1
|
Zhao F, Zhang N, Zhang Y. A New Strategy for Ultrasensitive Detection Based on Target microRNA-Triggered Rolling Circle Amplification in the Early Diagnosis of Alzheimer's Disease. Int J Mol Sci 2024; 25:9490. [PMID: 39273436 PMCID: PMC11394956 DOI: 10.3390/ijms25179490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need to accurately quantify microRNA (miRNA)-based Alzheimer's disease (AD) biomarkers, which have emerged as promising diagnostic biomarkers. In this study, we present a rapid and universal approach to establishing a target miRNA-triggered rolling circle amplification (RCA) detection strategy, which achieves ultrasensitive detection of several targets, including miR-let7a-5p, miR-34a-5p, miR-206-3p, miR-9-5p, miR-132-3p, miR-146a-5p, and miR-21-5p. Herein, the padlock probe contains three repeated signal strand binding regions and a target miRNA-specific region. The target miRNA-specific region captures miRNA, and then the padlock probe is circularized with the addition of T4 DNA ligase. Subsequently, an RCA reaction is triggered, and RCA products containing multiple signal strand binding regions are generated to trap abundant fluorescein-labeled signal strands. The addition of exonuclease III (Exo III) causes signal strand digestion and leads to RCA product recycling and liberation of fluorescein. Ultimately, graphene oxide (GO) does not absorb the liberated fluorescein because of poor mutual interaction. This method exhibited high specificity, sensitivity, repeatability, and stability toward let-7a, with a detection limit of 19.35 fM and a linear range of 50 fM to 5 nM. Moreover, it showed excellent applicability for recovering miRNAs in normal human serum. Our strategy was applied to detect miRNAs in the plasma of APP/PS1 mice, demonstrating its potential in the diagnosis of miRNA-associated disease and biochemical research.
Collapse
Affiliation(s)
- Fei Zhao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Na Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yi Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
2
|
Li P, Li W, Xie Z, Zhan H, Deng L, Huang J. A label-free and signal-amplifiable assay method for colorimetric detection of carcinoembryonic antigen. Biotechnol Bioeng 2021; 119:504-512. [PMID: 34845724 DOI: 10.1002/bit.28003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023]
Abstract
In this work, an innovative colorimetric assay method for the determination of carcinoembryonic antigen is developed with aptamer probes utilized as recognition element. DNA hybridization chain reaction is used as signal amplification technique, and peroxidase-mimicking hemin/G-quadruplex-assisted catalytic oxidation of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) is deployed as signal reporting mechanism. The detection principle was firstly verified by using gel electrophoresis analysis and absorbance measurements. After condition optimization, a detection limit was theoretically determined as 24.8 ng/ml. Furthermore, the method exhibited good selectivity and satisfactory recovery rates (92.2%-108.6%) in serum samples. Moreover, the sensing scheme is easily extended for the detection of other analytes via similar target-aptamer recognition principle. To sum up, this is an enzyme- and label-free, cost-effective yet signal-amplifiable assay scheme for the determination of tumor markers with promising simplicity and selectivity, practical utility, and potential universality.
Collapse
Affiliation(s)
- Peng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenqin Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zhuohao Xie
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Haonan Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Liu H, You Y, Zhu Y, Zheng H. Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5103-5119. [PMID: 34664562 DOI: 10.1039/d1ay01275d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of nucleic acids has become significantly important in molecular diagnostics, gene therapy, mutation analysis, forensic investigations and biomedical development, and so on. In recent years, exonuclease III (Exo III) as an enzyme in the 3'-5' exonuclease family has evolved as a frequently used technique for signal amplification of low level DNA target detection. Different from the traditional target amplification strategies, the Exo III-assisted amplification strategy has been used for target DNA detection through directly amplifying the amounts of signal reagents. The Exo III-assisted amplification strategy has its unique advantages and characters, because the character of non-specific recognition of Exo III can overcome the limitation of a target-to-probe ratio of 1 : 1 in the traditional nucleic acid hybridization assay and acquire higher sensitivity. In this review, we selectively discuss the recent advances in the Exo III-assisted amplification strategy, including the amplification strategy integrated with nanomaterials, biosensors, hairpin probes and other nucleic acid detection methods. We also discuss the strengths and limitations of each strategy and methods to overcome the limitations.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Yuhao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Youzhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
4
|
Hairpin DNA-Mediated isothermal amplification (HDMIA) techniques for nucleic acid testing. Talanta 2021; 226:122146. [PMID: 33676697 DOI: 10.1016/j.talanta.2021.122146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
Abstract
Nucleic acid detection is of great importance in a variety of areas, from life science and clinical diagnosis to environmental monitoring and food safety. Unfortunately, nucleic acid targets are always found in trace amounts and their response signals are difficult to be detected. Amplification mechanisms are then practically needed to either duplicate nucleic acid targets or enhance the detection signals. Polymerase chain reaction (PCR) is one of the most popular and powerful techniques for nucleic acid analysis. But the requirement of costly devices for precise thermo-cycling procedures in PCR has severely hampered the wide applications of PCR. Fortunately, isothermal molecular reactions have emerged as promising alternatives. The past decade has witnessed significant progress in the research of isothermal molecular reactions utilizing hairpin DNA probes (HDPs). Based on the nucleic acid strand interaction mechanisms, the hairpin DNA-mediated isothermal amplification (HDMIA) techniques can be mainly divided into three categories: strand assembly reactions, strand decomposition reactions, and strand creation reactions. In this review, we introduce the basics of HDMIA methods, including the sensing principles, the basic and advanced designs, and their wide applications, especially those benefiting from the utilization of G-quadruplexes and nanomaterials during the past decade. We also discuss the current challenges encountered, highlight the potential solutions, and point out the possible future directions in this prosperous research area.
Collapse
|
5
|
Gao J, Li Y, Li W, Zeng C, Xi F, Huang J, Cui L. 2'- O-Methyl molecular beacon: a promising molecular tool that permits elimination of sticky-end pairing and improvement of detection sensitivity. RSC Adv 2020; 10:41618-41624. [PMID: 35516551 PMCID: PMC9057772 DOI: 10.1039/d0ra07341e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/20/2020] [Indexed: 01/24/2023] Open
Abstract
An innovative 2'-O-methyl molecular beacon (MB) has been designed and prepared with improved thermal stability and unique nuclease resistance. The employment of 2'-O-methyl MBs helps efficiently suppress the background signal, while DNase I is responsible for the signal amplification and elimination of sticky-end pairing. The coupled use of 2'-O-methyl MBs and DNase I makes it possible to develop an enzyme-aided strategy for amplified detection of DNA targets in a sensitive and specific fashion. The analysis requires only mix-and-measure steps that can be accomplished within half an hour. The detection sensitivity is theoretically determined as 27.4 pM, which is nearly 200-fold better than that of the classic MB-based assay. This proposed sensing system also shows desired selectivity. All these features are of great importance for the design and application of MBs in biological, chemical, and biomedical fields.
Collapse
Affiliation(s)
- Jiafeng Gao
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| | - Yang Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 P. R. China
| | - Wenqin Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 P. R. China
| | - Chaofei Zeng
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| | - Jiahao Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 P. R. China
| | - Liang Cui
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| |
Collapse
|
6
|
Gao T, Xing S, Xu M, Fu P, Yao J, Zhang X, Zhao Y, Zhao C. A peptide nucleic acid-regulated fluorescence resonance energy transfer DNA assay based on the use of carbon dots and gold nanoparticles. Mikrochim Acta 2020; 187:375. [PMID: 32518969 DOI: 10.1007/s00604-020-04357-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
A convenient fluorometric method was developed for specific determination of DNA based on peptide nuclei acid (PNA)-regulated fluorescence resonance energy transfer (FRET) between carbon dots (CDs) and gold nanoparticles (AuNPs). In this system, CDs that display lake blue fluorescence with excitation/emission maxima at 345/445 nm were used as fluorometric reporter, while AuNPs were used as fluorescence nanoquencher. A neutral PNA probe, which is designed to recognize the target DNA, was used as a coagulant to control the dispersion and aggregation of AuNPs. Without DNA, PNA can induce immediate AuNP aggregation, thus leading to the recovery of the FRET-quenched fluorescence emission of CDs. However, the addition of the complementary target DNA can protect AuNPs from being aggregated due to the formation of DNA/PNA complexes, which subsequently produces a high fluorescence quenching efficiency of CDs by dispersed AuNPs. Under optimized conditions, quantitative evaluation of DNA was achieved in a linear range of 5-100 nM with a detection limit of 0.21 nM. This method exhibited an excellent specificity towards fully matched DNA. In addition, the application of this assay for sensitive determination of DNA in cell lysate demonstrates its potential for bioanalysis and biodetection. Graphical abstract A simple fluorometric biosensor for specific detection of DNA was developed based on peptide nuclei acid (PNA)-regulated fluorescence resonance energy transfer (FRET) between carbon dots (CDs) and gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
- Tingting Gao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.,Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Mengjia Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiechen Yao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Xiaokang Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yang Zhao
- College of Science and Technology, Ningbo University, Ningbo, 315212, People's Republic of China.
| | - Chao Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| |
Collapse
|