1
|
Zhang B, Tong Y, He J, Sun B, Zhang F, Tian M. Boronate-modified polyethyleneimine dendrimer as a solid-phase extraction adsorbent for the analysis of luteolin via HPLC. RSC Adv 2021; 11:39821-39828. [PMID: 35494127 PMCID: PMC9044553 DOI: 10.1039/d1ra07564k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Luteolin (LTL) is a flavonoid containing a cis-diol, which has significant anti-inflammatory, anti-allergic, anti-diabetic, anti-cancer and neuroprotective activities. In this work, a silver modified boric acid affinity polyvinyl imine (PEI) dendritic adsorbent (PPEI-Ag@CPBA) was prepared on polystyrene (PS) for the rapid recognition and selective separation of LTL. A thin layer of polydopamine (PDA) was formed on the surface of the substrate by self-polymerization, and a PDA-coated PS material (PS@PDA) was obtained. PEI with sufficient active amino groups was grafted onto PS@PDA to obtain a PEI-modified material (PS@PDA@PEI), then AgNO3 was reduced with NaBH4, and PS@PDA@PEI was embedded on Ag. Finally, PPEI-Ag@CPBA was obtained through the condensation reaction of PEI with 4-carboxyphenyl boric acid (CPBA). The adsorption conditions were optimized, the optimal pH and the optimum amount of adsorbent were determined, and the maximum adsorption capacity was found to be 2.49 mg g-1. This method has been successfully applied to the selective identification of LTL in peanut shell samples, and provides a practical platform for the detection of LTL in complex substrates.
Collapse
Affiliation(s)
- Baoyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Jianghua He
- Ruyuan Hec Pharm Co., Ltd. Shaoguan 512700 Guangdong Province P. R. China
| | - Baodong Sun
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin 150025 China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 P. R. China
| |
Collapse
|
2
|
Recent progress on hollow porous molecular imprinted polymers as sorbents of environmental samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Bhogal S, Kaur K, Mohiuddin I, Kumar S, Lee J, Brown RJC, Kim KH, Malik AK. Hollow porous molecularly imprinted polymers as emerging adsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117775. [PMID: 34329047 DOI: 10.1016/j.envpol.2021.117775] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
Hollow porous molecularly imprinted polymers (HPMIPs) are identified as promising adsorbents with many advantageous properties (e.g., large number of imprinted cavities, highly accessible binding sites, controllable pore structure, and fast mass transfer). Because of such properties, HPMIPs can exhibit improved binding capacity and kinetics to make analyte molecules readily interact with a greater number of recognition sites on the imprinted shell. This review highlights the synthesis and utility of HPMIPs as adsorbents to cover diverse targets of interest (e.g., endocrine disrupting chemicals, pharmaceuticals, pesticides, and heavy metal ions). The overall potential of HPMIPs is thus discussed in the context of analytical chemistry with particular focus on the efficient extraction of trace-level targets from complex matrices.
Collapse
Affiliation(s)
- Shikha Bhogal
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Kuldeep Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, 140406, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Sandeep Kumar
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
4
|
Molecularly imprinted polymers for arbutin and rutin by modified precipitation polymerization and their application for selective extraction of rutin in nutritional supplements. J Pharm Biomed Anal 2021; 205:114294. [PMID: 34375783 DOI: 10.1016/j.jpba.2021.114294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
Molecularly imprinted polymers (MIPs) for glycosides, arbutin (ARB) and rutin (RUT), were prepared using methacrylamide (MAM) and 4-vinylpyridine (4-VPY) as functional monomers and divinylbenzene as a crosslinker by modified precipitation polymerization. The template molecule, ARB or RUT, was first dissolved in methanol, followed by precipitation polymerization using a mixture of acetonitrile and toluene as a porogenic solvent. The molar ratios of the template molecule, MAM and 4-VPY were optimized to achieve a high molecular recognition ability for ARB and RUT. The retention and molecular recognition properties of these MIPs were evaluated in HILIC or normal-phase mode. With an increase in the acetonitrile content in the mobile phase, the retention factor of ARB or RUT was increased. Furthermore, the MIPs for ARB and RUT showed the highest imprinting factors of 3.65 and 66.5 for the template molecules, respectively. Hydrogen bonding interactions such as N⋯H-O, C=O⋯H-O and NH⋯O-H between 4-VPY or MAM and hydroxy groups of d-glucose or d-rutinose could function in the recognition of a glycone. Furthermore, hydrogen bonding interactions between functional monomers and the hydroxy group(s) of hydroquinone or quercetin could function in the recognition of an aglycone. These results suggest that the MIPs could recognize both a glycone and aglycone via hydrogen bonding interactions. Furthermore, MIPs for RUT were successfully applied to extract RUT in nutritional supplements.
Collapse
|
5
|
Separation and enrichment of sibiskoside from Sibiraea angustat with magnetic surface dummy template molecularly imprinted polymers. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122767. [PMID: 34224966 DOI: 10.1016/j.jchromb.2021.122767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/16/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
In this work, a novel strategy was developed for separation and enrichment of sibiskoside by dummy molecular imprinting technology and magnetic separation technology. The structural analogue geniposide was selected as the dummy template, using 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, and acetonitrile as the porogen. The molecularly imprinted layer was formed on the surface of the magnetic carrier to prepare dummy template molecularly imprinted polymers (DMIPs) with a core-shell structure. The DMIPs were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and Vibration sample magnetometer (VSM). The results of adsorption kinetics experiments and isothermal adsorption experiments showed that DMIPs can reach adsorption equilibrium in a short period of time and the maximum adsorption capacity can reach 14.67 mg/g. The imprinting factor was 2.08. Compared with the andrographolide, polydatin, arbutin, caffeic acid, neohesperidin dihydrochalcone and quercetin, DMIPs have good adsorption capacity for the sibiskoside. And the reusability was better. After the adsorption of DMIPs, the purity of sibiskoside in the crude extracts from Sibiraea angustata increased to 78%. It provided a basis for the further development and utilization of Sibiraea angustata as well as the separation and enrichment of monoterpenes.
Collapse
|
6
|
Li H, He H, Liu Z. Recent progress and application of boronate affinity materials in bioanalysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
HOU XY, TONG YK, ZHU FG, XIA QF, TIAN MM. Graphene Oxide-based Magnetic Boronate-affinity Adsorbent for Extraction of Horseradish Peroxidase. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60067-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Tong Y, Guo B, Zhang B, Hou X, Geng F, Tian M. Efficient synthesis of hollow solid phase extraction adsorbent using L-lysine modified polydopamine as coating shell for the selective recognition of bilirubin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Pan T, Lin Y, Wu Q, Huang K, He J. Preparation of boronate-functionalized surface molecularly imprinted polymer microspheres with polydopamine coating for specific recognition and separation of glycoside template. J Sep Sci 2020; 44:2465-2473. [PMID: 32367689 DOI: 10.1002/jssc.202000125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 11/10/2022]
Abstract
A facile strategy based on the boronate affinity and polydopamine coating was proposed for the preparation of surface molecularly imprinted polymer microspheres using naringin as the glycoside template. The poly(methacrylic acid-co-methyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres were firstly synthesized as inner cores by suspension polymerization method, and then functionalized with 3-aminophenylboronic acid. The imprinted shell layer was obtained by self-polymerization of dopamine on the surface of boronic acid-functionalized polymer microspheres after reversible immobilization of naringin. The resultant surface molecularly imprinted microspheres showed good imprinting efficiency and recognition specificity toward the template molecule in aqueous environment. The isothermal and kinetic adsorption behaviors of the polymers were investigated. The results showed that the covalent surface imprinted microspheres possessed homogeneous recognition sites, strong adsorption affinity, and rapid rebinding kinetics. In addition, the surface imprinted microspheres were utilized as the sorbents of solid phase extraction to successfully separate and enrich naringin from Citri Grandis extract, and the recovery of naringin in eluting solution reached 84.4%.
Collapse
Affiliation(s)
- Ting Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yali Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Quanzhou Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Kaiwen Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jianfeng He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
11
|
Hou X, Guo B, Tong Y, Tian M. Using self-polymerization synthesis of boronate-affinity hollow stannic oxide based fragment template molecularly imprinted polymers for the selective recognition of polyphenols. J Chromatogr A 2020; 1612:460631. [DOI: 10.1016/j.chroma.2019.460631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
|
12
|
Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC. Mikrochim Acta 2019; 186:686. [DOI: 10.1007/s00604-019-3801-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/07/2019] [Indexed: 12/26/2022]
|
13
|
Boronate affinity magnetic nanoparticles with hyperbranched polymer brushes for the adsorption of cis-diol biomolecules. Mikrochim Acta 2019; 186:683. [DOI: 10.1007/s00604-019-3785-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023]
|
14
|
Preparation of a hydrophilic interaction liquid chromatography material by sequential electrostatic deposition of layers of polyethyleneimine and hyaluronic acid for enrichment of glycopeptides. Mikrochim Acta 2019; 186:600. [DOI: 10.1007/s00604-019-3712-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
|
15
|
Huang Y, Pan J, Liu Y, Wang M, Deng S, Xia Z. A SPE Method with Two MIPs in Two Steps for Improving the Selectivity of MIPs. Anal Chem 2019; 91:8436-8442. [DOI: 10.1021/acs.analchem.9b01453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yike Huang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Jingmiao Pan
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Yi Liu
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Min Wang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Suya Deng
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| | - Zhining Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
16
|
Huang W, Hou X, Tong Y, Tian M. Determination of sialic acid in serum samples by dispersive solid-phase extraction based on boronate-affinity magnetic hollow molecularly imprinted polymer sorbent. RSC Adv 2019; 9:5394-5401. [PMID: 35515918 PMCID: PMC9060700 DOI: 10.1039/c9ra00511k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 11/21/2022] Open
Abstract
Boronate-affinity magnetic hollow molecularly imprinted polymers (B-MhMIPs) were prepared with sialic acid (SA) as the template, 3-aminophenylboronic acid (APBA) as the functional monomer and glycidilmethacrylate (GMA) as the co-monomer to chemisorb Fe3O4 nanoparticles. Furthermore, the hollow structure made the nanoparticles have more binding sites at both internal and external surfaces, which can facilitate the removal of template molecules from polymers and enhance the adsorption abilities towards SA. After optimizing, the adsorption pH was controlled at 4.0, and this was different from most cis-diol-containing compounds. Under the optimal conditions, the limit of detection for SA was 0.025 μg mL-1 (n = 3). This method was applied to analyze serum samples with different spiked levels, and the recoveries of the SA were in the range of 70.9-106.2%. These results confirmed the superiority of the B-MhMIPs for selective and efficient enrichment of trace SA from complex matrices.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 China
| | - Xingyu Hou
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 China
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 China
| |
Collapse
|