1
|
Liu Q, Zhou H, Zhang W, Zhao C, Tao X, Tong C, Liu B. Visual monitoring of cisplatin-regulated caspase-3 activity in living cells based on a reduced graphene oxide-loaded fluorescent probe. Analyst 2024; 149:5073-5080. [PMID: 39221458 DOI: 10.1039/d4an01059k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cisplatin (DDP) is a potent chemotherapeutic drug, which can regulate tumor cell apoptosis by up-regulating caspase-3 activity. Thus, monitoring caspase-3 activity in breast cancer cells can directly illustrate the efficiency of DDP treatment. In this study, by using reduced graphene oxide (rGO) as a quencher of a fluorescence labeled peptide, we developed an "off to on" method to monitor the effect of DDP on caspase-3 in breast cancer cells. In this method, the rGO quenched fluorescence with an ultra-high level of efficiency. Caspase-3 hydrolyzed the polypeptide probe, generating two segments of different lengths. The release of a short segment marked with fluorophores led to the recovery of the fluorescence signal (Ex/Em = 450/521 nm). Under the optimal conditions, the linear range of caspase-3 was 0.4-7 U mL-1 and the limit of detection was 0.33 U mL-1. The upregulating effect of DDP on intracellular caspase-3 activity was visualized with the "off to on" method and flow cytometry assay showed that caspase-3 activity increased along with the apoptosis rate of tumor cells. The above results show the practical application of the method for evaluating the efficacy of drugs against cancer cells.
Collapse
Affiliation(s)
- Qing Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China.
| | - Hongyan Zhou
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wei Zhang
- Neurology Department of Xiangtan Central Hospital, Xiangtan, 411199, China
| | - Chuan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
| | - Xueqing Tao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China.
| | - Chunyi Tong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China.
| | - Bin Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Wang X, Chen Y, Ma L, Han Z, Liu Y, Qiao J. An amplification-free CRISPR/Cas12a-based fluorescence assay for ultrasensitive detection of nuclease activity. Talanta 2023; 257:124329. [PMID: 36801553 DOI: 10.1016/j.talanta.2023.124329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/10/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Nuclease, such as RNase H and DNase I, plays key roles in plenty of cellular processes and could be potential therapeutic target for drug development. It is necessary to establish rapid and simple-to-use methods to detect nuclease activity. Herein, we develop a Cas12a-based fluorescence assay without any nucleic acid amplification steps for ultrasensitive detection of RNase H or DNase I activity. By our design, the pre-assembled crRNA/ssDNA duplex triggered the cleavage of fluorescent probes in the presence of Cas12a enzymes. However, the crRNA/ssDNA duplex was selectively digested with the addition of RNase H or DNase I, which leaded to fluorescence intensity changes. Under optimized conditions, the method exhibited good analytical performance, achieving a limit of detection (LOD) as low as 0.0082 U/mL for RNase H and 0.13 U/mL for DNase I, respectively. The method was feasible for analysis of RNase H in human serum and cell lysates, as well as for screening of enzyme inhibitors. Moreover, it can be adopted to image RNase H activity in living cells. Together, this study provides a facile platform for nuclease detection and could be expanded for other biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Xinping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Yichuan Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | | | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China; BravoVax Co., Ltd., Wuhan, Hubei, China.
| | - Jie Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Reduced graphene oxide quenched peptide probe for caspase-8 activity detection and cellular imaging. Mikrochim Acta 2022; 189:463. [DOI: 10.1007/s00604-022-05567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022]
|
4
|
Xie Z, Chen S, Zhang W, Zhao S, Zhao Z, Wang X, Huang Y, Yi G. A novel fluorescence amplification strategy combining cascade primer exchange reaction with CRISPR/Cas12a system for ultrasensitive detection of RNase H activity. Biosens Bioelectron 2022; 206:114135. [DOI: 10.1016/j.bios.2022.114135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
|
5
|
Tian X, Hu J, Wei T, Ding W, Miao Q, Ning Z, Fan S, Wu H, Lu J, Lyu M, Wang S. Fast and sensitive graphene oxide-DNAzyme-based biosensor for Vibrio alginolyticus detection. JOURNAL OF FISH DISEASES 2022; 45:687-697. [PMID: 35176196 DOI: 10.1111/jfd.13594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
DNAzymes have been widely and effectively used for the detection of pathogenic bacteria, which pose a serious public health threat. However, the rapid and cost-effective detection of such bacteria remains a major challenge. In this study, we successfully selected Vibrio alginolyticus-specific DNAzymes. The activity of the candidates was assessed via fluorescence intensity and gel electrophoresis. The DNAzyme DT1 had a detection limit of 31 CFU/ml for V. alginolyticus and exhibited high specificity. Graphene oxide (GO) was used to develop a DNAzyme-based fluorescent sensor for the detection of V. alginolyticus, which significantly improved detection performance and shortened the reaction time as little as 10 s. The proposed method was then validated using crab, shrimp, fish, clam, and oyster samples. This study thus provides a new method for the rapid and sensitive detection of V. alginolyticus.
Collapse
Affiliation(s)
- Xueqing Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jinfei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Tong Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Wen Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Qingzhen Miao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhe Ning
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shihui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hangjie Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
6
|
Yim Y, Shin H, Ahn SM, Min DH. Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem Commun (Camb) 2021; 57:9820-9833. [PMID: 34494621 DOI: 10.1039/d1cc02157e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Graphene oxide (GO), an oxidized derivative of graphene, has received much attention for developing novel fluorescent bioanalytic platforms due to its remarkable optical properties and biocompatibility. The reliable performance and robustness of GO-based biosensors have enabled various applications in the biomedical field including diagnosis and drug discovery. Here, recent advances in the development of GO-based fluorescent biosensors are overviewed, particularly nucleic acid detection and enzyme activity assay. In addition, practical applications in biomarker detection and high-throughput screening are also examined. Lastly, basic design principles and remaining challenges of these types of biosensors are discussed for further progress.
Collapse
Affiliation(s)
- Yeajee Yim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hojeong Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seong Min Ahn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 06683, Republic of Korea
| |
Collapse
|
7
|
Abstract
Ribonucleases are useful as biomarkers and can be the source of contamination in laboratory samples, making ribonuclease detection assays important in life sciences research. With recent developments in DNA-based biosensing, several new techniques are being developed to detect ribonucleases. This review discusses some of these methods, specifically those that utilize G-quadruplex DNA structures, DNA-nanoparticle conjugates and DNA nanostructures, and the advantages and challenges associated with them.
Collapse
|
8
|
Ménard-Moyon C, Bianco A, Kalantar-Zadeh K. Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sens 2020; 5:3739-3769. [PMID: 33226779 DOI: 10.1021/acssensors.0c01961] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viral infections are one of the major causes of mortality and economic losses worldwide. Consequently, efficient virus detection methods are crucial to determine the infection prevalence. However, most detection methods face challenges related to false-negative or false-positive results, long response times, high costs, and/or the need for specialized equipment and staff. Such issues can be overcome by access to low-cost and fast response point-of-care detection systems, and two-dimensional materials (2DMs) can play a critical role in this regard. Indeed, the unique and tunable physicochemical properties of 2DMs provide many advantages for developing biosensors for viral infections with high sensitivity and selectivity. Fast, accurate, and reliable detection, even at early infection stages by the virus, can be potentially enabled by highly accessible surface interactions between the 2DMs and the analytes. High selectivity can be obtained by functionalization of the 2DMs with antibodies, nucleic acids, proteins, peptides, or aptamers, allowing for specific binding to a particular virus, viral fingerprints, or proteins released by the host organism. Multiplexed detection and discrimination between different virus strains are also feasible. In this Review, we present a comprehensive overview of the major advances of 2DM-based biosensors for the detection of viruses. We describe the main factors governing the efficient interactions between viruses and 2DMs, making them ideal candidates for the detection of viral infections. We also critically detail their advantages and drawbacks, providing insights for the development of future biosensors for virus detection. Lastly, we provide suggestions to stimulate research in the fast expanding field of 2DMs that could help in designing advanced systems for preventing virus-related pandemics.
Collapse
Affiliation(s)
- Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales 2052, Australia
| |
Collapse
|
9
|
Xiong X, Dang W, Luo R, Long Y, Tong C, Yuan L, Liu B. A graphene-based fluorescent nanoprobe for simultaneous imaging of dual miRNAs in living cells. Talanta 2020; 225:121947. [PMID: 33592702 DOI: 10.1016/j.talanta.2020.121947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are regarded as important biomarkers for disease diagnostics and therapeutics due to their significant regulatory roles in physiologic and pathologic processes. Herein, a versatile nanoprobe based on reduced graphene oxide (rGO) and nucleic acid (DNA) probe was prepared for simultaneously visualize miR-451a and miR-214-3p in living cells. In vitro experiments demonstrated that the nanoprobe exhibits excellent selectivity and outstanding sensitivity as low as 1 nM towards miR-451a and miR-214-3p. Moreover, the detection signals of miRNAs have good linearity in their respective concentration ranges (miR-451a: 1-100 nM, Y1 = 9.3062X1+114.85 (R2 = 0.9965). miR-214-3p: 1-200 nM, Y2 = 1.4424X2+91.312 (R2 = 0.9961)). Finally, simultaneous dual-color imaging of miR-451a and miR-214-3p in human breast cancer cells (MDA-MB-231) was realized by exploiting the P1&P2@rGO nanoprobe. In summary, this simple and effective strategy provides a general sensing platform for highly sensitive detection and simultaneous imaging of dual miRNAs in living cells.
Collapse
Affiliation(s)
- Xiang Xiong
- Department of General Surgery, Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenya Dang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ruxin Luo
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ying Long
- College of Biology, Hunan University, Changsha, 410082, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, China
| | - Liqin Yuan
- Department of General Surgery, Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|