1
|
Yang L, Huangfu C, Wang Y, Qin Y, Qin A, Feng L. Visual detection of aldehyde gases using a silver-loaded paper-based colorimetric sensor array. Talanta 2024; 280:126716. [PMID: 39173250 DOI: 10.1016/j.talanta.2024.126716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The small molecule aldehydes are volatile organic compounds (VOCs), possessing cytotoxicity and carcinogenicity. Long-term exposure can pose a serious threat to human health. Based on an in-situ reduction colorimetric method to generate silver nanoparticles and induce colorimetric response, we proposed a silver-loaded paper-based colorimetric sensor array for visually detecting and differentiating five relatively common trace small molecule aldehyde gases. The silver ions are immobilized onto a porous filter paper and stabilized by complexing agents of branched polyethyleneimine, ethylenediamine, and 1,6-diaminohexane, respectively. The as-fabricated sensor array expresses remarkable stability and capacity to resist humidity. The qualitative analysis reveals that the sensor array has excellent selectivity for aldehyde gases and displays remarkable anti-interference ability. The quantitative analysis indicates that the sensor array exhibits superior sensitivity for five aldehyde gases, with limits of detection (LODs) of 9.0 ppb for formaldehyde (FA), 3.1 ppm for acetaldehyde (AA), 3.5 ppm for propionaldehyde (PA), 23.8 ppb for glutaric dialdehyde (GD), and 71.5 ppb for hydroxy formaldehyde (HF), respectively. Importantly, these LODs are all comfortably below their respective permissible exposure limits. A unique colorimetric response fingerprint is observed for each analyte. Standard chemometric methods illustrate that the sensor array has excellent clustering capability for these aldehyde gases. Additionally, the sensor array's response is irreversible and possesses outstanding performance for cumulative monitoring. This colorimetric sensor array based on silver ions reduced to silver nanoparticles offers a novel detection method for the continuous, ultrasensitive, and visual detection of trace airborne pollutants.
Collapse
Affiliation(s)
- Lihua Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541000, PR China
| | - Changxin Huangfu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yu Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yingxi Qin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541000, PR China
| | - Aimiao Qin
- School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541000, PR China.
| | - Liang Feng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
2
|
Recent Developments in Surface-Enhanced Raman Spectroscopy and Its Application in Food Analysis: Alcoholic Beverages as an Example. Foods 2022; 11:foods11142165. [PMID: 35885407 PMCID: PMC9316878 DOI: 10.3390/foods11142165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an emerging technology that combines Raman spectroscopy and nanotechnology with great potential. This technology can accurately characterize molecular adsorption behavior and molecular structure. Moreover, it can provide rapid and sensitive detection of molecules and trace substances. In practical application, SERS has the advantages of portability, no need for sample pretreatment, rapid analysis, high sensitivity, and ‘fingerprint’ recognition. Thus, it has great potential in food safety detection. Alcoholic beverages have a long history of production in the world. Currently, a variety of popular products have been developed. With the continuous development of the alcoholic beverage industry, simple, on-site, and sensitive detection methods are necessary. In this paper, the basic principle, development history, and research progress of SERS are summarized. In view of the chemical composition, the beneficial and toxic components of alcoholic beverages and the practical application of SERS in alcoholic beverage analysis are reviewed. The feasibility and future development of SERS are also summarized and prospected. This review provides data and reference for the future development of SERS technology and its application in food analysis.
Collapse
|
3
|
Zheng JJ, Liu WC, Lu FN, Tang Y, Yuan ZQ. Recent Progress in Fluorescent Formaldehyde Detection Using Small Molecule Probes. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00220-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Ge K, Wu Q, Li Y, Gu Y. High and stable surface-enhanced Raman spectroscopy activity of h-BN nanosheet/Au 1Ag 3 nanoalloy hybrid membrane for melamine determination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120952. [PMID: 35123190 DOI: 10.1016/j.saa.2022.120952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In this work, a hexagonal boron nitride (h-BN)/AuAg nanoalloy hybrids (NAHs) was synthesized to fabricate h-BN/Au1Ag3 membrane as a solid surface-enhanced Raman spectroscopy (SERS) substrate for sensitive SERS detection of melamine. The AuAg nanoalloys were in situ grown on h-BN by chemical reduction method, and the Au/Ag molar ratio was tuned to achieve optimal SERS performance. After the SERS performance of h-BN/AuAg NAHs with different Au/Ag ratios was analyzed, h-BN/Au1Ag3 NAHs were chosen for SERS analysis. The h-BN/Au1Ag3 membrane can be obtained through simple filtration of h-BN/Au1Ag3 NAHs on chromatographic paper. As expected, the solid SERS substrates of h-BN/Au1Ag3 membrane were uniform and demonstrated good selectivity, repeatability and reproducibility for SERS detection of melamine. The results demonstrate that h-BN/Au1Ag3 membrane exhibited high SERS activity for 4-mercaptobenzoic acid (4-MBA) with limit of detection (LOD) at 1.0 ng L-1, and its analytical enhancement factor (AEF) reached 3.6 × 108. The possible enhancement mechanism, including electromagnetic mechanisms (EM) and chemical mechanisms (CM) were illustrated by finite-difference time-domain (FDTD) and density functional theory (DFT) simulations in detail, respectively. The concentration of melamine in the 0.05-5.0 mg L-1 range showed good linear relationship (R2 = 0.9940) with SERS intensity with LOD of 0.01 mg L-1. Finally, the recoveries of melamine in liquid milk samples are 87.7-105.7% with relative standard deviations (RSDs) in range of 0.6-2.6%, providing precise safety evaluation of melamine in milk samples.
Collapse
Affiliation(s)
- Kun Ge
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiyue Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yonghui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
5
|
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022; 27:508. [PMID: 35056823 PMCID: PMC8779822 DOI: 10.3390/molecules27020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Xia Z, Li D, Deng W. Identification and Detection of Volatile Aldehydes as Lung Cancer Biomarkers by Vapor Generation Combined with Paper-Based Thin-Film Microextraction. Anal Chem 2021; 93:4924-4931. [DOI: 10.1021/acs.analchem.0c05348] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhaoping Xia
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| |
Collapse
|
7
|
In situ homogeneous formation of Au@AgNPs for the rapid determination of formaldehyde residues by surface-enhanced Raman spectroscopy coupled with microhydrodistillation. Mikrochim Acta 2020; 187:353. [DOI: 10.1007/s00604-020-04332-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
|
8
|
Yang W, Zhang G, Ni J, Lin Z. Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots. Mikrochim Acta 2020; 187:137. [DOI: 10.1007/s00604-019-4105-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
|
9
|
Zhang Q, Li D, Cao X, Gu H, Deng W. Self-Assembled Microgels Arrays for Electrostatic Concentration and Surface-Enhanced Raman Spectroscopy Detection of Charged Pesticides in Seawater. Anal Chem 2019; 91:11192-11199. [DOI: 10.1021/acs.analchem.9b02106] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qinmei Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
| | - Xiukai Cao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
| | - Haixin Gu
- Shanghai Fire Research Institute of MEM, 918 Minjing Road, Shanghai 200438, P.R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
| |
Collapse
|