1
|
Li F, Lv H, Zhu F, Zhang Q, Xu Q, Ji W. High throughput detection of veterinary drug residues in chicken and eggs. Food Chem 2025; 463:141267. [PMID: 39288463 DOI: 10.1016/j.foodchem.2024.141267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Co-extraction of multiple types of target substances is the key to achieve high throughput detection. In this work, PDA@MOF-808/PAN NFsM was prepared by co-modified polyacrylonitrile nanofiber membrane (PAN NFsM) with polydopamine (PDA) and metal-organic framework-808 (MOF-808), and its potential as a solid-phase extraction (SPE) adsorbent was investigated by using the most typical nine veterinary drug residues in eggs and chicken as model target substances. The results show that PDA@MOF-808/PAN NFsM could effectively co-extract all the target substances (adsorption efficiency ranged from 81.46 % to 96.78 %), and had good capability of sample matrix purification (matrix effect was lower than -15.26 %), so a new SPE method has been established. Combined with UPLC-MS/MS, the detection limits were 0.3 to 3.1 μg/kg, the recoveries were between 71.02 % and 106.48 %, and the relative standard deviations were lower than 12.03 %, indicating that the method has considerable good sensitivity, accuracy and precision.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Huijie Lv
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Qiuping Zhang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Wenliang Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| |
Collapse
|
2
|
Qiao Z, Liu Y, Hou S, Bai Y, Zhen S, Yang S, Xu H. Spherical fluorinated covalent organic polymer for highly efficient and selective extraction of fipronil and its metabolites in soil. Talanta 2024; 274:126033. [PMID: 38581855 DOI: 10.1016/j.talanta.2024.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Covalent organic polymers (COPs) have garnered considerable attention as promising adsorbents of online solid phase extraction (online SPE). Morphology modulation provides an appealing solution to enhance adsorption efficiency and reduce back-pressure in the absorbent. However, the synthesis of COPs with regular geometric shapes and specific adsorption selectivity remains challenging. In this study, a uniform spherical fluorinated COP (F-sCOP, average diameter: 2.14 μm) was successfully synthesized by Schiff base reaction of 1,3,5-triformylphoroglucinol (TP) and 2,2'-bis(trifluoromethyl)benzidine (TFMB). The F-sCOP had a large surface area (BET: 346.2 m2 g-1), remarkable enrichment capacity (enrichment factors: 186-782), high selectivity toward fipronil and its metabolites (adsorption efficiency >93.1%), and admirable service life (>60 times). Based on the adsorbent, a novel μ-matrix cartridge extraction-online-μ-solid phase extraction-high performance liquid chromatography-mass spectrometry (μ-MCE-online-μ-SPE-HPLC-MS) method was constructed and used to track trace fipronil and its metabolites in soil. The proposed method exhibited a wide linear range (0.05-1000 ng g-1), low quantitation limits (LOQs: 0.0027-0.011 ng g-1), high recoveries (90.1-119.6%) and good repeatability (RSD ≤10.5%, n = 3) for fipronil analysis. This study paves the way for pesticide analysis in soil risk assessment.
Collapse
Affiliation(s)
- Zhaoyu Qiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ying Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuxuan Bai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Zhen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Kholová A, Lhotská I, Erben J, Chvojka J, Švec F, Solich P, Šatínský D. Advanced nanofibrous sorbents for the extraction of pollutants from river water and protein-containing matrices. Talanta 2024; 269:125449. [PMID: 38039679 DOI: 10.1016/j.talanta.2023.125449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
The extraction efficiencies of thirty types of fibers produced by meltblown, alternating current electrospinning, and meltblown-co-electrospinning technologies were tested as advanced sorbents for on-line solid-phase extraction in a high-performance liquid chromatography system have been tested and compared with a commercial C18 sorbent. The properties of each fiber, which were often depended on the production process, and their applicability were demonstrated with the extraction of the model analytes nitrophenols and chlorophenols from various matrices including river water and to purify complex matrix human serum and bovine serum albumin from macromolecular ballast. Polycaprolactone fibers outperformed other polymers and were selected for subsequent modifications including (i) incorporation of hybrid carbon nanoparticles, i.e., graphene, activated carbon, and carbon black into the polymer prior to fiber fabrication, and (ii) surface modification by dip coating with polyhydroxy modifiers including graphene oxide, tannin, dopamine, hesperidin, and heparin. These novel fibrous sorbents were comparable to commercial C18 sorbent and provided excellent analyte recoveries of 70-112% even from the protein-containing matrices.
Collapse
Affiliation(s)
- Aneta Kholová
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Ivona Lhotská
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Jakub Erben
- The Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Studentská 1402/2, 46001, Liberec 1, Czech Republic
| | - Jiří Chvojka
- The Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Studentská 1402/2, 46001, Liberec 1, Czech Republic
| | - František Švec
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Petr Solich
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Dalibor Šatínský
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Naccarato A, Elliani R, Tagarelli A. A protocol based on solid phase microextraction -gas chromatography-tandem mass spectrometry for the monitoring of parabens and bisphenols in human saliva. J Chromatogr A 2023; 1707:464303. [PMID: 37607428 DOI: 10.1016/j.chroma.2023.464303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
The herein presented work aims to the development of an easy method for the quantitative determination of parabens and bisphenols in human salivabased on the use of methyl chloroformate as a derivatizing agent, followed by solid-phase microextraction (SPME) and gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS) analysis with selected reaction monitoring (SRM). Using multivariate analysis, two derivatization strategies were compared and optimized, demonstrating that the use of methyl chloroformate led to better sensitivity than the classical derivatization by acetic anhydride. Good performance in the sorption process of the derivatized target analytes was obtained using the most recent commercialized overcoated fiber (PDMS/DVB/PDMS). The validation procedure of the final protocol led to satisfactory results in terms of linearity, limit of quantitation, accuracy, and precision. All parabens were quantified from 10 ng/L using the developed method, except for methylparaben, which was quantified from 100 ng/L along with all bisphenols. Intra- and inter-day accuracy and intra- and inter-day precision can be considered satisfactory for all analytes (values between 73% and 118%), except for the inter-day accuracy of BPF. Quite good results also in terms of matrix effect were obtained for the target compounds (range 71% to 118%, RSD% less than 13.6%), except for BPA at the middle concentration and MeP at the lowest concentration. The greenness of the method was evaluated and the results indicated that our approach is more eco-friendly than previously published methods. Based on its characteristics, the presented method can be considered a suitable approach to determine parabens and bisphenols in routine analysis for biomonitoring purposes.
Collapse
Affiliation(s)
- Attilio Naccarato
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, I-87030 Arcavacata di Rende, CS, Italy
| | - Rosangela Elliani
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, I-87030 Arcavacata di Rende, CS, Italy.
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, I-87030 Arcavacata di Rende, CS, Italy
| |
Collapse
|
5
|
Zhang S, You Q, Zhuo X, Shi Z, Yao W, Lü T, Zhang D. Rapid and simple determination of organophosphorus pesticides in urine using polydopamine-modified monolithic spin column extraction combined with liquid chromatography–mass spectrometry. J Chromatogr A 2023; 1696:463959. [PMID: 37028207 DOI: 10.1016/j.chroma.2023.463959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
The determination of organophosphorus pesticides in urine is useful for evaluating human exposure. In this study, a simple micro-solid-phase extraction method based on a polydopamine-modified monolithic spin column combined with liquid chromatography-mass spectrometry (LC-MS) was developed for the determination of six organophosphorus pesticides (dimethoate, dichlorvos, carbofuran, methidathion, phosalone, and chlorpyrifos) in urine samples. A methacrylate polymer monolithic support was prepared in situ in the spin column, and dopamine solution was repeatedly passed through the monolith matrix via centrifugation to generate a polydopamine layer in the polymeric network. All extraction steps were performed via centrifugation. The monolith exhibited good permeability, which enabled high-flow-rate sample loading and significantly reduced the sample pre-treatment time. The addition of polydopamine significantly improved the extraction efficiency of the monolithic spin column owing to the catechol and amine groups in dopamine, which can enhance hydrogen bonding and π-π stacking. Factors affecting the extraction, including the solution pH, centrifugation speed, and desorption solvent, were investigated to determine the optimal extraction conditions. Under the optimal conditions, the OPP detection limits were 0.02-1.32 µg/L. The relative standard deviations of the single column (n = 5) and column-to-column (n = 3) precision for the extraction method were <11%. The monolithic spin column exhibited high stability and could be used for more than 40 extraction cycles. The recoveries for spiked urine samples were 72.1-109.3% (RSDs: 1.6-7.9%). The developed method was successfully applied to the simple and rapid analysis of organophosphorus pesticides in urine samples.
Collapse
|
6
|
Liu Y, Hou S, Chen T, Li Y, Zhang M, Zhou D, Xu H. Micro-matrix cartridge extraction followed by online micro-solid phase extraction based on polystyrene@hydroxypropyl-β-cyclodextrin nanofibers for selective determination of fipronil and its metabolites in soil. Mikrochim Acta 2023; 190:138. [PMID: 36920543 DOI: 10.1007/s00604-023-05714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Micro-matrix cartridge extraction coupled on-line to micro-solid phase extraction-high performance liquid chromatography-mass spectrometry (μ-MCE-online-μ-SPE-HPLC-MS) is presented. Micro-matrix cartridge extraction (μ-MCE) was applied to highly efficient desorption of adsorbed pesticides from contaminated soil with favorable extraction efficiency (100%). Novel polystyrene@hydroxypropyl-β-cyclodextrin (PS@HPCD) electrospun nanofibers with 3D network structure were prepared to selectively capture fipronil and its metabolites. High selectivity was obtained with adsorption efficiency ≥ 86.64% via complexation, hydrophobic affinity, and π-π interactions. PS@HPCD nanofibers exhibited remarkable advantages such as excellent enrichment factors (24-55), superior permeability, and long service life (> 65 times). Under the optimum conditions, wide linear range (0.1-1000 ng g-1), low detection limits (0.0032-0.0067 ng g-1), high recoveries (84-124.5%), favorable repeatability (RSD ≤ 10.4%, n = 5), and reproducibility (RSD ≤ 7.2%, n = 3) were acquired for fipronil and three metabolites. The developed method was applied to the pesticide determination in actual soils and the ISO-certified soil with satisfactory recoveries (96.5%). The method developed provides a green, efficient, and miniaturized method for the determination of trace pesticide residues in soil.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Tiantian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Manlin Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Dandan Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
7
|
Composite Nanofibers as Novel Sorbents for On-Line and Off-Line Solid-Phase Extraction in Chromatographic System: A Comparison for Detection of Free Biogenic Monoamines and Their Metabolites in Plasma. Molecules 2022; 27:molecules27206971. [PMID: 36296561 PMCID: PMC9611131 DOI: 10.3390/molecules27206971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Two different pretreatment approaches have been used for the enrichment and separation of biogenic monoamines and metabolites in plasma for high performance liquid chromatography (HPLC) determination. The first approach, based on on-line packed-fiber solid-phase extraction (PFSPE) coupled with HPLC, allows for the simultaneous detection of epinephrine (E), norepinephrine (NE), dopamine (DA), 3-methoxyl epinephrine (MN), norepinephrine (NMN), 3-methoxytyramine (3-MT), and 5-hydroxytryptamin (5-HT). Using this developed on-line PFSPE–HPLC method, the limit of detections (LODs) of the seven analytes ranged from 1 ng/mL (NMN and MN) to 2 ng/mL (NE, E, DA, 3-MT and 5-HT). The reportable ranges were 5–300 ng/mL for NE and DA, 5–100 ng/mL for E, and 5–200 ng/mL for NMN, MN, 3-MT and 5-HT. The off-line PFSPE–HPLC was employed in the second approach and could provide simultaneous detection of NE, E, DA, NMN, and MN. The linearity was verified in the range of 0.5–20 ng/mL (NE, E, and DA) and 20–250 ng/mL (NMN and MN). The LODs of the five analytes ranged from 0.2 ng/mL (NE, E, and DA) to 5 ng/mL (NMN and MN). This study verified the possibility of using nanofibers as an adsorbent in an on-line PFSPE–HPLC system for the determination of biogenic monoamines and their metabolites in human plasma. Compared with the off-line PFSPE approach, the on-line PFSPE method deserves attention mainly due to its greener character, derived from the automation of the process and high-throughput with less operators’ handling.
Collapse
|
8
|
Šrámková IH, Horstkotte B, Carbonell-Rozas L, Erben J, Chvojka J, Lara FJ, García-Campaña AM, Šatínský D. Nanofibrous Online Solid-Phase Extraction Coupled with Liquid Chromatography for the Determination of Neonicotinoid Pesticides in River Waters. MEMBRANES 2022; 12:membranes12070648. [PMID: 35877852 PMCID: PMC9319645 DOI: 10.3390/membranes12070648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023]
Abstract
Polymeric nano- and microfibers were tested as potential sorbents for the extraction of five neonicotinoids from natural waters. Nanofibrous mats were prepared from polycaprolactone, polyvinylidene fluoride, polystyrene, polyamide 6, polyacrylonitrile, and polyimide, as well as microfibers of polyethylene, a polycaprolactone nano- and microfiber conjugate, and polycaprolactone microfibers combined with polyvinylidene fluoride nanofibers. Polyimide nanofibers were selected as the most suitable sorbent for these analytes and the matrix. A Lab-In-Syringe system enabled automated preconcentration via online SPE of large sample volumes at low pressure with analyte separation by HPLC. Several mat layers were housed in a solvent filter holder integrated into the injection loop of an HPLC system. After loading 2 mL sample on the sorbent, the mobile phase eluted the retained analytes onto the chromatographic column. Extraction efficiencies of 68.8–83.4% were achieved. Large preconcentration factors ranging from 70 to 82 allowed reaching LOD and LOQ values of 0.4 to 1.7 and 1.2 to 5.5 µg·L−1, respectively. Analyte recoveries from spiked river waters ranged from 53.8% to 113.3% at the 5 µg·L−1 level and from 62.8% to 119.8% at the 20 µg·L−1 level. The developed methodology proved suitable for the determination of thiamethoxam, clothianidin, imidacloprid, and thiacloprid, whereas matrix peak overlapping inhibited quantification of acetamiprid.
Collapse
Affiliation(s)
- Ivana H. Šrámková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (B.H.); (D.Š.)
- Correspondence: ; Tel.: +420-495-067-183
| | - Burkhard Horstkotte
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (B.H.); (D.Š.)
| | - Laura Carbonell-Rozas
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuente Nueva s/n, E-18071 Granada, Spain; (L.C.-R.); (F.J.L.); (A.M.G.-C.)
| | - Jakub Erben
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic; (J.E.); (J.C.)
| | - Jiří Chvojka
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic; (J.E.); (J.C.)
| | - Francisco J. Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuente Nueva s/n, E-18071 Granada, Spain; (L.C.-R.); (F.J.L.); (A.M.G.-C.)
| | - Ana M. García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuente Nueva s/n, E-18071 Granada, Spain; (L.C.-R.); (F.J.L.); (A.M.G.-C.)
| | - Dalibor Šatínský
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (B.H.); (D.Š.)
| |
Collapse
|
9
|
Ma J, Yu Z, Liu S, Chen Y, Lv Y, Liu Y, Lin C, Ye X, Shi Y, Liu M, Tian J. Efficient extraction of trace organochlorine pesticides from environmental samples by a polyacrylonitrile electrospun nanofiber membrane modified with covalent organic framework. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127455. [PMID: 34653862 DOI: 10.1016/j.jhazmat.2021.127455] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Detecting and analyzing of the trace organochlorine pesticides (OCPs) in the real water has become a big challenge. In this work, a novel functional electrospun nanofiber membrane (PAN@COFs) was synthesized through the in situ growth of covalent organic frameworks (COFs) on a polyacrylonitrile electrospun nanofiber membranes under room temperature and used in the solid-phase micro-extraction (SPME) to enrich trace organochlorine pesticides (OCPs) in water. The resulted PAN@COFs composite consisted of numerous nanofibers coated ample porous COFs spheres (~ 500 nm) and owned stable crystal structure, abundant functional groups, good stability. In addition, the enrichment experiments clearly revealed that PAN@COFs exhibited rather outstanding performance on adsorbing the trace OCPs (as low as 10 ng L-1) with the enrichment of 482-2686 times. Besides, PAN@COFs displayed good reusability and could be reused 100 times. Notably, in the real water samples (sea water and river water), the high enrichment factors and recovery rates strongly confirmed the feasibility of PAN@COFs for detecting the trace OCPs. Furthermore, due to the synergy of π-π stacking interaction and hydrophobic interaction between the OCPs molecules and PAN@COFs, the OCPs could be efficiently adsorbed on PAN@COFs, even under the extremely low driving force.
Collapse
Affiliation(s)
- Jiachen Ma
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Zhendong Yu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Shuting Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Yicong Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350116, China; Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou 350118, China.
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Yongqian Shi
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Jingyang Tian
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China.
| |
Collapse
|
10
|
Liang S, Dai H, Wang C, Zhang H, Li J, Xu Q, Zhang Q. Application of polydopamine fibers mat for simultaneous detection of multi-class drug residues in various animal-original foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Recent advances in analysis of bisphenols and their derivatives in biological matrices. Anal Bioanal Chem 2021; 414:807-846. [PMID: 34652496 DOI: 10.1007/s00216-021-03668-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Biomonitoring is a very useful tool to evaluate human exposure to endocrine-disrupting compounds (EDCs), like bisphenols (BPs), which are widely used in the manufacture of plastics. The development of reliable analytical methods is key in the field of public health surveillance to obtain biomonitoring data to determine what BPs are reaching people's bodies. This review discusses recent methods for the quantitative measurement of bisphenols and their derivatives in biological samples like urine, blood, breast milk, saliva, and hair, among others. We also discuss the different procedures commonly used for sample treatment, which includes extraction and clean-up, and instrumental techniques currently used to determine these compounds. Sample preparation techniques continue to play an important role in the analysis of complex matrices, for liquid matrices the most commonly employed is solid-phase extraction, although microextraction techniques are gaining importance in this field, and for solid samples ultrasound-assisted extraction. The main instrumental techniques used are liquid and gas chromatography coupled with mass spectrometry. Finally, we present data on the main parameters obtained in the validation of the revised methods. This review focuses on various methods developed and applied for trace analysis of bisphenols, their conjugates, halogenated derivatives, and diglycidyl ethers in biological samples to enable the required selectivity and sensitivity. For this purpose, a review is carried out of the most recent relevant publications from 2016 up to present.
Collapse
|
12
|
[Determination of tetracycline and fluoroquinolone residues in fish by polydopamine nanofiber mat based solid phase extraction combined with ultra performance liquid chromatography-tandem mass spectrometry]. Se Pu 2021; 39:624-632. [PMID: 34227323 PMCID: PMC9404201 DOI: 10.3724/sp.j.1123.2020.12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tetracyclines and fluoroquinolones are common antibacterial drugs used in aquaculture, and their residues may pose a risk to human health. The low concentration of drug residues and complex matrixes such as fats and proteins in aquatic products necessitate the urgent development of efficient sample pretreatment methods. Solid phase extraction (SPE) is the most common sample pretreatment method, in which the core is an adsorbent. Compared with traditional SPE adsorbents, nanofiber mat (NFsM) has more interaction sites because of their large specific surface area. Furthermore, NFsMs modified with specific functional groups can significantly improve the extraction efficiency of tetracyclines and fluoroquinolones. Polydopamine (PDA) is spontaneously synthesized by the oxidative self-polymerization of dopamine-hydrochloride in alkaline solutions (pH>7.5). Because of its rich amino and catechol groups, PDA can form π-π stacking, electrostatic attraction, hydrophobic interaction, and hydrogen bonding interactions with target molecules. By exploiting the above advantages, polystyrene (PS) NFsM, as a template, was prepared by the electrostatic spinning method, and PDA-PS NFsM was obtained by functional modification of PDA through self-polymerization. Fourier transform infrared spectroscopy (FT-IR) and field-emission scanning electron microscopy (FESEM) were used to characterize the synthesized PS NFsM and PDA-PS NFsM. It was proved that PDA was successfully modified on the PS NFsM, with the SEM images revealing a rough outer core shell structure and an inner honeycomb structure. Subsequently, the handmade SPE column with PDA-PS NFsM was completed. A novel and efficient screening analytical method based on PDA-PS NFsM for the simultaneous determination of three tetracyclines (tetracycline (TET), chlortetracycline (CTC), and oxytetracycline (OTC)) and three fluoroquinolones (enrofloxacin (ENR), ciprofloxacin (CIP), and norfloxacin (NOR)) in fish by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The SPE procedure was optimized to develop an efficient method for sample preparation. Evaluate parameters including the amount of NFsM usage, ionic strength, flow rate of the sample solution, composition of eluent, and breakthrough volume were investigated. Only (20±0.1) mg of PDA-PS NFsM was sufficient to completely adsorb the targets, and the analytes retained on NFsM could be eluted by 1 mL of formic acid-ethyl acetate (containing 20% methanol) (1∶99, v/v). The residues were redissolved in 0.1 mL 10% methanol aqueous solution containing 0.2% formic acid. In addition, no adjustment of the pH and ionic strength of the sample solutions was required, and the breakthrough volume was 50 mL. The limits of detection (LODs) and limits of quantification (LOQs) of the six target compounds were measured at 3 times and 10 times the signal-to-noise ratio (S/N), respectively. The LODs and LOQs were 0.3-1.5 μg/kg and 1.0-5.0 μg/kg, respectively. The linear ranges of the six target compounds were LOQ-1000 μg/kg, and the coefficient of determination (R2) was greater than 0.999. To evaluate the accuracy and precision, blank spiked samples at three levels (low, medium, and high) were prepared for the recovery experiments, and each level with six parallel samples (n=6). The recoveries ranged from 94.37% to 102.82%, with intra-day and inter-day relative standard deviations of 2.38% to 8.06% and 4.10% to 9.10%, respectively. To evaluate the purification capacity of PDA-PS NFsM, the matrix effects before and after SPE were calculated and compared. Matrix effects before SPE were -12.98% to -38.68%. After the completion of SPEbased on PDA-PS NFsM, the matrix effect of each target analyte was significantly reduced to -2.15% to -7.36%, which proved the significant matrix removal capacity of PDA-PS NFsM. Finally, the practicality of this method was evaluated by using it to analyze real samples. This SPE method based on PDA-PS NFsM is efficient, practical, and environmentally friendly, and it has great potential for use in the routine monitoring of drug residues in fish.
Collapse
|
13
|
Metal organic framework-801 based magnetic solid-phase extraction and its application in analysis of preterm labor treatment drugs. J Pharm Biomed Anal 2021; 199:114049. [PMID: 33845384 DOI: 10.1016/j.jpba.2021.114049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
A novel magnetic solid-phase extraction (MSPE) method based on metal organic framework-801 (MOF-801) modified magnetic nanoparticles (noted as PEI-MNPs@MOF-801) was successfully prepared for the extraction of preterm labor treatment drugs (including indometacin, acemetacin and sulindac) from human plasma sample. MOF-801, a new kind of porous coordination polymer composed of Zr4+ and fumaric acid, was modified on the surface of synthesized polyethyleneimine magnetic nanoparticles (PEI-MNPs) through amidation reaction. The obtained PEI-MNPs@MOF-801 was characterized with Fourier-transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy. A MSPE-HPLC-UV method was developed by coupling PEI-MNPs@MOF-801 with HPLC system. Several parameters that affect the extraction efficiency including acetonitrile content, NaCl content, extraction time and sample volume were investigated. Under optimum conditions, the proposed MSPE-HPLC-UV method showed high extraction efficiency (enrichment factors between 96-118), good linearity with R ≥ 0.9987, excellent reproducibility (RSD ≤ 4.30 %) and low limits of detection in the range of 0.03-0.05 ng/mL. This method was also successfully applied to the extraction of indometacin, acemetacin and sulindac in human plasma samples and good recoveries were obtained.
Collapse
|
14
|
Arce MM, Ruiz S, Sanllorente S, Ortiz MC, Sarabia LA, Sánchez MS. A new approach based on inversion of a partial least squares model searching for a preset analytical target profile. Application to the determination of five bisphenols by liquid chromatography with diode array detector. Anal Chim Acta 2021; 1149:338217. [PMID: 33551051 DOI: 10.1016/j.aca.2021.338217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/08/2023]
Abstract
The paper shows a procedure for selecting the control method parameters (factors) to obtain a preset 'analytical target profile' when a liquid chromatographic technique is going to be carried out for the simultaneous determination of five bisphenols (bisphenol-A, bisphenol-S, bisphenol-F, bisphenol-Z and bisphenol-AF), some of them regulated by the European Union. The procedure has three steps. The first consists of building a D-optimal combined design (mixture-process design) for the control method parameters, which are the composition of the ternary mobile phase and its flow rate. The second step is to fit a PLS2 model to predict six analytical responses (namely, the resolution between each pair of consecutive peaks, and the initial and final chromatographic time) as a function of the control method parameters. The third final step is the inversion of the PLS2 model to obtain the conditions needed for attaining a preset analytical target profile. The computational inversion of the PLS2 prediction model looking for the Pareto front of these six responses provides a set of experimental conditions to conduct the chromatographic determination, specifically 22% of water, mixed with 58% methanol and 20% of acetonitrile, keeping the flow rate at 0.66 mL min-1. These conditions give a chromatogram with retention times of 2.180, 2.452, 2.764, 3.249 and 3.775 min for BPS, BPF, BPA, BPAF and BPZ, respectively, and excellent resolution among all the chromatographic peaks. Finally, the analytical method is validated under the selected experimental conditions, in terms of trueness and precision. In addition, the detection capability for the five bisphenols were: 596, 334, 424, 458 and 1156 μg L-1, with probabilities of false positive and of false negative equal to 0.05.
Collapse
Affiliation(s)
- M M Arce
- Dpt. Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - S Ruiz
- Dpt. Mathematics and Computation, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - S Sanllorente
- Dpt. Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - M C Ortiz
- Dpt. Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - L A Sarabia
- Dpt. Mathematics and Computation, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - M S Sánchez
- Dpt. Mathematics and Computation, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| |
Collapse
|
15
|
Yıldırım S, Sellitepe HE. Vortex assisted liquid-liquid microextraction based on in situ formation of a natural deep eutectic solvent by microwave irradiation for the determination of beta-blockers in water samples. J Chromatogr A 2021; 1642:462007. [PMID: 33735640 DOI: 10.1016/j.chroma.2021.462007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/19/2022]
Abstract
In this study, a simple, green, and reliable method combining vortex-assisted liquid-liquid microextraction based on in situ formation of a novel hydrophobic natural deep eutectic solvent (NADES-VA-LLME) and high-performance liquid chromatography (HPLC) was developed for the determination of metoprolol and propranolol in water samples. The novel NADES was synthesized in situ within only 20 s by subjecting the water sample containing azelaic acid and thymol to microwave irradiation at 50 ˚C. Initial studies indicated that a 17:1 ratio of thymol to azelaic acid yielded the highest response for analytes. The influence of 7 parameters, including NADES volume, salt amount, sample pH, vortex time, centrifugation time, microwave time, and temperature, were screened using a 27-3 fractional factorial design. The obtained significant parameters were optimized by response surface methodology employing a Box-Behnken design. The method displayed satisfactory linearity (r=0.9996) for metoprolol and propranolol with limits of detection of 0.2 and 0.1 µg/L, respectively. The relative standard deviation at 2.5, 40, and 80 µg/L levels was lower than 6%, with accuracy in the range of 90.8-100.2%. Enrichment factors were 147.0 and 144.4 for metoprolol and propranolol, respectively. This study demonstrates that the developed in situ NADES-VA-LLME-HPLC technique can be considered as a fast and environmentally friendly alternative for isolation/preconcentration of β-blockers from water samples.
Collapse
Affiliation(s)
- Sercan Yıldırım
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.
| | - Hasan Erdinç Sellitepe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
16
|
Háková M, Chocholouš P, Valachovič A, Erben J, Chvojka J, Solich P, Švec F, Šatínský D. On-line polydopamine coating as a new way to functionalize polypropylene fiber sorbent for solid phase extraction. Talanta 2020; 219:121189. [PMID: 32887106 DOI: 10.1016/j.talanta.2020.121189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Effective process, including a cartridge packing polypropylene fiber sorbent modified by following on-line polydopamine coating, for on-line solid phase extraction in 2D UHPLC system has been developed. Hydrophobic surface of mechanically stable polypropylene fibers was hydrophilized using an automated and reproducible in situ coating process to enable good wettability and effective extraction of polar compounds. Polymerization mixture consisting dopamine and TRIS buffer was circulated through the cartridge containing polypropylene fibers using a peristaltic pump to achieve polymerization. This process was optimized in terms of dopamine amount in the polymerization mixture, its flow rate, and polymerization time. Best results were obtained with 25 mL polymerization mixture containing 20 mg dopamine circulated through the cartridge at a flow rate of 2.07 mL min-1 for 60 min. Prepared cartridges were evaluated via measurement of the recovery and reproducibility using chlorogenic acid as a model compound. Overall reproducibility of our multistep process including eight cartridges in 2D UHPLC system, each measured in triplicate, was 3.61% (n = 24).
Collapse
Affiliation(s)
- Martina Háková
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Adam Valachovič
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jakub Erben
- Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Studentská 1402/2, 46001, Liberec 1, Czech Republic
| | - Jiří Chvojka
- Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Studentská 1402/2, 46001, Liberec 1, Czech Republic
| | - Petr Solich
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - František Švec
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Dalibor Šatínský
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
17
|
Cao J, Liang S, Zhang H, Xu Q, Ji W. Sodium 4-styrenesulfonate functionalized nanofibers mat as 96-well plate solid-phase extraction adsorbent for quantitative determination of multiple β-agonists residues in pork samples. Food Chem 2020; 335:127631. [PMID: 32736157 DOI: 10.1016/j.foodchem.2020.127631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 01/10/2023]
Abstract
In this work, sodium 4-styrenesulfonate functionalized polyacrylonitrile nanofibers mat (SS/PAN NFM) was firstly prepared and applied as 96-well plate solid-phase extraction adsorbent for quantitative determination of seven β-agonists residues in pork samples. The functional modification endowed the SS/PAN NFM with superior adsorption performance for target β-agonists. The adsorption process is spontaneous (ΔG < 0), the initial adsorption rate can reach 6.03-9.09 mg/g/min and the maximum adsorption capacity is calculated to be 48.3 mg/g at 298 K. Moreover, SS/PAN NFM can be reused for 12 times without degradation in adsorption capability. Combined with UPLC-MS/MS, the limits of detection can reach 0.006-0.24 μg/kg, the recoveries ranged from 87.2% to 111% and the relative standard deviations of intra-day and inter-day precisions were in the scope of 1.75%-11.6% and 5.08%-13.5%, respectively. The obtained results fully demonstrated the practicability of this method in preventing the hazard of β-agonists residues.
Collapse
Affiliation(s)
- Jiankun Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Sihui Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Province Center for Disease Control and Prevention, Nanjing 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Wenliang Ji
- Jiangsu Province Center for Disease Control and Prevention, Nanjing 210009, China.
| |
Collapse
|
18
|
Háková M, Havlíková LC, Švec F, Solich P, Šatínský D. Nanofibers as advanced sorbents for on-line solid phase extraction in liquid chromatography: A tutorial. Anal Chim Acta 2020; 1121:83-96. [PMID: 32493593 DOI: 10.1016/j.aca.2020.04.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
Polymers in nanofiber format promise a great potential as sorbents for extraction techniques. This tutorial provides an overview of direct coupling of extraction techniques based on nanofibers to liquid chromatography. Arrangements of the fibers in conventional extraction cartridges are demonstrated. Selection of suitable nanomaterials according to their surface density, wettability, and mechanical stability is proposed and personal experience of the authors commented. Optimization of on-line extraction procedure, practical aspects, technical problems, pitfalls, pros, and cons of using nanofibers for extraction in high-pressure chromatography systems are also discussed and several examples presented. The following text comprehensively summarizes numerous reports that dealt with the topic. Future perspectives of advanced nanofiber materials and approaches that concern polymer fibers modifications are also included.
Collapse
Affiliation(s)
- Martina Háková
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Chocholoušová Havlíková
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - František Švec
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Solich
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Dalibor Šatínský
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
19
|
Peng S, Bai L, Wang L, Sun F, Liu H, Yan H. Fabrication of a cycloalkyl-monolith for on-line solid-phase extraction and determination of four polyphyllins in plasma. Anal Biochem 2020; 591:113555. [DOI: 10.1016/j.ab.2019.113555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 01/04/2023]
|