechanical and Materials Engineering, Florida International University, United States.
| |
Collapse
|
12
|
Antonacci A, Scognamiglio V, Mazzaracchio V, Caratelli V, Fiore L, Moscone D, Arduini F. Paper-Based Electrochemical Devices for the Pharmaceutical Field: State of the Art and Perspectives. Front Bioeng Biotechnol 2020; 8:339. [PMID: 32391344 PMCID: PMC7190989 DOI: 10.3389/fbioe.2020.00339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
The current international pharmaceutical scenario encompasses several steps in drug production, with complex and extremely long procedures. In the last few decades, scientific research has been trying to offer valid and reliable solutions to replace or support conventional techniques, in order to facilitate drug development procedures. These innovative approaches may have extremely positive effects in the production chain, supplying fast, and cost-effective quality as well as safety tests on active pharmaceutical ingredients (APIs) and their excipients. In this context, the exploitation of electrochemical paper-based analytical devices (ePADs) is still in its infancy, but is particularly promising in the detection of APIs and excipients in tablets, capsules, suppositories, and injections, as well as for pharmacokinetic bioanalysis in real samples.
Collapse
Affiliation(s)
- Amina Antonacci
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, National Research Council, Rome, Italy
| | - Viviana Scognamiglio
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, National Research Council, Rome, Italy
| | - Vincenzo Mazzaracchio
- Department of Chemical Science and Technologies, Tor Vergata University, Rome, Italy
| | - Veronica Caratelli
- Department of Chemical Science and Technologies, Tor Vergata University, Rome, Italy
| | - Luca Fiore
- Department of Chemical Science and Technologies, Tor Vergata University, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, Tor Vergata University, Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, Tor Vergata University, Rome, Italy.,SENSE4MED, Rome, Italy
| |
Collapse
|
13
|
Affinity binding-mediated fluorometric protein assay based on the use of target-triggered DNA assembling probes and aptamers labelled with upconversion nanoparticles: application to the determination of platelet derived growth factor-BB. Mikrochim Acta 2019; 187:9. [PMID: 31797061 DOI: 10.1007/s00604-019-4024-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/09/2019] [Indexed: 10/25/2022]
Abstract
The target-triggered DNA assembling probe is presented for highly selective protein detection. Target-triggered DNA assembling is used in an amplification strategy based on affinity binding for identification and determination of proteins in general. Specifically, it was applied to the platelet derived growth factor-BB (PDGF-BB). A hairpin DNA (H-DNA) probe was designed containing (a) an aptamer domain for protein recognition and (b) a blocked DNAzyme domain for DNAzyme cleavage. An assistant DNA (A-DNA) probe containing aptamer and complementary domains was also employed to recognize protein and to induce DNA assembly. Once H-DNA and A-DNA recognize the same protein, H-DNA and A-DNA are in close proximity to each other. This induces DNA assembling for protein-triggered complex (Protein-Complex) with free DNAzyme domains. The free DNAzymes trigger the circular cleavage of molecular beacons for amplified signals. The assay is performed by fluorometry at an excitation wavelength of 980 nm and by collecting fluorescence at 545 nm. The platelet derived growth factor-BB (PDGF-BB) was accurately identified and selectively determined by this assay with a 22 pM detection limit (using the 3σ criterion). The responses for PDGF-BB is nearly 6-fold higher than for PDGF-AB, and 16-fold higher than PDGF-AA. This upconversion assay avoids any interference by the autofluorescence of biological fluids. Graphical abstractSchematic representation of the principle of the target-triggered DNA assembling probes mediated amplification strategy based on affinity binding for PDGF-BB. The UCNP probe is used for the quantitation of PDGF-BB with high selectivity.
Collapse
|
14
|
Qian H, Huang Y, Duan X, Wei X, Fan Y, Gan D, Yue S, Cheng W, Chen T. Fiber optic surface plasmon resonance biosensor for detection of PDGF-BB in serum based on self-assembled aptamer and antifouling peptide monolayer. Biosens Bioelectron 2019; 140:111350. [PMID: 31154255 DOI: 10.1016/j.bios.2019.111350] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Herein, a home-build fiber optic surface plasmon resonance (FO-SPR) biosensing platform has been developed for highly sensitive detection of platelet-derived growth factor (PDGF-BB) based aptamer-functionalized AuNPs for signal enhancement. In this biosensor, the PDGF-BB aptamer was used to specifically capture PDGF-BB, and the antifouling peptide demonstrated great ability for resisting non-specific adsorption. After a sandwich reaction, the aptamer, PDGF-BB and aptamer-functionalized AuNPs complexes were formed on the fiber optic (FO) probe surface to significantly amplify FO-SPR signal. This method exhibited a broad detection range from 1 to 1000 pM of PDGF-BB and a low detection limit of 0.35 pM. Moreover, this biosensor was successfully applied to the detection of PDGF-BB in 10% human serum samples without suffering from serious interference owing to the excellent antifouling property of the peptide. Thus, this developed FO-SPR biosensor could be a potential alternative device for proteins determination, even as a point-of-care diagnostic tool (POCT) in clinical application.
Collapse
Affiliation(s)
- Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaotong Wei
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yunpeng Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Delu Gan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shujun Yue
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
15
|
Li Y, Shao J, Guo W, Wang M. Sensitive fluorometric determination of platelet-derived growth factor BB and avian influenza A virus DNA via dual signal amplification using the hybridization chain reaction and glucose oxidase assisted recycling. Mikrochim Acta 2019; 186:155. [PMID: 30712102 DOI: 10.1007/s00604-019-3285-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
A method is described for fluorometric determination of platelet-derived growth factor BB (PDGF-BB) and avian influenza A (H1N1) virus DNA. It is based on the use of the hybridization chain reaction (HCR) and of glucose oxidase (GOx) assisted dual-recycling amplification. A silver coated glass slide (SCGS) serves as an ideal material for separation. A signal DNA/initiator triggers the HCR and generates a cascade of hybridization to form a nicked double-helix polymer. Upon addition of the analytes (PDGF-BB or H1N1 DNA) and capture DNA immobilized on the SCGS, the nicked double-helix polymer binds on the surface of the SCGS through formation of a [capture DNA/analyte/signal DNA] sandwich structure. The GOx-biotin-streptavidin (SA) complexes were then attached to the nicked double-helix polymer through SA-biotin interaction. After cleavage by DNase I, the bound GOx is transferred into the buffer. Glucose is added and enzymatically oxidized to produce H2O2. The H2O2 formed oxidizes the substrate 3-(p-hydroxyphenyl)-propanoic acid to give a blue fluorescent product (with excitation/emission maxima at 320/416 nm) under the catalysis of horseradish peroxidase. Under optimal conditions, fluorescence increases linearly in the 0.5 to 70 pmol·L-1 PDGF-BB concentration range, and the detection limit is 191 fmol·L-1. For the H1N1 virus DNA, the respective data are 2.5 to 300 pmol·L-1 and 826 fmol·L-1. Graphical abstract Schematic presentation for detection of analytes (PDGF-BB or H1N1 virus DNA) based on the dual-signal amplification of Hybridization Chain Reaction (HCR) and glucose oxidase (GOx) using silver coated glass slide (SCGS) as separation material.
Collapse
Affiliation(s)
- Yubin Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| | - Jing Shao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Wanting Guo
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Minting Wang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| |
Collapse
|
16
|
Xiang W, Wang G, Cao S, Wang Q, Xiao X, Li T, Yang M. Coupling antibody based recognition with DNA based signal amplification using an electrochemical probe modified with MnO2 nanosheets and gold nanoclusters: Application to the sensitive voltammetric determination of the cancer biomarker alpha fetoprotein. Mikrochim Acta 2018; 185:335. [DOI: 10.1007/s00604-018-2867-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/08/2018] [Indexed: 12/26/2022]
|
17
|
Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Mikrochim Acta 2018; 185:331. [DOI: 10.1007/s00604-018-2869-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
|
18
|
Hydroxyapatite nanoparticle based fluorometric determination and imaging of cysteine and homocysteine in living cells. Mikrochim Acta 2018; 185:271. [PMID: 29704070 DOI: 10.1007/s00604-018-2801-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Fluorescent hydroxyapatite nanoparticles (HAP-NPs) were prepared by reacting calcium ion with phosphate in the presence of Eu(III) ion. The HAP-NPs display large Stokes' shift and two strong fluorescence emissions with peaks at 590 nm and 615 nm when excited at 250 nm. The HAP-NPs also have good photostability and water solubility. The HAP-NPs combined with Cu(II) were applied to fluorometric determination of cysteine and homocysteine in biological samples and in living cells. In this detection scheme, the fluorescence of HAP-NPs is initially quenched by Cu(II). The addition of biothiols results in the formation of Cu(II)-thiol complexes and leads to fluorescence recovery. The assay allows cysteine to be detected with a 110 nM detection limit, and homocysteine with a 160 nM detection limit. The assay was successfully applied to the analysis of cysteine in spiked human serum samples and to imaging of cysteine in HeLa cells, and this demonstrates its potential for clinical testing and in biomedical research. Graphical abstract Fluorescent hydroxyapatite nanoparticles were synthesized and combined with Cu2+ for fluorescence sensing of biothiols (cysteine and homocysteine) in complex biological samples and in living cells.
Collapse
|
19
|
Razmi N, Baradaran B, Hejazi M, Hasanzadeh M, Mosafer J, Mokhtarzadeh A, de la Guardia M. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens Bioelectron 2018; 113:58-71. [PMID: 29729560 DOI: 10.1016/j.bios.2018.04.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/13/2023]
Abstract
Platelet-derived growth factor (PDGF-BB), a significant serum cytokine, is an important protein biomarker in diagnosis and recognition of cancer, which straightly rolled in proceeding of various cell transformations, including tumor growth and its development. Fibrosis, atherosclerosis are certain appalling diseases, which PDGF-BB is near to them. Generally, the expression amount of PDGF-BB increases in human life-threatening tumors serving as an indicator for tumor angiogenesis. Thus, identification and quantification of PDGF-BB in biomedical fields are particularly important. Affinity chromatography, immunohistochemical methods and enzyme-linked immunosorbent assay (ELISA), conventional methods for PDGF-BB detection, requiring high-cost and complicated instrumentation, take too much time and offer deficient sensitivity and selectivity, which restrict their usage in real applications. Hence, it is essential to design and build enhanced systems and platforms for the recognition and quantification of protein biomarkers. In the past few years, biosensors especially aptasensors have been received noticeable attention for the detection of PDGF-BB owing to their high sensitivity, selectivity, accuracy, fast response, and low cost. Since the role and importance of developing aptasensors in cancer diagnosis is undeniable. In this review, optical and electrochemical aptasensors, which have been applied by many researchers for PDGF-BB cancer biomarker detection, have been mentioned and merits and demerits of them have been explained and compared. Efforts related to design and development of aptamer-based biosensors using nanoparticles for sensitive and selective detection of PDGF-BB have been reviewed considering: Aptamer importance as recognition elements, principal, application and the recent improvements and developments of aptamer based optical and electrochemical methods. In addition, commercial biosensors and future perspectives for rapid and on-site detection of PDGF-BB have been summarized.
Collapse
Affiliation(s)
- Nasrin Razmi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664 Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
20
|
Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 2018; 103:113-129. [DOI: 10.1016/j.bios.2017.12.031] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
|
21
|
Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. BIOSENSORS 2018; 8:E35. [PMID: 29614784 PMCID: PMC6022999 DOI: 10.3390/bios8020035] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".
Collapse
Affiliation(s)
- Alisa N Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Tatiana S Svalova
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Natalia N Malysheva
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Andrei V Okhokhonin
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Marina B Vidrevich
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| | - Khiena Z Brainina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| |
Collapse
|
22
|
Determination of protein kinase A activity and inhibition by using hydroxyapatite nanoparticles as a fluorescent probe. Mikrochim Acta 2018; 185:225. [PMID: 29594552 DOI: 10.1007/s00604-018-2754-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
Abstract
The authors describe a fluorometric method for the determination of the activity and inhibition of protein kinase A (PKA). In the presence of ATP, PKA catalyzes the transfer of phosphate groups from ATP to a peptide, and the generated phosphorylated peptide quenches the fluorescence (measured at excitation/emission peaks of 340/440 nm) of the hydroxyapatite nanoparticles (HAP-NPs). A linear logarithmic relationship of PKA concentrations with fluorescence intensity in the range from 1 to 50 U·L-1 was obtained, and the lower limit of detection (LOD) is 0.5 U·L-1. This is much lower than LODs reported in the literature. The PKA inhibitor H-89 was studied, and the inhibition plot has a sigmoidal shape with a half-maximal inhibitory concentration of around 750 nM of H-89. At a 4.5 nM level of H-89, fluorescence of HAP-NPs fell to levels of no PKA controls, demonstrating that the assay is a viable tool to screen for kinase inhibitors. An assay with Hela cell lysates in combination with forskolin (an activator of adenylyl cyclase) and IBMX (a phosphodiesterase inhibitor used to activate the cellular activity of PKA) resulted in decreased fluorescence of HAP-NPs. This suggests that the assay can be applied for testing in vitro cell kinase activity. In our perception, this method will enable high-throughput screening for kinase-related drugs and fluorometric enzymatic detection in various areas. Graphical abstract Fluorescence assay based on hydroxyapatite nanoparticles (HAP) fluorescence quenching was developed for analysis of the activity and inhibition of protein kinase A (PKA).
Collapse
|
23
|
Li X, Shen C, Yang M, Rasooly A. Polycytosine DNA Electric-Current-Generated Immunosensor for Electrochemical Detection of Human Epidermal Growth Factor Receptor 2 (HER2). Anal Chem 2018; 90:4764-4769. [DOI: 10.1021/acs.analchem.8b00023] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoqing Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Congcong Shen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Avraham Rasooly
- National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
24
|
Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S, Besharati M. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1,3,6,8-pyrenetetrasulfonate. Mikrochim Acta 2017; 185:59. [PMID: 29594593 DOI: 10.1007/s00604-017-2570-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
The authors describe an electrochemical method for aptamer-based determination of insulin at femtomolar concentrations. The surface of a screen printed electrode was modified with ordered mesoporous carbon that was chemically modified with 1,3,6,8-pyrenetetrasulfonate (TPS). The amino-terminated aptamer was then covalently linked to TPS via reactive sulfonyl chloride groups. Subsequently, the redox probe Methylene Blue (MB) was interacted into the aptamer. The MB-modified binds to insulin and this results in the release of MB and a decreased signal as obtained by differential pulse voltammetry, best at a working voltage of -0.3 V (versus silver pseudo-reference electrode). Insulin can be quantified by this method in the 1.0 fM to 10.0 pM concentration range, with a 0.18 fM limit of detection (at 3σ/slope). The assay was applied to the determination of insulin in spiked human serum samples. The method is highly sensitive, selective, stable, and has a wide analytical range. Graphical abstract The surface of a screen printed electrode was modified with ordered mesoporous carbon-1,3,6,8-pyrenetetrasulfonate. The amino-terminated aptamer was then linked to the 1,3,6,8-pyrenetetrasulfonate. Then, the Methylene Blue was interacted into the aptamer. The modified electrode was applied to the determination of insulin.
Collapse
Affiliation(s)
- Mahmoud Amouzadeh Tabrizi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, P.O. Box 6714967346, Kermanshah, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P.O. Box 6714967346, Kermanshah, Iran.
| | - Reza Saber
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P.O. Box 1417755469, Tehran, Iran
| | - Saeed Sarkar
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, P.O. Box 1417613151, Tehran, Iran
| | - Maryam Besharati
- Department of Microbial Biotechnology, School of Biology and center of excellence in phylogeny living organisms, College of Science, University of Tehran, P.O. Box 41556455, Tehran, Iran
- Microbial technology and products (MTP) research center, University of Tehran, P.O. Box 1417466191, Tehran, Iran
| |
Collapse
|
25
|
Feng K, Liu J, Deng L, Yu H, Yang M. Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction. Mikrochim Acta 2017; 185:28. [DOI: 10.1007/s00604-017-2579-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/18/2017] [Indexed: 01/23/2023]
|