1
|
Xu Q, Chen H, Zhu J, Li X, Yang J, Deng X, Yuan Q. Graphene oxide nanosheets conjugated PEG-Glu-Lys-Glu copolymer drug delivery system improves drug-loading rates and enables reduction-sensitive drug release and drug tracking. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:330-344. [PMID: 38032009 DOI: 10.1080/09205063.2023.2289244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
In this study, the PEG-Glu-Lys-Glu copolymer drug delivery system (GO/PEG-Glu-Lys-Glu) is prepared using glutamate-lysine-glutamate (Glu-Lys-Glu) modified polyethylene glycol (PEG) and connected graphene oxide nanosheets (GO). The multiple carboxyl groups of Glu-Lys-Glu and π-π interactions of GO can increase drug loading rate, and the fluorescence characteristics of GO could monitor the distribution of drug-loading systems in cells and the uptake of cells without the need for external dyes. Paclitaxel (PTX) is loaded via reduction-responsive disulfide bonds as a model medicine to examine the drug delivery potential of GO/PEG-Glu-Lys-Glu. The results showed that the drug loading content of PEG-Glu-Lys-Glu and GO/PEG-Glu-Lys-Glu to PTX is 7.11% and 8.97%, and the loading efficiency is 71.05% and 89.68%, respectively. It's speculated that the π-π interaction between GO and PTX improved the drug-loading capacity and efficiency of GO/PEG-Glu-Lys-Glu. In vitro, in a simulated drug release test, at 48 h, the release of PTX was 85.51% at pH 5.0, 65.12% and 38.32% at pH 6.5 and 7.4, respectively. The cytotoxicity assay results showed that GO/PEG-Glu-Lys-Glu cell inhibition rate to MCF-7 cells was 7.36% at 72 h. The cell inhibition rate of GO/PEG-Glu-Lys-Glu/PTX system at 72 h was 92%, equivalent to free PTX. Therefore, the GO/PEG-Glu-Lys-Glu drug delivery system has the characteristics of good biocompatibility and sustainable release of PTX, which is expected to be applied in the field of tumor therapy.
Collapse
Affiliation(s)
- Qinming Xu
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, P. R. China
| | - Hui Chen
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, P. R. China
| | - Junming Zhu
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, P. R. China
| | - Xing Li
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, P. R. China
| | - Jingang Yang
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, P. R. China
| | - Xiaocui Deng
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, P. R. China
| | - Qingmei Yuan
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming, P. R. China
| |
Collapse
|
2
|
Ju J, Xu D, Mo X, Miao J, Xu L, Ge G, Zhu X, Deng H. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr Polym 2023; 317:121048. [PMID: 37364948 DOI: 10.1016/j.carbpol.2023.121048] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.
Collapse
Affiliation(s)
- Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Sarkar K, Bank S, Chatterjee A, Dutta K, Das A, Chakraborty S, Paul N, Sarkar J, De S, Ghosh S, Acharyya K, Chattopadhyay D, Das M. Hyaluronic acid-graphene oxide quantum dots nanoconjugate as dual purpose drug delivery and therapeutic agent in meta-inflammation. J Nanobiotechnology 2023; 21:246. [PMID: 37528408 PMCID: PMC10394801 DOI: 10.1186/s12951-023-02015-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) predominantly considered a metabolic disease is now being considered an inflammatory disease as well due to the involvement of meta-inflammation. Obesity-induced adipose tissue inflammation (ATI) is one of the earliest phenomena in the case of meta-inflammation, leading to the advent of insulin resistance (IR) and T2DM. The key events of ATI are orchestrated by macrophages, which aggravate the inflammatory state in the tissue upon activation, ultimately leading to systemic chronic low-grade inflammation and Non-Alcoholic Steatohepatitis (NASH) through the involvement of proinflammatory cytokines. The CD44 receptor on macrophages is overexpressed in ATI, NASH, and IR. Therefore, we developed a CD44 targeted Hyaluronic Acid functionalized Graphene Oxide Quantum Dots (GOQD-HA) nanocomposite for tissue-specific delivery of metformin. Metformin-loaded GOQD-HA (GOQD-HA-Met) successfully downregulated the expression of proinflammatory cytokines and restored antioxidant status at lower doses than free metformin in both palmitic acid-induced RAW264.7 cells and diet induced obese mice. Our study revealed that the GOQD-HA nanocarrier enhanced the efficacy of Metformin primarily by acting as a therapeutic agent apart from being a drug delivery platform. The therapeutic properties of GOQD-HA stem from both HA and GOQD having anti-inflammatory and antioxidant properties respectively. This study unravels the function of GOQD-HA as a targeted drug delivery option for metformin in meta-inflammation where the nanocarrier itself acts as a therapeutic agent.
Collapse
Affiliation(s)
- Kunal Sarkar
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Arindam Chatterjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Anwesha Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Santanu Chakraborty
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata, 700129, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, India
| | - Krishnendu Acharyya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
4
|
Asghari S, Mahmoudifard M. The detection of the captured circulating tumor cells on the core-shell nanofibrous membrane using hyaluronic acid-functionalized graphene quantum dots. J Biomed Mater Res B Appl Biomater 2023; 111:1121-1132. [PMID: 36727427 DOI: 10.1002/jbm.b.35219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/26/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023]
Abstract
In recent years, cancerous cases have increased remarkably worldwide, and metastasis is the leading cause of death. Therefore, research on the early detection of cancer and metastasis has expanded to aid successful cancer treatment. Here in this paper, at the first step, an electrospun nanofibrous membrane (NFM) with a core-shell structure was fabricated from PCL and HA to achieve cancer cell capturing (about 75% of cells). On the other hand, hyaluronic acid (HA)-functionalized graphene quantum dots (GQDs) were used to detect captured cancer cells on NFM through the changes in photoluminescence intensity. Therefore, CD44 receptor-HA interaction is the main principle used for both entrapment and detection of cancer cells. Results demonstrated the GQD-HA fluorescent intensity of solution decreased through the increase of the captured cancer cell numbers on NFM, which is related to the more adsorption of GQD nanocomposites to the CD44 receptors. In contrast, this intensity for noncancerous cells was steady with any cell concentrations. This difference shows the system's remarkable selectivity and specificity, which can be crucial in fluorescent imaging for accurate cancer diagnosis.
Collapse
Affiliation(s)
- Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
5
|
Zhang YZ, Zhang B, Chen QQ, Qin L, Hu YQ, Bai CH, Li YL, Qin B. N-doped carbon dots coupled with molecularly imprinted polymers as a fluorescent sensor for ultrasensitive detection of genistein in soya products. Food Chem 2023; 424:136133. [PMID: 37267649 DOI: 10.1016/j.foodchem.2023.136133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 06/04/2023]
Abstract
Rapid detection of genistein in soya products has remained difficult. Current methods necessitate sample handling and use of costly instruments. Here, using a simple one-pot reverse microemulsion method, a sensor based on N-doped carbon dots conjugated molecularly imprinted polymers (N-CDs@MIPs) was synthesized to analyze genistein. N-doped carbon dots were used as fluorescent component, genistein as the template molecule, and molecularly imprinted polymers as the selective sorbent in this fluorescence sensor. The sensor was then examined and optical studies demonstrated that N-CDs@MIPs not only had strong fluorescence emission and outstanding optical stability, but also had good sensitivity (detection limit 35.7 nM) and selectivity to genistein. Furthermore, the N-CDs@MIPs materials were used to analyze genistein in soya products, and the findings (which ranged from 99.77% to 106.11%) show that the N-CDs@MIPs has high potential for quickly detecting the amount of genistein in complicated food samples.
Collapse
Affiliation(s)
- Yu-Zhen Zhang
- School of Pharmacy, Institute of Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Bo Zhang
- School of Pharmacy, Institute of Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Qing-Qing Chen
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Lan Qin
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Ya-Qi Hu
- School of Pharmacy, Institute of Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Chun-Hua Bai
- School of Pharmacy, Institute of Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Yi-Le Li
- School of Pharmacy, Institute of Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Bei Qin
- School of Pharmacy, Institute of Medicine, Xi'an Medical University, Xi'an 710021, PR China.
| |
Collapse
|
6
|
Xiao X, Shen Y, Zhou X, Sun B, Wang Y, Cao J. Innovative nanotechnology-driven fluorescence assays for reporting hydrogen sulfide in food-related matrices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Kadhim MM, Abdullaha SA, Zedan Taban T, Ahmed Hamza T, Mahdi Rheima A, Hachim SK. Application of pure and Ti-decorated AlP nano-sheet in the dacarbazine anti-cancer drug delivery: DFT calculations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Niu B, Li M, Jia J, Ren L, Gang X, Nie B, Fan Y, Lian X, Li W. Preparation and functional study of pH-sensitive amorphous calcium phosphate nanocarriers. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
A pH-response multifunctional nanoplatform based on NaGdF4:Yb,Er,Fe@Ce6@mSiO2-DOX for synergistic photodynamic/chemotherapy of cancer cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Liu S, Zhao Y, Shen M, Hao Y, Wu X, Yao Y, Li Y, Yang Q. Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis. J Mater Chem B 2022; 10:562-570. [PMID: 34982089 DOI: 10.1039/d1tb02000e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a global disease with an extremely high morbidity and fatality rate, so it is necessary to develop effective treatments to reduce its impact. In this work, we successfully prepared a multifunctional drug-loaded nano-delivery system with pH-responsive, CD44-targeted, and chemical-photothermal synergistic treatment. Dendritic mesoporous silica nanoparticles capped with copper sulfide (CuS) were synthesized via an oil-water biphase stratification reaction system; these served as the carrier material and encapsulated the anticoagulant drug heparin (Hep). The pH-sensitive Schiff base bond was used as a gatekeeper and targeting agent to modify hyaluronic acid (HA) on the surface of the nanocarrier. HA coating endowed the nanocomposite with the ability to respond to pH and target CD44-positive inflammatory macrophages. Based on this multifunctional nanocomposite, we achieved precise drug delivery, controlled drug release, and chemical-photothermal synergistic treatment of atherosclerosis. The in vitro drug release results showed that the nanocarriers exhibited excellent drug-controlled release properties, and could release drugs in the weakly acidic microenvironment of atherosclerotic inflammation. Cytotoxicity and cell uptake experiments indicated that nanocarriers had low cytotoxicity against RAW 264.7 cells. Modification of HA to nanocarriers can be effectively internalized by RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Combining CuS photothermal treatment with anti-atherosclerosis chemotherapy showed better effects than single treatment in vitro and in vivo. In summary, our research proved that H-CuS@DMSN-NC-HA has broad application prospects in anti-atherosclerosis.
Collapse
Affiliation(s)
- Shun Liu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Yun Zhao
- China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| | - Meili Shen
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Yujiao Hao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaodong Wu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Yixuan Yao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yapeng Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Qingbiao Yang
- College of Chemistry, Jilin University, Changchun 130012, China.,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| |
Collapse
|
12
|
Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021; 193:457-473. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been well-researched in the design and fabrication of advanced drug delivery systems (DDSs) due to their advantages such as good biocompatibility, large specific surface area and pore volume for drug loading, easily surface modification, adjusted size and good thermal/chemical stability. For MSN-based DDSs, gate materials are also necessary. And natural polysaccharides, one kind of the most abundant natural resource, have been widely applied as the "gatekeepers" in MSN-based DDSs. Polysaccharides are cheap and rich in sources with good biocompatibility, and some of them have important biological functions. In this review article, polysaccharides including chitosan, hyaluronic acid, sodium alginate and dextran, et al. are briefly introduced. And the preparation processes and properties such as controlled drug release, cancer targeting and disease diagnosis of functional polysaccharide/MSN-based DDSs are discussed.
Collapse
Affiliation(s)
- Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junjun Zhai
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qinjian Xiao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Si Zhao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
13
|
A dual-responsive drug delivery system based on mesoporous silica nanoparticles covered with zipper-type peptide for intracellular transport/release. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
15
|
The Development of Graphene/Silica Hybrid Composites: A Review for Their Applications and Challenges. CRYSTALS 2021. [DOI: 10.3390/cryst11111337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Graphene and silica are two materials that have wide uses and applications because of their unique properties. Graphene/silica hybrid composite, which is a combination of the two, has the good properties of a combination of graphene and silica while reducing the detrimental properties of both, so that it has promising future prospects in various fields. It is very important to design a synthesis method for graphene/silica composite hybrid materials to adapt to its practical application. In this review, the synthesis strategies of graphene, silica, and hybrid graphene/silica composites such as hydrothermal, sol-gel, hydrolysis, and encapsulation methods along with their results are studied. The application of this composite is also discussed, which includes applications such as adsorbents, energy storage, biomedical fields, and catalysts. Furthermore, future research challenges and futures need to be developed so that hybrid graphene/silica composites can be obtained with promising new application prospects.
Collapse
|
16
|
Abstract
Despite cancer nanomedicine celebrates already thirty years since its introduction, together with the achievements and progress in cancer treatment area, it still undergoes serious disadvantages that must be addressed. Since the first observation that macromolecules tend to accumulate in tumor tissue due to fenestrated endothelial of vasculature, considered as the “royal gate” in drug delivery field, more than dozens of nanoformulations have been approved and introduced into the practice for cancer treatment. Lipid, polymeric, and hybrid nanocarriers are biocompatible nano-drug delivery systems (NDDs) having suitable physicochemical properties and modulate payload release in response to specific chemical or physical stimuli. Biopharmaceutical properties of NDDs and their efficacy in animal models and humans can significantly affect their impact and perspective in nanomedicine. One of the future directions could be focusing on personalized cancer treatment, considering the heterogeneity and complexity of each patient tumor tissue and the designing of multifunctional targeted NDDs combining synthetic nanomaterials and biological components, like cellular membranes, circulating proteins, RNAi/DNAi, which enforce the efficacy of NDDs and boost their therapeutic effect.
Collapse
|
17
|
Liao X, Wang X, Zhang M, Mei L, Chen S, Qi Y, Hong C. An immunosensor based on an electrochemical-chemical-chemical advanced redox cycle amplification strategy for the ultrasensitive determination of CEA. Anal Chim Acta 2021; 1170:338647. [DOI: 10.1016/j.aca.2021.338647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
|
18
|
Sha X, Dai Y, Song X, Liu S, Zhang S, Li J. The Opportunities and Challenges of Silica Nanomaterial for Atherosclerosis. Int J Nanomedicine 2021; 16:701-714. [PMID: 33536755 PMCID: PMC7850448 DOI: 10.2147/ijn.s290537] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis (AS) as the leading cause of cardiovascular and cerebrovascular events has been paid much attention all the time. With the continuous development of modern medical drug treatment, surgical treatment, interventional treatment and other methods, the mortality rate of AS has shown a downward trend, while the morbidity rate is still increasing. Oral lipid-lowering or anti-inflammatory drugs are generally used for early AS, but the relatively low accumulation efficiency in lesions and the unavoidable side effects required researchers to develop more effective drug delivery approaches for the therapy of AS. Mesoporous silica nanoparticles as nanocarrier for drug delivery have received extensive attentions due to their flexible size, high specific surface area, controlled pore volume, high drug loading capacity and excellent biocompatibility. Series of good reviews about the mesoporous silica nanoparticles loaded drugs for cancer therapy have been well documented. However, their roles as nanocarrier for drug delivery to treat AS have few reports. In this review, the applications and challenges of mesoporous silica nanomaterials in the field of the diagnosis and therapy of AS have been summarized. The classification, synthesis, formation mechanism, surface modification and functionalization of mesoporous silica nanomaterials which were closely related to the theranostic effect of AS have also been included. Last but not the least, the future prospects’ suggestions of mesoporous silica nanomaterial-based drug delivery system for AS are also provided.
Collapse
Affiliation(s)
- Xuan Sha
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yue Dai
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xiaoxi Song
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Siwen Liu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Shuai Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Jingjing Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Conventional Nanosized Drug Delivery Systems for Cancer Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:3-27. [PMID: 33543453 DOI: 10.1007/978-3-030-58174-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs. Composition of DDSs and their surface properties increase the specific targeting of therapeutics versus cancer cells, without affecting healthy tissues, and thus limiting their toxicity versus unspecific tissues. Herein, an extensive revision of literature on NCs used as DDSs for cancer applications has been performed using the available bibliographic databases.
Collapse
|
20
|
Iannazzo D, Celesti C, Espro C. Recent Advances on Graphene Quantum Dots as Multifunctional Nanoplatforms for Cancer Treatment. Biotechnol J 2020; 16:e1900422. [PMID: 32618417 DOI: 10.1002/biot.201900422] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/11/2020] [Indexed: 12/24/2022]
Abstract
Graphene quantum dots (GQDs), the latest member of the graphene family, have attracted enormous interest in the last few years, due to their exceptional physical, chemical, electrical, optical, and biological properties. Their strong size-dependent photoluminescence and the presence of many reactive groups on the graphene surface allow their multimodal conjugation with therapeutic agents, targeting ligands, polymers, light responsive agents, fluorescent dyes, and functional nanoparticles, making them valuable agents for cancer diagnosis and treatment. In this review, the very recent advances covering the last 3 years on the applications of GQDs as drug delivery systems and theranostic tools for anticancer therapy are discussed, highlighting the relevant factors which regulate their biocompatibility. Among these factors, the size, kind, and degree of surface functionalization have shown to greatly affect their use in biological systems. Toxicity issues, which still represent an open challenge for the clinical development of GQDs based therapeutic agents, are also discussed at cellular and animal levels.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, Messina, 98166, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, Messina, 98166, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Contrada Di Dio, Messina, 98166, Italy
| |
Collapse
|
21
|
Gholami M, Salmasi MA, Sohouli E, Torabi B, Sohrabi MR, Rahimi-Nasrabadi M. A new nano biosensor for maitotoxin with high sensitivity and selectivity based fluorescence resonance energy transfer between carbon quantum dots and gold nanoparticles. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Xiaoli F, Qiyue C, Weihong G, Yaqing Z, Chen H, Junrong W, Longquan S. Toxicology data of graphene-family nanomaterials: an update. Arch Toxicol 2020; 94:1915-1939. [DOI: 10.1007/s00204-020-02717-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
|
23
|
Zhu G, Huang D, Liu L, Yi Y, Wu Y, Huang Y. One-Step Green Preparation of N-Doped Silicon Quantum Dots for the on-off Fluorescent Determination of Hydrogen Peroxide. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1720222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gangbing Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Dongyan Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Lirong Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Yuntao Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongqiang Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Feng S, Li H, Pan J, Li C, Zheng Y. Preparation and cell imaging of nitrogen-doped graphene quantum dot conjugated indomethacin. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/358/3/032006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Monroe JD, Belekov E, Er AO, Smith ME. Anticancer Photodynamic Therapy Properties of Sulfur-Doped Graphene Quantum Dot and Methylene Blue Preparations in MCF-7 Breast Cancer Cell Culture. Photochem Photobiol 2019; 95:1473-1481. [PMID: 31230353 DOI: 10.1111/php.13136] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) is a field with many applications including chemotherapy. Graphene quantum dots (GQDs) exhibit a variety of unique properties and can be used in PDT to generate singlet oxygen that destroys pathogenic bacteria and cancer cells. The PDT agent, methylene blue (MB), like GQDs, has been successfully exploited to destroy bacteria and cancer cells by increasing reactive oxygen species generation. Recently, combinations of GQDs and MB have been shown to destroy pathogenic bacteria via increased singlet oxygen generation. Here, we performed a spectrophotometric assay to detect and measure the uptake of GQDs, MB and several GQD-MB combinations in MCF-7 breast cancer cells. Then, we used a cell counting method to evaluate the cytotoxicity of GQDs, MB and a 1:1 GQD:MB preparation. Singlet oxygen generation in cells was then detected and measured using singlet oxygen sensor green. The dye, H2 DCFDA, was used to measure reactive oxygen species production. We found that GQD and MB uptake into MCF-7 cells occurred, but that MB, followed by 1:1 GQD:MB, caused superior cytotoxicity and singlet oxygen and reactive oxygen species generation. Our results suggest that methylene blue's effect against MCF-7 cells is not potentiated by GQDs, either in light or dark conditions.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Biology, Western Kentucky University, Bowling Green, KY
| | - Ermek Belekov
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY
| | - Ali Oguz Er
- Department of Physics & Astronomy, Western Kentucky University, Bowling Green, KY
| | - Michael E Smith
- Department of Biology, Western Kentucky University, Bowling Green, KY
| |
Collapse
|
26
|
Huang Q, Liu Y, Zheng L, Wu L, Zhou Z, Chen J, Chen W, Zhao H. Biocompatible iron(II)-doped carbon dots as T 1-weighted magnetic resonance contrast agents and fluorescence imaging probes. Mikrochim Acta 2019; 186:492. [PMID: 31267240 DOI: 10.1007/s00604-019-3593-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/06/2019] [Indexed: 01/10/2023]
Abstract
The one-pot synthesis of iron-doped carbon quantum dots (Fe-CQDs) for use as both magnetic resonance (MR) and fluorescent (dual-mode) imaging nanoprobes is described. Comprehensive characterizations of the material confirmed the successful doping of the CQDs with Fe(II) ions. The imaging probe has a longitudinal relaxivity of 3.92 mM-1∙s-1 and a low r2/r1 ratio of 1.27, both of which are critical for T1-weighted contrast agents. The maximum emission of Fe-CQDs locates at 450 nm under 375 nm excitation, which also can be applied to fluorescence imaging. Biotoxicity assessment showed good biocompatibility of the Fe-CQDs. The in-vitro experiments with A549 cells indicated that the Fe-CQDs are viable candidates as dual-mode (MR/fluorescence) imaging nanoprobes. For in-vivo experiments, they exhibit high contrast efficiency, thereby improving the positive contrast in T1-weighted MR images. In-vivo time-dependent MRI of major organs showed that the Fe-CQDs undergo fast glomerular filtration and can evade immuno-absorption due to their ultra-small size and excellent biocompatibility. Graphical abstract Schematic presentation of the synthesis of Fe-CQDs and applications to magnetic resonance and fluorescent dual-mode imaging.
Collapse
Affiliation(s)
- Qing Huang
- Department of Chemistry, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yue Liu
- Department of Chemistry, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Linling Zheng
- Department of Chemistry, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liping Wu
- Department of Chemistry, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhengyu Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiafei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Huawen Zhao
- Department of Chemistry, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
27
|
Yao J, Wang H, Chen M, Yang M. Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine. Mikrochim Acta 2019; 186:395. [PMID: 31154528 DOI: 10.1007/s00604-019-3458-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Abstract
This review (with 239 refs.) summarizes the progress that has been made in applications of graphene-based nanomaterials (such as plain graphene, graphene oxides, doped graphene oxides, graphene quantums dots) in biosensing, imaging, drug delivery and diagnosis. Following an introduction into the field, a first large section covers the toxicity of graphene and its derivatives (with subsections on bacterial toxicity and tissue toxicity). The use of graphene-based nanomaterials in sensors is reviewed next, with subsections on electrochemical, FET-based, fluorescent, chemiluminescent and colorimetric sensors and probes. The large field of imaging is treated next, with subchapters on optical, PET-based, and magnetic resonance based methods. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical Abstract Schematic presentation of the potential applications of graphene-based materials in life science and biomedicine, emphatically reflected in some vital areas such as DNA analysis, biological monitoring, drug delivery, in vitro labelling, in vivo imaging, tumor target, etc.
Collapse
Affiliation(s)
- Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China. .,State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| | - Heng Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Min Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Mei Yang
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, People's Republic of China.
| |
Collapse
|
28
|
Li J, Tang Y, Li Z, Ding X, Yu B, Lin L. Largely Enhancing Luminous Efficacy, Color-Conversion Efficiency, and Stability for Quantum-Dot White LEDs Using the Two-Dimensional Hexagonal Pore Structure of SBA-15 Mesoporous Particles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18808-18816. [PMID: 30997997 DOI: 10.1021/acsami.8b22298] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quantum-dot (QD) white light-emitting diodes (LEDs) are promising for illumination and display applications due to their excellent color quality. Although they have a high quantum yield close to unity, the reabsorption of QD light leads to high conversion loss, significantly reducing the luminous efficacy and stability of QD white LEDs. In this report, SBA-15 mesoporous particles (MPs) with two-dimensional hexagonal pore structures (2D-HPS) are utilized to largely enhance the luminous efficacy and color-conversion efficiency of QD white LEDs in excess of 50%. The reduction in conversion loss also helps QD white LEDs to achieve a lifetime 1.9 times longer than that of LEDs using QD-only composites at harsh aging conditions. Simulation and testing results suggest that the waveguide effect of 2D-HPS helps in reducing the reabsorption loss by constraining the QD light inside the wall of 2D-HPS, decreasing the probability of being captured by QDs inside the hole of 2D-HPS. As such, materials and mechanisms like SBA-15 MPs with 2D-HPS could provide a new path to improve the photon management of QD light, comprehensively enhancing the performances of QD white LEDs.
Collapse
Affiliation(s)
- Jiasheng Li
- Engineering Research Center of Green Manufacturing for Energy-Saving and New-Energy Technology , South China University of Technology , Guangdong 510640 , China
- Foshan Nationstar Optoelectronics Company Ltd. , Foshan 528000 , China
| | - Yong Tang
- Engineering Research Center of Green Manufacturing for Energy-Saving and New-Energy Technology , South China University of Technology , Guangdong 510640 , China
| | - Zongtao Li
- Engineering Research Center of Green Manufacturing for Energy-Saving and New-Energy Technology , South China University of Technology , Guangdong 510640 , China
- Foshan Nationstar Optoelectronics Company Ltd. , Foshan 528000 , China
| | - Xinrui Ding
- Engineering Research Center of Green Manufacturing for Energy-Saving and New-Energy Technology , South China University of Technology , Guangdong 510640 , China
| | - Binhai Yu
- Engineering Research Center of Green Manufacturing for Energy-Saving and New-Energy Technology , South China University of Technology , Guangdong 510640 , China
| | - Liwei Lin
- Department of Mechanical Engineering , University of California , Berkeley , California 94720-5800 , United States
| |
Collapse
|
29
|
Saberi Z, Rezaei B, Ensafi AA. Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide. Mikrochim Acta 2019; 186:273. [PMID: 30963279 DOI: 10.1007/s00604-019-3378-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
A fluorometric aptamer-based method is described for sensitive detection of the pesticide acetamiprid. Cationic carbon dots (cCDs) with blue fluorescence were synthesized from cetrimonium bromide (CTAB) by a hydrothermal method. In the presence of the acetamiprid aptamers with a negative charge, the aptamers bind to the surface of the cCDs due to electrostatic attraction. As a result, the fluorescence of the cCDs is quenched partially (the best measurement was done at excitation/emission wavelengths of 360/445 nm). If acetamiprid is added to the above system, the aptamer binds to acetamiprid as a target with strong and specific affinity. Therefore, fluorescence increases proportionally to the acetamiprid concentrations. The aptasensor has a detection limit of 0.3 nM with a dynamic range from 1.6 to 120 nM which reveals that the method is sensitive in comparison to the other techniques. The selectivity of the method towards various pesticides was also studied and found to be adequate. The sensor was applied for the determination of acetamiprid in (spiked) wastewater, tap water, and tomatoes to underpin its practicability. Graphical abstract Cationic CDs (cCDs) were synthesized from cetrimonium bromide by a hydrothermal method. The addition of the negatively charged acetamiprid aptamer to a solution containing cCDs, the cCDs will be coated by the aptamer. This causes the blue fluorescence of the cCDs partially is quenched. If acetamiprid (ACP) is then added, the aptamer will bind to acetamiprid with strong and specific affinity. Hence, fluorescence will be gradually restored.
Collapse
Affiliation(s)
- Zeinab Saberi
- Department of Chemistry, Isfahan University of Technology, Isfahan, I.R., 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, I.R., 84156-83111, Iran.
| | - Ali Ashghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, I.R., 84156-83111, Iran
| |
Collapse
|
30
|
Pirsaheb M, Mohammadi S, Salimi A, Payandeh M. Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Mikrochim Acta 2019; 186:231. [DOI: 10.1007/s00604-019-3338-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/23/2019] [Indexed: 01/15/2023]
|
31
|
Gu H, Tang H, Xiong P, Zhou Z. Biomarkers-based Biosensing and Bioimaging with Graphene for Cancer Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E130. [PMID: 30669634 PMCID: PMC6358776 DOI: 10.3390/nano9010130] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/20/2023]
Abstract
At the onset of cancer, specific biomarkers get elevated or modified in body fluids or tissues. Early diagnosis of these biomarkers can greatly improve the survival rate or facilitate effective treatment with different modalities. Potential nanomaterial-based biosensing and bioimaging are the main techniques in nanodiagnostics because of their ultra-high selectivity and sensitivity. Emerging graphene, including two dimensional (2D) graphene films, three dimensional (3D) graphene architectures and graphene hybrids (GHs) nanostructures, are attracting increasing interests in the field of biosensing and bioimaging. Due to their remarkable optical, electronic, and thermal properties; chemical and mechanical stability; large surface area; and good biocompatibility, graphene-based nanomaterials are applicable alternatives as versatile platforms to detect biomarkers at the early stage of cancer. Moreover, currently, extensive applications of graphene-based biosensing and bioimaging has resulted in promising prospects in cancer diagnosis. We also hope this review will provide critical insights to inspire more exciting researches to address the current remaining problems in this field.
Collapse
Affiliation(s)
- Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Huiling Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Ping Xiong
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| |
Collapse
|
32
|
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019; 9:8778-8881. [PMID: 35517682 PMCID: PMC9062009 DOI: 10.1039/c8ra09577a] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Eric Singh
- Department of Computer Science
- Stanford University
- Stanford
- USA
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Meyya Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Moffett Field
- Mountain View
- USA
| | | |
Collapse
|
33
|
Liu M, Xu Y, Huang C, Jia T, Zhang X, Yang DP, Jia N. Hyaluronic acid-grafted three-dimensional MWCNT array as biosensing interface for chronocoulometric detection and fluorometric imaging of CD44-overexpressing cancer cells. Mikrochim Acta 2018; 185:338. [DOI: 10.1007/s00604-018-2861-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
|