1
|
Firouzy M, Hashemi P. Ionic Liquid-Based Magnetic Needle Headspace Single-Drop Microextraction Combined with HPLC/UV for the Determination of Chlorophenols in Wastewater. J Chromatogr Sci 2023; 61:743-749. [PMID: 36806901 DOI: 10.1093/chromsci/bmad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/03/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023]
Abstract
A magnetic needle headspace single-drop microextraction (MN-HS-SDME) method coupled to HPLC/UV has been developed. Trihexyl(tetradecyl)phosphonium chloride was employed as an ionic liquid (IL) solvent for the headspace extraction of some chlorophenol (CP) compounds from wastewater samples. Despite of the nonmagnetic character of the IL, a significant improvement in the extraction efficiency was obtained by the magnetization of the single-drop microextraction needle using a pair of permanent disk magnets. A simplex method for the fast optimization of the experimental conditions (e.g., stirring speed, ionic strength, pH, extraction time and temperature) was used. The coefficients of determination (R2) varied between 0.9932 and 0.9989, the limits of detection were from 0.004 to 0.007 μg mL-1 and the relative recoveries were in the range of 88-120% for the studied analytes. The developed MN-HS-SDME HPLC/UV method was successfully applied to the determination of CPs in industrial wastewater.
Collapse
Affiliation(s)
- Masoumeh Firouzy
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 411417135167, Iran
| | - Payman Hashemi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 411417135167, Iran
| |
Collapse
|
2
|
Maleki S, Hashemi P, Adeli M. A simple and portable vacuum assisted headspace solid phase microextraction device coupled to gas chromatography based on covalent organic framework/metal organic framework hybrid for simultaneous analysis of volatile and semi-volatile compounds in soil. J Chromatogr A 2023; 1705:464195. [PMID: 37423076 DOI: 10.1016/j.chroma.2023.464195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Various microextraction methods have demonstrated a positive effect when assisted by vacuum. However, working with such systems is often laborious, they often require expensive and non-portable vacuum pumps, and may even suck off some sample vapor or solid particles during the evacuation process. To address these issues, a simple, and affordable vacuum-assisted headspace solid-phase microextraction (HS-SPME) device was developed in this study. The device, named In Syringe Vacuum-assisted HS-SPME (ISV-HS-SPME), utilizes an adjustable 40 mL glass syringe as a vacuum provider and sampling vessel. A new fiber coating, made from a hybrid of covalent triazine-based frameworks and metal-organic frameworks (COF/MOF), was prepared and characterized by Fourier transform infrared spectrometry, field emission scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis, and Brunauer-Emmett-Teller techniques for use in the ISV-HS-SPME. By optimizing parameters such as extraction temperature, extraction time, desorption temperature, desorption time, and, humidity using a simplex method, the ISV system was found to increase the extraction efficiency of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylenes (BTEX) in solid samples by up to 175%. The determinations were followed by GC-FID measurements. Compared to three commercially available fibers, the ISV-HS-SPME device with the COF/MOF (2DTP/MIL-101-Cr) fiber exhibited significantly higher peak areas for PAHs and BTEX. The linear dynamic ranges for BTEX and PAHs were 7.1-9000 ng g-1 and 0.23-9000 ng g-1, respectively, with limits of detection ranging from 2.1-5 ng g-1 for BTEX and 0.07-1.6 ng g-1 for PAHs. The relative standard deviation of the method was 2.6-7.8% for BTEX and 1.6-6.7% for PAHs. The ISV-HS-SPME was successfully used to simultaneously determine PAHs and BTEX in polluted soil samples with recoveries ranging from 80.4 to 108%.
Collapse
Affiliation(s)
- Sara Maleki
- Department of analytical chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Payman Hashemi
- Department of analytical chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran.
| | - Mohsen Adeli
- Department of analytical chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| |
Collapse
|
3
|
Yu C, Zhang J, Luo X, Zhang J. Metal organic framework/covalent organic framework composite for solid-phase microextraction of polycyclic aromatic hydrocarbons in milk samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Nazari Serenjeh F, Hashemi P, Rasolzadeh F, Farhadi S, Hoseini AA. Magnetic fiber headspace solid-phase microextraction of Ferulago angulata volatile components using Preyssler-type polyoxometalate/metal-organic framework/silica aerogel sorbent. Food Chem 2022; 373:131423. [PMID: 34700035 DOI: 10.1016/j.foodchem.2021.131423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
A new hybrid of silica aerogel with a Preyssler-type polyoxometalate and MIL-101(Cr) metal-organic framework was prepared and used as a highly porous fiber coating for headspace solid-phase microextraction of Ferulago angulata volatile components. Applying a permanent magnetic field to the sorbent increased the extraction efficiency for most of the plant's components, up to 5.53 times. Optimization of the extraction parameters was carried out using a GC-MS instrument and by a simplex method. The extraction efficiency of the P5W30/MIL-101(Cr)/silica aerogel fiber exceeded 3.5 times of a mesoporous SBA-15 fiber. The prepared fiber was stable in multiple injections with relative standard deviations of 5.3 to 10.9% for 5 replicates. The proposed method was successfully applied to the extraction and identification of volatile components of some F. angulata samples. According to the results obtained by GC-FID, β-bourbonene, β-gurjunene, β-elemene and cedrenol were the main components of the plant.
Collapse
Affiliation(s)
| | - Payman Hashemi
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran.
| | - Fahimeh Rasolzadeh
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran
| | - Saeed Farhadi
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran
| | | |
Collapse
|
5
|
Song N, Tian Y, Luo Z, Dai J, Liu Y, Duan Y. Advances in pretreatment and analysis methods of aromatic hydrocarbons in soil. RSC Adv 2022; 12:6099-6113. [PMID: 35424557 PMCID: PMC8981609 DOI: 10.1039/d1ra08633b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Benzene compounds that are prevalent in the soil as organic pollutants mainly include BTEX (benzene, toluene, ethylbenzene, and three xylene isomers) and PAHs (polycyclic aromatic hydrocarbons). These pose a severe threat to many aspects of human health. Therefore, the accurate measurement of BTEX and PAHs concentrations in the soil is of great importance. The samples for analysis of BTEX and PAHs need to be suitable for the various detection methods after pretreatment, which include Soxhlet extraction, ultrasonic extraction, solid-phase microextraction, supercritical extraction, and needle trap. The detection techniques mainly consist of gas chromatography (GC), mass spectrometry (MS), and online sensors, and provide comprehensive information on contaminants in the soil. Their performance is evaluated in terms of sensitivity, selectivity, and recovery. Recently, there has been rapid progress in the pretreatment and analysis methods for the quantitative and qualitative analyses of BTEX and PAHs. Therefore, it is necessary to produce a timely and in-depth review of the emerging pretreatment and analysis methods, which is unfortunately absent from the recent literature. In this work, state-of-art extraction techniques and analytical methods have been summarized for the determination of BTEX and PAHs in soil, with a particular focus on the potential and limitations of the respective methods for different aromatic hydrocarbons. Accordingly, the paper will describe the basic methodological knowledge, as well as the recent advancement of pretreatment and analysis methods for samples containing BTEX and PAHs.
Collapse
Affiliation(s)
- Na Song
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Jianxiong Dai
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yan Liu
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| |
Collapse
|
6
|
Li H, Hou B, Wang L, Zang X, Wang C, Wang Z. Boron nitride modified reduced graphene oxide as solid-phase microextraction coating material for the extraction of seven polycyclic aromatic hydrocarbons from water and soil samples. J Sep Sci 2021; 44:1521-1528. [PMID: 33511696 DOI: 10.1002/jssc.202001088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
A novel hexagonal boron nitride modified reduced graphene oxide material was synthesized and used as the adsorbent for the solid-phase microextraction of seven polycyclic aromatic hydrocarbons from water and soil samples prior to their detection by gas chromatography-flame ionization detector. Under optimal conditions, the linear response range of the analytes for water sample is 0.25-50 ng/mL with the correlation coefficients (r) ranging between 0.9953 and 0.9996. The linear range for soil sample is 1.0-400 ng/g with r ranging from 0.9959 to 0.9999. On the basis of the signal-to-noise ratio of 3, the limits of detections for the analytes ranged from 0.05 to 0.15 ng/mL for water samples, and from 0.3 to 0.5 ng/g for soil samples. The relative recoveries of the seven polycyclic aromatic hydrocarbons for water and soil samples were in the range of 79.55-120.0 and 78.76-120.8%, respectively. The relative standard deviations for the determination of the analytes in water and soil samples were lower than 11 and 10%, respectively. The method is simple and suitable for the determination of polycyclic aromatic hydrocarbon residues in water and soil samples.
Collapse
Affiliation(s)
- Hongda Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Baoxiu Hou
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Ling Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| |
Collapse
|
7
|
He J, Wang W, Zhang H, Ju Y, Yu K, Zhang X, Jiang J. Nebulization dielectric barrier discharge ionization mass spectrometry: Rapid and sensitive analysis of acenaphthene. Talanta 2021; 222:121681. [PMID: 33167287 DOI: 10.1016/j.talanta.2020.121681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 01/30/2023]
Abstract
A rapid, simple and sensitive method was proposed for low-polar acenaphthene analysis by coupling nebulization with dielectric barrier discharge ionization (N-DBDI). The sample solution was nebulized followed by heating and converted to be gas-phase analyte molecules prior to DBDI. This boosts the collision efficiency of analyte molecules with reactive species and thus the sensitivity, and the high-velocity gas from nebulization guides ions directed to the MS inlet without deflection. The dependence of sensitivity on the operation parameters was systematically investigated. The LOD and LOQ of acenaphthene were determined to be 0.61 ng/L and 2.05 ng/L, respectively, which were superior approximately 30 folds compared to those obtained by other methods. Parameters, including accuracy, precision, reproducibility and utility, were tested to further evaluate the performance of N-DBDI. Real environmental samples, including river water, initial rainwater and mineral water, were analyzed with good accuracy (93.61-103.50%) and satisfactory precision (RSD ≤ 8.92%). These findings suggest that the N-DBDI allows the determination of non/low-polar species at sub-pg/mL possible, and would benefit for the non/low-polar species analysis in real environmental samples.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Wenxin Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China
| | - Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China.
| | - Yun Ju
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Kai Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China
| | - Xiangnan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jie Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China.
| |
Collapse
|
8
|
Khataei MM, Yamini Y, Shamsayei M. Applications of porous frameworks in solid-phase microextraction. J Sep Sci 2021; 44:1231-1263. [PMID: 33433916 DOI: 10.1002/jssc.202001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023]
Abstract
Porous frameworks are a term of attracting solid materials assembled by interconnection of molecules and ions. These trendy materials due to high chemical and thermal stability, well-defined pore size and structure, and high effective surface area gained attention to employ as extraction phase in sample pretreatment methods before analytical analysis. Solid-phase microextraction is an important subclass of sample preparation technique that up to now different configurations of this method have been introduced to get adaptable with different environments and analytical instruments. In this review, theoretical aspect and different modes of solid-phase microextraction method are investigated. Different classes of porous frameworks and their applications as extraction phase in the proposed microextraction method are evaluated. Types and features of supporting substrates and coating procedures of porous frameworks on them are reviewed. At the end, the prospective and the challenges ahead in this field are discussed.
Collapse
Affiliation(s)
- Mohammad Mahdi Khataei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran.,Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
He J, Wang W, Zhang H, Yu K, Kan G, Wang Y, Guo C, Liu J, Jiang J. High-sensitive detection of fluorene by ambient ionization mass spectrometry. NEW J CHEM 2021. [DOI: 10.1039/d1nj01569a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High sensitive analysis for fluorene at the sub-ng L−1 level in real water samples was achieved by nebulization-dielectric barrier discharge ionization.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Wenxin Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Kai Yu
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Guangfeng Kan
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Yingying Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Changlu Guo
- School of Marine Science and Technology
- Harbin Institute of Technology at Weihai
- Weihai
- P. R. China
| | - Junyu Liu
- School of Marine Science and Technology
- Harbin Institute of Technology at Weihai
- Weihai
- P. R. China
| | - Jie Jiang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| |
Collapse
|
10
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Liu S, Huang Y, Qian C, Xiang Z, Ouyang G. Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115916] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Li J, Xiao Z, Wang W, Zhang S, Wu Q, Wang C, Wang Z. Rational integration of porous organic polymer and multiwall carbon nanotube for the microextraction of polycyclic aromatic hydrocarbons. Mikrochim Acta 2020; 187:284. [PMID: 32323029 DOI: 10.1007/s00604-020-04261-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
By integration of benzene-constructed porous organic polymer (KBF) and multiwalled carbon nanotube (MWCNT), a MWCNT-KBF hybrid material was constructed through in situ knitting benzene with formaldehyde dimethyl acetal in the presence of MWCNTs to form a network. MWCNT-KBF was then adopted as a novel solid-phase microextraction (SPME) fiber coating. Coupled to gas chromatography-flame ionization detection, the MWCNT-KBF-assisted SPME method showed large enhancement factors (483-2066), low limits of detection (0.04-0.12 μg L-1), good linearity (0.13-50 μg L-1), and acceptable reproducibility (4.2-10.2%) for the determination of polycyclic aromatic hydrocarbons (PAHs). The method recoveries of seven PAHs were in the range 80.1-116.3%, with relative standard deviations (RSDs) ranging from 3.5 to 11.9%. The SPME method was successfully applied to the determination of PAHs in river, pond, rain, and waste water, providing a good alternative for monitoring trace level of PAHs in environmental water. Graphical abstract Schematic representation of the rational integration of porous organic polymer (KBF) and multiwalled carbon nanotube (MWCNT) to form a MWCNT-KBF hybrid material through in situ knitting benzene with formaldehyde dimethyl acetal at the presence of MWCNT.
Collapse
Affiliation(s)
- Jinqiu Li
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhichang Xiao
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Wenjin Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| |
Collapse
|