1
|
Ou X, Li K, Liu M, Song J, Zuo Z, Guo Y. EXPAR for biosensing: recent developments and applications. Analyst 2024; 149:4135-4157. [PMID: 39034763 DOI: 10.1039/d4an00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Emerging as a promising novel amplification technique, the exponential amplification reaction (EXPAR) offers significant advantages due to its potent exponential amplification capability, straightforward reaction design, rapid reaction kinetics, and isothermal operation. The past few years have witnessed swift advancements and refinements in EXPAR-based technologies, with numerous high-performance biosensing systems documented. A deeper understanding of the EXPAR mechanism has facilitated the proposal of novel strategies to overcome limitations inherent to traditional EXPAR. Furthermore, the synergistic integration of EXPAR with diverse amplification methodologies, including the use of a CRISPR/Cas system, metal nanoparticles, aptamers, alternative isothermal amplification techniques, and enzymes, has significantly bolstered analytical efficacy, aiming to enhance specificity, sensitivity, and amplification efficiency. This comprehensive review presents a detailed exposition of the EXPAR mechanism and analyzes its primary challenges. Additionally, we summarize the latest research advancements in the biomedical field concerning the integration of EXPAR with diverse amplification technologies for sensing strategies. Finally, we discuss the challenges and future prospects of EXPAR technology in the realms of biosensing and clinical applications.
Collapse
Affiliation(s)
- Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Kunxiang Li
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
| | - Jiajun Song
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Zhihua Zuo
- Department of Clinical Laboratory, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, 637003, PR China.
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| |
Collapse
|
2
|
Tan Y, Zhang L, Deng S. Programmable DNA barcode-encoded exponential amplification reaction for the multiplex detection of miRNAs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1649-1658. [PMID: 38414433 DOI: 10.1039/d3ay02215c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Multiple analysis of miRNAs is essential for the early diagnosis and monitoring of diseases. Here, a programmable, multiplex, and sensitive approach was developed for one-pot detection of miRNAs by melting temperature encoded sequences and exponential isothermal amplification (E-EXPAR). In the presence of target miRNAs, the corresponding templates initiate the cycles of nicking and polymerization/displacement, generating numerous barcode strands with unique encoding sequences. Subsequently, generated barcode strands hybridize with fluorescent probes and quench the fluorophore by a triplet of G base through a photo-induced electron transfer mechanism. Finally, a melting curve analysis is performed to quantify miRNAs by calculating the rate of fluorescence change at the corresponding melting temperature. Based on this, miRNA-21, miRNA-9, and miRNA-122 were detected with the detection limits of 3.3 fM, 2.9 fM, and 1.7 fM, respectively. This E-EXPAR was also employed to simultaneously detect three miRNAs in biological samples, showing consistent results with RT-qPCR. Overall, this study provides a programmable and universal platform for multiplex analysis of miRNAs, and holds great promise as an alternative to the multiplex analysis in clinical diagnostics and prognostics for nucleic acid detection.
Collapse
Affiliation(s)
- Yuqian Tan
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Li Zhang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shixiong Deng
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Long J, Chen M, Yu Y, Wu Q, Yang X. Triple-recognition strategy for one-pot detection of single nucleotide variants by aligner-mediated cleavage-triggered exponential amplification. Anal Chim Acta 2023; 1276:341617. [PMID: 37573107 DOI: 10.1016/j.aca.2023.341617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
The detection of single nucleotide variants (SNVs) is important for the diagnosis and treatment of cancer. To date, researchers have devised several methods to detect SNVs, but most of them are complex and time-consuming. To improve SNVs detection specificity and sensitivity, we developed a triple-recognition strategy, which facilitates aligner-mediated cleavage-triggered exponential amplification (Trec-AMC-EXPAR) for the rapid, specific, and one-pot detection of SNV. Under optimized conditions, Trec-AMC-EXPAR detected two clinically significant SNVs, PIK3CAH1047R and EGFR L858R within 80 min, with a reliable detection of 0.1% SNV in the wide type, which is lower than that of allele-specific PCR (AS-PCR) for detecting SNV. Finally, by spiking into normal human serum samples, mutants mixed with the wild-type targets in different ratios were analyzed, resulting in the relative standard deviation (RSD) of recovery ratios <3%. The findings suggested the potential application of Trec-AMC-EXPAR in clinical disease diagnosis. In summary, the proposed Trec-AMC-EXPAR technique provides a novel fast and convenient method for one-pot detection of SNV with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jinyan Long
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Mengqi Chen
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Yu
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qiaomin Wu
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Zhou S, Deng L, Dong J, Lu P, Qi N, Huang Z, Yang M, Huo D, Hou C. Electrochemical detection of the p53 gene using exponential amplification reaction (EXPAR) and CRISPR/Cas12a reactions. Mikrochim Acta 2023; 190:113. [PMID: 36869936 DOI: 10.1007/s00604-023-05642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 03/05/2023]
Abstract
An improved electrochemical sensor has been developed for sensitive detection of the p53 gene based on exponential amplification reaction (EXPAR) and CRISPR/Cas12a. Restriction endonuclease BstNI is introduced to specifically identify and cleave the p53 gene, generating primers to trigger the EXPAR cascade amplification. A large number of amplified products are then obtained to enable the lateral cleavage activity of CRISPR/Cas12a. For electrochemical detection, the amplified product activates Cas12a to digest the designed block probe, which allows the signal probe to be captured by the reduced graphene oxide-modified electrode (GCE/RGO), resulting in an enhanced electrochemical signal. Notably, the signal probe is labeled with large amounts of methylene blue (MB). Compared with traditional endpoint decoration, the special signal probe effectively amplifies the electrochemical signals by a factor of about 15. Experimental results show that the electrochemical sensor exhibits wide ranges from 500 aM to 10 pM and 10 pM to 1 nM, as well as a relatively low limit detection of 0.39 fM, which is about an order of magnitude lower than that of fluorescence detection. Moreover, the proposed sensor shows reliable application capability in real human serum, indicating that this work has great prospects for the construction of a CRISPR-based ultra-sensitive detection platform.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Peng Lu
- Chongqing University, Three Gorges Hospital, Chongqing, 404000, People's Republic of China
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, 610065, People's Republic of China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China. .,Chongqing Key Laboratory of Bio-Perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
5
|
Li XL, Jiang H, Zhao L, Song TS, Xie JJ. Self-powered DNA nanomachines for fluorescence detection of lead. Mikrochim Acta 2023; 190:99. [PMID: 36809414 DOI: 10.1007/s00604-023-05673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023]
Abstract
A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb2+). In the presence of target Pb2+, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb2+, which yielded an "active" DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb2+. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb2+ in the concentration range 50-600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions.
Collapse
Affiliation(s)
- Xiang-Ling Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Han Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Tian Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jing Jing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
6
|
Cai S, Chen X, Chen H, Zhang Y, Wang X, Zhou N. A fluorescent aptasensor for ATP based on functional DNAzyme/walker and terminal deoxynucleotidyl transferase-assisted formation of DNA-AgNCs. Analyst 2023; 148:799-805. [PMID: 36692002 DOI: 10.1039/d2an02006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The development of sensitive adenosine triphosphate (ATP) sensors is imperative due to the tight relationship between the physiological conditions and ATP levels in vivo. Herein, a fluorescent aptasensor for ATP is presented, which adopts a strategy that combines a split aptamer and a DNAzyme/walker with terminal deoxynucleotidyl transferase (TDT)-assisted formation of DNA-AgNCs to realize fluorescence detection of ATP. A multifunctional oligonucleotide sequence is rationally designed, which integrates a split aptamer, a DNAzyme and a DNA walker. Both multifunctional oligonucleotide and its substrate strand are connected to the surface of Fe3O4@Au nanoparticles via Au-S bonds. The existence of ATP can induce the formation of the complete aptamer, and then activate the DNAzyme to circularly cleave the substrate strand, leaving 2',3'-cyclophosphate at the 3'end of the strand. This blocks the polymerization of dCTP to form poly(C) even in the presence of TDT and dCTP, due to the lack of free 3'-OH. In contrast, when ATP is absent, the DNAzyme/walker cannot work and then TDT catalyzes the formation of poly(C) at the free 3'-OH of the substrate strand, which is subsequently utilized as the template to prepare DNA-AgNCs. The fluorescence response derived from AgNCs thus reflects the ATP concentration. Under the optimum conditions, the aptasensor shows a linear response range from 5 nM to 10 000 nM, with a detection limit of 0.27 nM. The level of ATP in human serum can be effectively measured by the aptasensor with good recovery, indicating its application potential in medical samples.
Collapse
Affiliation(s)
- Shixin Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Haohan Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
You C, Liu J, Qiu R, Xu L, Dai F, Ni Q, Qiu W. MiR-141 Modulates Bone Marrow Mesenchymal Stem Cells (BMSCs) Osteogenic/Adipogenic Differentiation Under Oxidative Stress. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BMSCs Osteogenic differentiation is beneficial to the construction of bone tissue engineering. Oxidative stress can affect BMSCs differentiation. MiR-141 regulates BMSCs proliferation. However, MiR-141’s role in BMSCs osteogenic/adipogenic differentiation under oxidative stress
is unclear. Mice BMSCs were assigned into control group; oxidative stress group; and si-MiR-141 group followed by detecting miR-141 level. After 14 days of osteogenesis or adipogenesis induction, RUNX2, OPN and FABP4 mRNA level was analyzed together with analysis of ROS and SOD content, ALP
activity and TGFβ/smad signaling protein level by Western blot. Under oxidative stress, MiR-141 was significantly upregulated and RUNX2 and OPN level was decreased, along with increased ROS content and FABP4 level, reduced SOD and ALP activity and expression of TGFβ1
and smad2 (P < 0.05). Transfection of MiR-141 siRNA into BMSCs under oxidative stress down-regulated MiR-141, significantly upregulated RUNX2 and OPN, reduced ROS, elevated SOD activity, downregulated FABP4, and increased ALP activity and TGFβ1 and smad2 expression (P
< 0.05). In conclusion, MiR-141 expression is increased in BMSCs under oxidative stress. Down-regulating MiR-141 improves the redox imbalance through TGFβ/smad signaling pathway, promotes osteogenic differentiation of BMSCs and inhibits differentiation to adipocytes.
Collapse
Affiliation(s)
- Chuanfei You
- Department of Orthopedics, Peoples Hospital of Siyang County, Suqian, Jiangsu, 223700, China
| | - Jun Liu
- Department of Orthopaedics, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Ruoyu Qiu
- Department of Rheumatoid Immunity, Nanjing Gulou Hospital Group Suqian People’s Hospital, Suqian, Jiangsu, 223800, China
| | - Leijun Xu
- Department of Orthopedics, Peoples Hospital of Siyang County, Suqian, Jiangsu, 223700, China
| | - Furen Dai
- Department of Orthopedics, Peoples Hospital of Siyang County, Suqian, Jiangsu, 223700, China
| | - Qianzhao Ni
- Department of Orthopedics, Peoples Hospital of Siyang County, Suqian, Jiangsu, 223700, China
| | - Weisheng Qiu
- Department of Orthopedics, Peoples Hospital of Siyang County, Suqian, Jiangsu, 223700, China
| |
Collapse
|
8
|
Bodulev OL, Sakharov IY. Modern Methods for Assessment of microRNAs. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:425-442. [PMID: 35790375 DOI: 10.1134/s0006297922050042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The review discusses modern methods for the quantitative and semi-quantitative analysis of miRNAs, which are small non-coding RNAs affecting numerous biological processes such as development, differentiation, metabolism, and immune response. miRNAs are considered as promising biomarkers in the diagnosis of various diseases.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| | - Ivan Yu Sakharov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Yang J, Luo F, Wang J, Qiu B, Shen J, Zhang L, Lin Z. Ultrasensitive Photoelectrochemical Biosensor for microRNA-155 Based on Energy Transfer between Au Nanocages and Red Emission Carbon Dot-Assembled Nanosheets Coupled with the Duplex-Specific Nuclease Enzyme-Assisted Target Recycling Strategy. Anal Chem 2021; 94:1482-1490. [PMID: 34968408 DOI: 10.1021/acs.analchem.1c05081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Energy transfer (ET) is an effective tool to construct photoelectrochemical (PEC) biosensors for its high sensitivity. Since the materials to develop ET systems are limited, exploring new and universal ET systems is significant. Herein, new photoactive nanosheets (R-CDs NS) formed by self-assembling of red emission carbon dots (R-CDs) have been synthesized, which exhibit wide visible light absorption and stable photocurrent response and have an obvious sensitization effect for TiO2. Gold nanocages (AuNCs), whose absorption overlap well with the R-CDs' emission, were synthesized and served as PEC quenchers for the photosensitized system that consists of TiO2 and R-CDs. The ET between R-CDs and AuNCs can boost the recombination of photogenerated electron-hole pairs of R-CDs and results in a quenched photocurrent of this system. MicroRNA-155 was chosen as a model target. First, the nanocomposite containing R-CDs NS and AuNCs was prepared through DNA modification and hybridization. In the absence of the target, AuNCs and R-CDs were close enough for ET, with TiO2-modified FTO serving as the working electrode, and a quenched photocurrent was detected. In the presence of the target, the disintegration of the nanocomposite was induced through target hybridization and DNA hydrolyzation, leading to the separation of AuNCs and R-CDs NS, and the ET disappeared and led to a high photocurrent. With duplex-specific nuclease enzyme-assisted target recycling, the high sensitivity enabled the sensor to monitor the target in cancer cells. The sensor has a low detection limit of 71 aM. The sensing platform has high sensitivity, good selectivity, and reproducibility.
Collapse
Affiliation(s)
- Jiao Yang
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Shen
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Lin Zhang
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Zhenyu Lin
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| |
Collapse
|
10
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Wu H, Wang H, Wu J, Han G, Liu Y, Zou P. A novel fluorescent aptasensor based on exonuclease-assisted triple recycling amplification for sensitive and label-free detection of aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125584. [PMID: 33743380 DOI: 10.1016/j.jhazmat.2021.125584] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxins are the most toxic type of mycotoxins, which may cause serious carcinogenesis, teratogenesis, and mutagenesis to humans and animals. In this work, we demonstrate a novel label-free fluorescent aptasensor based on exonuclease-assisted triple recycling amplification for the sensitive detection of aflatoxin B1 (AFB1). With the close cooperation of T7 exonuclease and three elaborately designed hairpin probes, the target AFB1 can perform three consecutive cycles of amplification reactions. In this process, each hairpin probe is fully utilized, and the target AFB1, the secondary target and the tertiary target are recycled, thereby achieving a high amplification. Interestingly and importantly, the secondary and tertiary targets generated by amplification are also excellent DNA template sequences for silver nanoclusters (AgNCs). In the presence of NaBH4 and AgNO3, a great number of DNA-AgNCs are synthesized, thereby producing a strong fluorescent signal. Under optimal conditions, the developed aptasensor exhibited high sensitivity to AFB1 with a low detection limit of 0.19 pg mL-1 and a wide dynamic range of 1 × 10-6-1 μg mL-1. In addition, the aptasensor also performed well in the determination of AFB1 in real samples.
Collapse
Affiliation(s)
- Hao Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Hongyong Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jun Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Guoqing Han
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Jiangsu Kanion Pharmaceutical CO. LTD, Lianyungang 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, China.
| |
Collapse
|
12
|
Chen X, Deng Y, Cao G, Xiong Y, Huo D, Hou C. Ultra-sensitive MicroRNA-21 detection based on multiple cascaded strand displacement amplification and CRISPR/Cpf1 (MC-SDA/CRISPR/Cpf1). Chem Commun (Camb) 2021; 57:6129-6132. [PMID: 34038492 DOI: 10.1039/d1cc01938d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNA-21 (miR-21) has been considered as a potential biomarker for cancer diagnosis and prognosis due to its high expression in tumors. Here, an analytical method which integrates the multiple cascaded strand displacement amplification and CRISPR/Cpf1 (MC-SDA/CRISPR/Cpf1) was proposed to ultra-sensitively detect it.
Collapse
Affiliation(s)
- Xiaolong Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Yuanyi Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. and Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. and Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
13
|
Song W, Wang J, Zhang Y, Ma T, Wang K. Effect of Substance P on Differentiation of Bone Marrow Stromal Stem Cells Under Oxidative Stress. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone marrow stromal stem cells (BMSCs) can be used to treat bone defects but BMSCs are damaged under oxidative stress. The neuropeptide substance P (SP) involves various cellular activities. However, SP’s role in BMSCs differentiation under oxidative stress is unknown. Rat BMSCs
were isolated and assigned into control group; oxidative stress group treated with 200 μM H2O2; and SP group, in which 10 mM SP was added under oxidative stress followed by analysis of SP secretion by ELISA, cell proliferation by MTT method, Caspase3 activity, Bax
and Bcl-2 level by Real time PCR, ALP activity ROS and SOD content as well as NF-κB level by Western blot. Under oxidative stress, SP secretion was significantly decreased, BMSCs proliferation was inhibited, Caspase3 activity and Bax expression increased, Bcl-2 and ALP activity was decreased
along with increased ROS activity and NF-κB level and reduced SOD activity (P <0.05), adding SP to BMSCs under oxidative stress can significantly promote SP secretion and cell proliferation, reduce Caspase3 activity and Bax expression, increase Bcl-2 expression and ALP activity,
decreased ROS activity and NF-κB level, and elevated SOD activity (P <0.05). SP secretion from BMSCs cells was reduced under oxidative stress. Up-regulation of SP in BMSCs cells under oxidative stress can inhibit BMSCs apoptosis and promote cell proliferation and osteogenesis
by regulating NF-κB.
Collapse
Affiliation(s)
- Wei Song
- First Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, 710004, China
| | - Jun Wang
- Department of Joint Surgery, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shanxi, 710054, China
| | - Yumin Zhang
- Department of Joint Surgery, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shanxi, 710054, China
| | - Tao Ma
- Department of Joint Surgery, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shanxi, 710054, China
| | - Kunzheng Wang
- First Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, 710004, China
| |
Collapse
|
14
|
Li D, Chen H, Gao X, Mei X, Yang L. Development of General Methods for Detection of Virus by Engineering Fluorescent Silver Nanoclusters. ACS Sens 2021; 6:613-627. [PMID: 33660987 DOI: 10.1021/acssensors.0c02322] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viruses have caused significant damage to the world. Effective detection is required to relieve the impact of viral infections. A biomolecule can be used as a template such as deoxyribonucleic acid (DNA), peptide, or protein, for the growth of silver nanoclusters (AgNCs) and for recognizing a virus. Both the AgNCs and the recognition elements are tunable, which is promising for the analysis of new viruses. Considering that a new virus such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urgently requires a facile sensing strategy, various virus detection strategies based on AgNCs including fluorescence enhancement, color change, quenching, and recovery are summarized. Particular emphasis is placed on the molecular analysis of viruses using DNA stabilized AgNCs (DNA-AgNCs), which detect the virus's genetic material. The more widespread applications of AgNCs for general virus detection are also discussed. Further development of these technologies may address the challenge for facile detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Dan Li
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hui Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xianhui Gao
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xifan Mei
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), China Medical University, Shenyang 110122, China
| |
Collapse
|
15
|
Wu H, Wu J, Liu Y, Wang H, Zou P. Silver nanoclusters-based fluorescent biosensing strategy for determination of mucin 1: Combination of exonuclease I-assisted target recycling and graphene oxide-assisted hybridization chain reaction. Anal Chim Acta 2020; 1129:40-48. [PMID: 32891389 DOI: 10.1016/j.aca.2020.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/07/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
A novel label-free fluorescent biosensing strategy was described for the sensitive detection of mucin 1 (MUC1). It consisted of an M-shaped aptamer probe for exonuclease I (Exo I)-assisted target recycling (EATR) amplification, and two AgNCs-hairpin probes for graphene oxide (GO)-assisted hybridization chain reaction (HCR) amplification. Based on the specificity of aptamer-target recognition, the addition of MUC1 caused a conformational change in the M-shaped aptamer probe, which was split into a MUC1-P3 complex and a P1-P2 duplex. Exo I then catalyzed the cleavage of aptamer sequence P3 from the MUC1-P3 complex and released the target MUC1. The released target MUC1 was free to bind with a new M-shaped probe to perform EATR amplification. Furthermore, the P1-P2 duplex with three single-stranded arms can act as a primer to initiate HCR between hairpin probes AgNCs-H1 and AgNCs-H2. In the process of HCR, two AgNCs-hairpins were autonomously cross-opened, generating long linear double-stranded nanowires containing large numbers of AgNCs. These nanowires cannot be quenched by GO due to the weak affinity between the long double-stranded DNA and GO, thereby retaining a strong fluorescent signal indicative of the concentration of MUC1. With these designs, in addition to an extremely low detection limit of 0.36 fg mL-1, the method exhibited an acceptable linear response to detect MUC1 from 1 fg mL-1 to 1 ng mL-1. Additionally, this method could be exerted with a high degree of success to detect MUC1 in diluted human serum with satisfactory results.
Collapse
Affiliation(s)
- Hao Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| | - Jun Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Hongyong Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| |
Collapse
|
16
|
Cao X, Zhang K, Yan W, Xia Z, He S, Xu X, Ye Y, Wei Z, Liu S. Calcium ion assisted fluorescence determination of microRNA-167 using carbon dots-labeled probe DNA and polydopamine-coated Fe 3O 4 nanoparticles. Mikrochim Acta 2020; 187:212. [PMID: 32157454 DOI: 10.1007/s00604-020-4209-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
A selective and sensitive fluorescence biosensor is described for determination of microRNA-167 using fluorescent resonant energy transfer (FRET) strategy. The FRET system comprises carbon dots (CDs, donor) labeled with probe DNA (pDNA) and polydopamine (PDA)-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs, acceptor). The CDs-pDNA can be absorbed onto the surface of Fe3O4@PDA NPs because of the strong π interaction between pDNA and PDA. With the enhanced adsorption ability of Fe3O4@PDA NPs by Ca2+, the fluorescence intensity of CDs at 445 nm (excitation at 360 nm) is quenched. In presence of microRNA-167, the hybridized complex of CDs-pDNA-microRNA-167 will be released from the surface of Fe3O4@PDA NPs due to the weak π interaction of the complex and PDA. This results in the fluorescence recovery of CDs. By application of twice-magnetic separation, the biosensor shows a wide linear range of 0.5-100 nM to microRNA-167 with a 76 pM detection limit. The method was applied to the determination of microRNA-167 in samples of total microRNA extractions from A. thaliana seedlings, and the recoveries ranged from 96.4 to 98.3%.
Collapse
Affiliation(s)
- Xiaodong Cao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kairui Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wuwen Yan
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zihao Xia
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shudong He
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuan Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yongkang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Zhaojun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Songqin Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|