• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4623023)   Today's Articles (5249)   Subscriber (49407)
For: Zhao W, Li H, Tang Y, Liu M, Wang S, Yu R. Fluorometric determination of the p53 cancer gene using strand displacement amplification on gold nanoparticles. Mikrochim Acta 2019;186. [DOI: 10.1007/s00604-019-3609-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Number Cited by Other Article(s)
1
Yang F, Zhang X, Li S, Yu X, Liu S. Immobilization-free and label-free electrochemical DNA biosensing based on target-stimulated release of redox reporter and its catalytic redox recycling. Bioelectrochemistry 2024;158:108727. [PMID: 38728815 DOI: 10.1016/j.bioelechem.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
2
Moghtaderi S, Mandapati A, Davies G, Wahid KA, Lukong KE. Smart and low-cost fluorometer for identifying breast cancer malignancy based on lipid droplets accumulation. PLoS One 2023;18:e0294988. [PMID: 38128020 PMCID: PMC10735024 DOI: 10.1371/journal.pone.0294988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]  Open
3
Wang Y, Liu S, Zhang D, Xiao Q, Huang S. Ultrasensitive electrochemical platform for the p53 gene via molecular beacon-mediated circular strand displacement and terminal deoxynucleotidyl transferase-mediated signal amplification strategy. Analyst 2023;148:1005-1015. [PMID: 36723078 DOI: 10.1039/d2an01676a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
4
Li H, Pu J, Wang S, Yu R. Fluorescence biosensing of the leukemia gene by combining Target-Programmed controllable signal inspiring engineering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022;281:121579. [PMID: 35803107 DOI: 10.1016/j.saa.2022.121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
5
Anh NH, Doan MQ, Dinh NX, Huy TQ, Tri DQ, Ngoc Loan LT, Van Hao B, Le AT. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv 2022;12:10950-10988. [PMID: 35425077 PMCID: PMC8988175 DOI: 10.1039/d1ra08311b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022]  Open
6
He S, Li P, Tang L, Chen M, Yang Y, Zeng Z, Xiong W, Wu X, Huang J. Dual-stage amplified fluorescent DNA sensor based on polymerase-Mediated strand displacement reactions. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
7
Jin X, Zhang D, Zhang W, Wang Y, Xiao Q, Huang S. Ratiometric electrochemical biosensor for ultrasensitive and highly selective detection of p53 gene based on nicking endonuclease-assisted target recycling and rolling circle amplification. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
8
Controlling surface nanoarchitectures of DNA modified electrodes for improved label-free electrochemical detection of p53 gene. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
9
Liu JL, Ma YC, Yang T, Hu R, Yang YH. A single nucleotide polymorphism electrochemical sensor based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probes. Mikrochim Acta 2021;188:266. [PMID: 34291388 DOI: 10.1007/s00604-021-04924-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022]
10
Zhang Z, Mei M, Yao J, Ye T, Quan J, Liu J. An off/on thrombin activated energy driven molecular machine for sensitive detection of human thrombin via non-enzymatic catalyst recycling amplification. Analyst 2021;145:6868-6874. [PMID: 32820297 DOI: 10.1039/d0an01054e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
11
Hairpin DNA-Mediated isothermal amplification (HDMIA) techniques for nucleic acid testing. Talanta 2021;226:122146. [PMID: 33676697 DOI: 10.1016/j.talanta.2021.122146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
12
Ibáñez-Redín G, Joshi N, do Nascimento GF, Wilson D, Melendez ME, Carvalho AL, Reis RM, Gonçalves D, Oliveira ON. Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe2O4 nanoparticles. Mikrochim Acta 2020;187:619. [PMID: 33083850 DOI: 10.1007/s00604-020-04594-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/07/2020] [Indexed: 01/15/2023]
13
Kang J, Li Z, Wang G. A novel signal amplification strategy electrochemical immunosensor for ultra-sensitive determination of p53 protein. Bioelectrochemistry 2020;137:107647. [PMID: 32971485 DOI: 10.1016/j.bioelechem.2020.107647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
14
Tao Y, Wang W, Fu C, Luo F, Guo L, Qiu B, Lin Z. Sensitive biosensor for p53 DNA sequence based on the photothermal effect of gold nanoparticles and the signal amplification of locked nucleic acid functionalized DNA walkers using a thermometer as readout. Talanta 2020;220:121398. [PMID: 32928417 DOI: 10.1016/j.talanta.2020.121398] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA