1
|
Photoelectrochemical biosensor based on FTO modified with BiVO4 film and gold nanoparticles for detection of miRNA-25 biomarker and single-base mismatch. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Aamri ME, Mohammadi H, Amine A. Novel Label-free Colorimetric and Electrochemical Detection for MiRNA-21 Based on the Complexation of Molybdate with Phosphate. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Zhang Y, Li N, Ma W, Yang M, Hou C, Luo X, Huo D. Ultrasensitive detection of microRNA-21 by using specific interaction of antimonene with RNA as electrochemical biosensor. Bioelectrochemistry 2021; 142:107890. [PMID: 34399167 DOI: 10.1016/j.bioelechem.2021.107890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
MicroRNA exhibits different levels of expression in cancer and can affect the transformation, metastasis, and carcinogenesis of the cancer cell. Herein, we developed a novel kind of electrochemical microRNA biosensor based on two-dimensional nanomaterial of antimonene nano-flakes (AMNFs) and carbon quantum dots (CQDs) which were used as substrating to cadmium ion (Cd2+) for specific detection of breast cancer-relevant biomarker-microRNA-21. Compared to graphene, the first principle energetic calculation shows that the AMNFs have completely a stronger force interaction with single strand (ssRNA), due to the antimonene has a more delocalized 5 s/5p orbital. After the addition of complementary microRNA, due to the low adsorption affinity of double-stranded RNA (dsRNA) to antimonene, the hybridized target is easy to desorb from the antimonene interface, and the oxidation peak of metal ions is significantly reduced. Results showed the microRNA-21 concentration can be detected from 100 aM to 1 nM, the limit of detection as low as 21 aM toward microRNA-21, which is 3 times lower than those of the established microRNA biosensors. The unique combination of not be attempted before existing sensing material which has special adsorption properties represents an approach to the detection of breast cancer. And it provides a promising method for early diagnosis, monitoring, and staging of breast cancer.
Collapse
Affiliation(s)
- Ya Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ning Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Wenhao Ma
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR, China.
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
4
|
An amplified fluorescent biosensor for Ag + detection through the hybridization chain reactions. Colloids Surf B Biointerfaces 2021; 202:111686. [PMID: 33714924 DOI: 10.1016/j.colsurfb.2021.111686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
Ag is widely distributed in nature and it is used in almost all areas of human life. However, due to the widespread use of Ag materials, Ag+ pollution seriously threatens the human health and environment. The traditional detection methods for Ag+ suffer from disadvantages including high operational cost, complicated operating unit and instrument, and high requirements for professionals. Thus, in this study, a new type of Ag+ detection biosensor based on the hybridization signal amplification was designed to overcome these problems. Combining cytosine-Ag+-cytosine mismatch structure with the hybridization chain reaction, this biosensor converted the conventional detection signal into the nucleic acid amplification signal, which realized efficient, rapid, sensitive, and specific detection of Ag+. The limit-of-detection of this sensor reached 0.69 pM, which is much less than the maximum concentration (0.1 mg L-1, 927 nM) suggested for drinking water by the World Health Organization, and the maximum concentration (0.05 mg L-1, 464 nM) suggested by the United States Environmental Protection Agency. This method provides a promising new platform for detecting Ag+ concentrations at ultralow levels.
Collapse
|
5
|
Hai H, Chen C, Chen D, Li P, Shan Y, Li J. A sensitive electrochemiluminescence DNA biosensor based on the signal amplification of ExoIII enzyme-assisted hybridization chain reaction combined with nanoparticle-loaded multiple probes. Mikrochim Acta 2021; 188:125. [PMID: 33723966 DOI: 10.1007/s00604-021-04777-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
An electrochemiluminescence (ECL) DNA biosensor based on ExoIII exonuclease assistance and hybridization chain reaction (HCR) amplification technology has been constructed. ExoIII exonuclease and triple-helix DNA molecular switch are used in detecting a target in circulation. By combining HCR with AuNPs@DNA, a novel signal probe is built, which enables multiple signal amplification and the high-sensitive detection of transgenic rice BT63 DNA. The Fe3O4@Au solution is added to a magneto-controlled glassy carbon electrode, and sulfhydryl-modified capture DNA (CP) is immobilized on Fe3O4@Au through the Au-S bond. Mercaptoethanol is added to close sites and prevent the nonspecific adsorption of CP on the magnetron glassy carbon electrode. A target DNA is added to a constructed triple-helix DNA molecular centrifuge tube for reaction. Owing to base complementation and the reversible switching of the triple-helix DNA molecular state, the target DNA turns on the triple-helix DNA molecular switch and hybridizes with a long-strand recognition probe (RP) to form a double-stranded DNA (dsDNA). Exonuclease ExoIII is added to specifically recognize and cut the dsDNA and to release the target DNA. The target DNA strand then circulates back completely to open the multiple triple-helix DNA molecular switch, releasing a large number of signal transduction probes (STP). To hybridize with CP, a large amount of STP is added to the electrode. Finally, a AuNPs@DNA signal probe is added to hybridize with STP. H1 and H2 probes are added for the hybridization chain reaction and the indefinite extension of the primer strand on the probe. Then, tris-(bipyridyl)ruthenium(II) is added for ECL signal detection with PBS-tri-n-propylamine as the base solution. In the concentration range 1.0 × 10-16 to 1.0 × 10-8 mol/L of the target DNA, good linear relationship was achieved with the corresponding ECL signal. The detection limit is 3.6 × 10-17 mol/L. The spiked recovery of the rice samples range from 97.2 to 101.5%. The sensor is highly sensitive and has good selectivity, stability, and reproducibility. A novel electrochemiluminescence biosensor with extremely higher sensitivity was prepared for the determination of ultra-trace amount transgenic rice BT63 DNA. The sensitivity was significantly improved by multiple signal enhancements. Firstly, a large number of signal transduction probes are released when the triple-helix DNA molecular switch unlock after recycles assisted by ExoIII exonuclease under target BT63 DNA; and then the signal transduction probes hybridize with the signal probes of AuNPs@(DNA-HCR) produced through hybridization chain reaction. Finally, the signal probes which were embedded with a large amount of electrochemiluminescence reagent produce high luminescence intensity. The detection limit was 3.6 × 10-17 mol/L, which is almost the most sensitive methods reported.
Collapse
Affiliation(s)
- Hong Hai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Ciping Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Dongli Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Peijun Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Yang Shan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.,Hunan Institute of Agriculture Product Processing, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
6
|
El Aamri M, Yammouri G, Mohammadi H, Amine A, Korri-Youssoufi H. Electrochemical Biosensors for Detection of MicroRNA as a Cancer Biomarker: Pros and Cons. BIOSENSORS 2020; 10:E186. [PMID: 33233700 PMCID: PMC7699780 DOI: 10.3390/bios10110186] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
Cancer is the second most fatal disease in the world and an early diagnosis is important for a successful treatment. Thus, it is necessary to develop fast, sensitive, simple, and inexpensive analytical tools for cancer biomarker detection. MicroRNA (miRNA) is an RNA cancer biomarker where the expression level in body fluid is strongly correlated to cancer. Various biosensors involving the detection of miRNA for cancer diagnosis were developed. The present review offers a comprehensive overview of the recent developments in electrochemical biosensor for miRNA cancer marker detection from 2015 to 2020. The review focuses on the approaches to direct miRNA detection based on the electrochemical signal. It includes a RedOx-labeled probe with different designs, RedOx DNA-intercalating agents, various kinds of RedOx catalysts used to produce a signal response, and finally a free RedOx indicator. Furthermore, the advantages and drawbacks of these approaches are highlighted.
Collapse
Affiliation(s)
- Maliana El Aamri
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Ghita Yammouri
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Equipe de Chimie Biorganique et Bioinorganique (ECBB), Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France;
| |
Collapse
|
7
|
Mujica ML, Gallay PA, Perrachione F, Montemerlo AE, Tamborelli LA, Vaschetti VM, Reartes DF, Bollo S, Rodríguez MC, Dalmasso PR, Rubianes MD, Rivas GA. New trends in the development of electrochemical biosensors for the quantification of microRNAs. J Pharm Biomed Anal 2020; 189:113478. [PMID: 32768875 DOI: 10.1016/j.jpba.2020.113478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in RNA silencing and post-transcriptional gene expression regulation. Since their dysregulation has been associated with Alzheimer disease, cardiovascular diseases and different types of cancer, among others, miRNAs can be used as biomarkers for early diagnosis and prognosis of these diseases. The methods commonly used to quantify miRNAs are, in general, complex, costly, with limited application for point-of-care devices or resource-limited facilities. Electrochemical biosensors, mainly those based on nanomaterials, have emerged as a promising alternative to the conventional miRNA detection methods and have paved the way to the development of sensitive, fast, and low-cost detection systems. This review is focused on the most relevant contributions performed in the field of electrochemical miRNAs biosensors between 2017 and the beginning of 2020. The main contribution of this article is the critical discussion of the different amplification strategies and the comparative analysis between amplified and non-amplified miRNA electrochemical biosensing and between the different amplification schemes. Particular emphasis was given to the importance of the nanostructures, enzymes, labelling molecules, and special sequences of nucleic acids or analogues on the organization of the different bioanalytical platforms, the transduction of the hybridization event and the generation the analytical signal.
Collapse
Affiliation(s)
- Michael López Mujica
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Pablo A Gallay
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Fabrizio Perrachione
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Antonella E Montemerlo
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Luis A Tamborelli
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina; CIQA-CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Virginia M Vaschetti
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina; CIQA-CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Daiana F Reartes
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Soledad Bollo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Santiago, Chile
| | - Marcela C Rodríguez
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Pablo R Dalmasso
- CIQA-CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - María D Rubianes
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Gustavo A Rivas
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
8
|
Cai X, Lv F, Lai G, Fu L, Lin CT, Yu A. Dually enhanced homogenous synthesis of molybdophosphate by hybridization chain reaction and enzyme nanotags for the electrochemical bioassay of carcinoembryonic antigen. Mikrochim Acta 2020; 187:361. [PMID: 32468206 DOI: 10.1007/s00604-020-04342-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
Abstract
A magnetic bead (MB)-based sandwich biorecognition reactions is combined with a gold nanoprobe-induced homogenous synthesis of molybdophosphate to develop a novel bioassay method for the electrochemical detection of the tumor biomarker of carcinoembryonic antigen (CEA). The nanoprobe is prepared through the specific loading of numerous alkaline phosphatase (ALP)-functionalized gold nanoparticles (Au NPs) on a double-stranded DNA (dsDNA) produced by the CEA aptamer-triggered hybridization chain reaction (HCR). Both the large amounts of PO43- produced by the ALP catalytic hydrolysis of pyrophosphate and the phosphate backbones of dsDNA can react with the added MoO42- to generate electroactive molybdophosphates. So, the gold nanoprobe was used for signal tracing of the sandwich bioassay of CEA at a constructed antibody-functionalized MB platform. The sensitive electrochemical measurement of molybdophosphate produced from the quantitatively captured nanoprobes at a carbon nanotube-modified electrode (measured at about 0.12 V vs. Ag/AgCl, 3 M KCl) enabled the convenient signal transduction of the method. Due to the dually enhanced synthesis of molybdophosphate by the HCR and multi-enzyme Au NP nanotags, this method shows a wide linear range from 0.05 pg mL-1 to 10 ng mL-1 along with a low detection limit of 0.027 pg mL-1. In addition, the MB-based biorecognition reaction and the homogeneous synthesis of molybdophosphate are much convenient in manipulations. These excellent performances decide the extensive application potentials of the method. Graphical abstract A magnetic bead-based bioassay method was simply developed for the electrochemical detection of carcinoembryonic antigen. The dually enhanced homogenous synthesis of molybdophosphate by hybridization chain reaction (HCR) and enzyme nanotags and the sensitive electrochemical measurement of molybdophosphate at a carbon nanotube (CNT)-electrode enable ultrasensitive signal transduction of the method.
Collapse
Affiliation(s)
- Xiaolei Cai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, 435002, China
| | - Fuhui Lv
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, 435002, China.
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Cheng-Te Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Aimin Yu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, 435002, China.
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
9
|
Design of a DOPC-MoS 2/AuNP hybrid as an organic bed with higher amplification for miR detection in electrochemical biosensors. Anal Bioanal Chem 2020; 412:3209-3219. [PMID: 32222807 DOI: 10.1007/s00216-020-02579-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 01/30/2023]
Abstract
The liposome-based biosensors are used for detection of nucleic acids and proteins as organic beds which are biocompatible tools for point of care tests, but their lack of sensitivity has been challenging. Therefore, designing a proper strategy is vital to increase the sensitivity of the target in diagnostic tests. In this study, for the first time, we use a combination of cationic DOPC liposome (dioleoylphosphatidylcholine) with MoS2 to enhance the sensitivity of liposomal sensors clearly. The electrochemical measurements are performed between potentials at - 0.4 V and + 0.4 V with 1 mM [Fe(CN)6]-3/-4. At first, we construct the DOPC/MoS2 hybrid (as a mineral/organic bed) to promote higher electrochemical behavior than DOPC liposome (as organic bed). In this research, adding AuNP can cause attachment with both the DOPC and MoS2. Therefore, the electrochemical reactions are enhanced accordingly to provide more positions for attaching the probes on the AuNP. So our DOPC-MoS2/AuNP hybrid can detect miR-21 with high sensitivity (LOD = 10 aM) because of attachment of miR-21 to MoS2/AuNP in addition to DOPC/AuNP. This sensor has also high specificity and repeatability as a biocompatible sensor, which can be used in point of care tests and transduction instruments.
Collapse
|
10
|
Congur G, Erdem A. PAMAM dendrimer modified screen printed electrodes for impedimetric detection of miRNA-34a. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Electrochemical immunoassay for the tumor marker CD25 by coupling magnetic sphere-based enrichment and DNA based signal amplification. Mikrochim Acta 2019; 186:352. [DOI: 10.1007/s00604-019-3455-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
|
12
|
Chai Y, Li X, Yang M. Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO 2 nanosheets as the electrochemical probe. Mikrochim Acta 2019; 186:316. [PMID: 31044282 DOI: 10.1007/s00604-019-3412-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
Abstract
The authors report a sensitive electrochemical aptamer-based assay for the cancer biomarker human epidermal growth factor receptor-2 (HER2). It is based on the use of MnO2 nanosheets that were functionalized with phosphate and a HER2 binding aptamer and serve as the electrochemical probe. The assay follows a sandwich protocol. A peptide that can specifically recognize HER2 was immobilized on a gold electrode for the capture of HER2. Then, the functionalized MnO2 nanosheets were linked to the electrode via the binding between HER2 and HER2 aptamer on the MnO2 nanosheets. The reaction of phosphate and aptamer on the MnO2 nanosheets with molybdate leads to the formation of redox-active molybdophosphate. This results in dual signal amplification. The generated electrochemical current was measured at 0.22 V (vs. Ag/AgCl). The assay allows HER2 to be determined in the 0.1 to 500 pg·mL-1 concentration range, and the detection limit is as low as 0.05 pg·mL-1. The assay was successfully applied for the detection of HER2 in spiked human serum samples. Graphical abstract Electrochemical detection of breast cancer biomarker human epidermal growth factor receptor-2 (HER2) is reported utilizing phosphate ions and aptamer functionalized MnO2 nanosheet as probe.
Collapse
Affiliation(s)
- Yuanlin Chai
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, China
| | - Xiaoqing Li
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, China.
| |
Collapse
|
13
|
Determination of Alzheimer biomarker DNA by using an electrode modified with in-situ precipitated molybdophosphate catalyzed by alkaline phosphatase-encapsulated DNA hydrogel and target recycling amplification. Mikrochim Acta 2019; 186:158. [DOI: 10.1007/s00604-019-3283-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
|
14
|
Electrochemical determination of the activity and inhibition of telomerase based on the interaction of DNA with molybdate. Mikrochim Acta 2019; 186:96. [PMID: 30631950 DOI: 10.1007/s00604-018-3223-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/29/2018] [Indexed: 01/19/2023]
Abstract
An ultrasensitive electrochemical sensor is described for the determination of the activity of telomerase. It is based on a DNA-generated current that is due to the reaction of the phosphate groups on DNA with molybdate to form a redox-active molybdophosphate. A telomerase substrate primer was first immobilized on a gold electrode. In the presence of telomerase and deoxyribonucleoside triphosphates (dNTPs), the primer can be extended with repetitive nucleotide sequences (TTAGGG). The subsequent reaction of the sensor with molybdate results in the enhancement of electrochemical current intensity due to an increased amount of nucleotides on the electrode. Sensitivity can be further improved by introducing a hairpin probe that partially hybridizes with the repetitive TTAGGG sequence and further enhances the amount of DNA on the electrode. The biosensor, best operated at 0.2 V (vs. Ag/AgCl) shows a linear response to telomerase activity from 1×102 to 107 Hela cells mL-1. The assay was applied to the detection of telomerase activity in HeLa cancer cells treated with the anticancer drug epigallocatechin gallate, and the results indicate that it holds great potential in anticancer drug screening. Graphical abstract Schematic presentation of an ultrasensitive electrochemical sensor for the determination of telomerase activity based on DNA generated electrochemical current. dNTPs in the scheme represents deoxyribonucleoside triphosphates.
Collapse
|
15
|
Shen C, Liu S, Li X, Zhao D, Yang M. Immunoelectrochemical detection of the human epidermal growth factor receptor 2 (HER2) via gold nanoparticle-based rolling circle amplification. Mikrochim Acta 2018; 185:547. [DOI: 10.1007/s00604-018-3086-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
|
16
|
Akbarnia A, Zare HR. A voltammetric assay for microRNA-25 based on the use of amino-functionalized graphene quantum dots and ss- and ds-DNAs as gene probes. Mikrochim Acta 2018; 185:503. [DOI: 10.1007/s00604-018-3037-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/01/2018] [Indexed: 11/29/2022]
|
17
|
An organic electrochemical transistor for determination of microRNA21 using gold nanoparticles and a capture DNA probe. Mikrochim Acta 2018; 185:408. [DOI: 10.1007/s00604-018-2944-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
|
18
|
Xiang W, Wang G, Cao S, Wang Q, Xiao X, Li T, Yang M. Coupling antibody based recognition with DNA based signal amplification using an electrochemical probe modified with MnO2 nanosheets and gold nanoclusters: Application to the sensitive voltammetric determination of the cancer biomarker alpha fetoprotein. Mikrochim Acta 2018; 185:335. [DOI: 10.1007/s00604-018-2867-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/08/2018] [Indexed: 12/26/2022]
|
19
|
Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Mikrochim Acta 2018; 185:331. [DOI: 10.1007/s00604-018-2869-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
|
20
|
Photoelectrochemical biosensor for microRNA detection based on multiple amplification strategies. Mikrochim Acta 2018; 185:257. [PMID: 29679252 DOI: 10.1007/s00604-018-2808-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Abstract
A photoelectrochemical biosensor is described for sensitive detection of microRNA-162a. A multiple amplification strategy is employed that involves (a) isothermal strand displacement polymerase reaction; (b) terminal deoxynucleotidyl transferase-mediated extension, (c) amplification of streptavidin-coated gold nanoparticles, and (d) biotin functionalized alkaline phosphatase. Graphite-like C3N4 (g-C3N4) nanosheets were used as photoactive material. By using these amplification strategies, the detection limit is as low as 0.18 fM of microRNA, and the photocurrent increases linearly with the concentration of microRNA-162a in the range from 0.5 fM to 1 pM. The method was successfully applied to quantify the expression level of microRNA-162a in total RNA extracted from the leaves of maize seedlings after incubation with the chemical mutagen ethyl methanesulfonate. The results confirmed the applicability of the method to the analysis of practical biological samples. Graphical Abstract Schematic of a photoelectrochemical microRNA assay based on a multiple amplification strategy involving (a) isothermal strand displacement polymerase reaction; (b) terminal deoxynucleotidyl transferase-mediated extension,
Collapse
|