1
|
Wu Q, Tian L, Shan X, Li H, Yang S, Li C, Song Y, Li R, Guo Y, Lu J. A molecule-imprinted electrochemiluminescence sensor based on CdS@MWCNTs for ultrasensitive detection of fenpropathrin. Mikrochim Acta 2024; 191:269. [PMID: 38630309 DOI: 10.1007/s00604-024-06296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
A molecularly-imprinted electrochemiluminescence sensor was constructed for the determination of fenpropathrin (FPT) by molecular imprinting technology. In this sensing platform, the introduction of CdS@MWCNTs significantly enhanced the initial ECL signal of the luminol-O2 system. Specifically, MWCNTs was used as a carrier to adsorb more CdS, in which CdS acted as a co-reaction promoter for luminescence. Molecularly imprinted polymer (MIP) containing specific recognition sites of FPT was used as the material for selective recognition. With increasing amount of FPT the ECL signal decreased. Under the optimum conditions, the ECL response was linearly related to the logarithm of FPT concentration. The developed ECL sensor allowed for sensitive determination of FPT and exhibited a wide linear range from 1.0 × 10- 10 mol L- 1 to 1.0 × 10- 6 mol L- 1. The limit of detection was 3.3 × 10- 11 mol L- 1 (S/N = 3). It can be used for the detection of FPT in vegetable samples.
Collapse
Affiliation(s)
- Qian Wu
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China.
| | - Xiangyu Shan
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Huiling Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Shuning Yang
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Chao Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Yujia Song
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Ruidan Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Yanjia Guo
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| |
Collapse
|
2
|
Wu Q, Tian L, Shan X, Li H, Yang S, Li C, Lu J. An electrochemiluminescence sensor based on the CNTs and CdSe@ZnSe for determination of melamine in milk samples. Food Chem 2024; 430:137028. [PMID: 37536069 DOI: 10.1016/j.foodchem.2023.137028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
In this work, a novel electrochemiluminescence (ECL) sensor based on the CdSe@ZnSe and CNTs was constructed for the detection of melamine. CdSe@ZnSe acted as the co-reaction promoter for the enhancement of Ru(bpy)32+/tri-n-propylamine (TPrA) system and CNTs acted as carriers to immobilize more CdSe@ZnSe. The initial ECL signal significantly amplified due to the synergistic effect of CNTs and CdSe@ZnSe. The ECL signal decreased with the addition of melamine, and the change value of ECL intensity (ΔI) was linearly related to the logarithm of melamine concentration. The constructed ECL sensor was able to detect melamine in the range of 1.0 × 10-11 - 1.0 × 10-7 M, and the detection limit was 3.3 × 10-12 M (S/N = 3). It can be used to detect melamine in milk samples.
Collapse
Affiliation(s)
- Qian Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China.
| | - Xiangyu Shan
- College of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
| | - Huiling Li
- College of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
| | - Shuning Yang
- College of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
| | - Chao Li
- College of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China.
| |
Collapse
|
3
|
Sun Z, Lu J, Zhang X, Shan X, Wu Q, Li C, Li H, Yang S, Tian L. Electrospun nanofibers containing CdTe@ZnNi-MOF for electrochemiluminescent determination of chlorpyrifos. Mikrochim Acta 2022; 189:473. [DOI: 10.1007/s00604-022-05574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
|
4
|
Zhang X, Tian L, Sun Z, Wu Q, Shan X, Zhao Y, Chen R, Lu J. A molecule-imprinted electrochemiluminescence sensor based on self-accelerated Ru(bpy)32+@ZIF-7 for ultra-sensitive detection of procymidone. Food Chem 2022; 391:133235. [DOI: 10.1016/j.foodchem.2022.133235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/28/2022] [Accepted: 05/15/2022] [Indexed: 11/27/2022]
|
5
|
Li S, Luo J, Wu Y, Ma X, Pang C, Wang M, Luo J, Zhang C, Tan G. Determination of trichlorfon using a molecularly imprinted electrochemiluminescence sensor on multi-walled carbon nanotubes decorated with silver nanoparticles. Mikrochim Acta 2022; 189:347. [PMID: 36001192 DOI: 10.1007/s00604-022-05452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Considering the limitations associated with existing methods for the detection of trace amounts of trichlorfon, this paper proposes a novel molecularly imprinted electrochemiluminescence (ECL) sensor for the detection of trichlorfon by utilizing the double enhancement effect of trichlorfon and Ag nanoparticles supported by multi-walled carbon nanotubes (MWCNTs/Ag NPs) in a luminol-H2O2 ECL system. Here, trichlorfon was electropolymerized on the surface of the MWCNT/Ag NP-modified gold nanoelectrode with o-phenylenediamine to prepare the molecularly imprinted polymer-based sensor. After eluting the trichlorfon, imprinted holes for the identification of trichlorfon were retained on the sensor, which were used as signal switches to obtain different ECL intensities through the adsorption of different concentrations of trichlorfon. The ECL signal of the sensitized luminol-H2O2 was doubly enhanced by the MWCNTs/Ag and trichlorfon, improving the sensitivity of the sensor. The trichlorfon concentration was positively correlated with the enhanced ECL intensity of the sensor in the range 5.0 × 10-8-5.0 × 10-11 mol L-1, and the detection limit of trichlorfon was 3.9 × 10-12 mol L-1. Moreover, the proposed sensor was successfully applied to the detection of trichlorfon residues in real samples, and the recovery ranged between 91.8 and 109%. A molecularly imprinted electrochemiluminescence sensor for trichlorfon detection by utilizing the double enhancement effect of trichlorfon and Ag nanoparticles supported by multi-walled carbon nanotubes in a luminol-H2O2 ECL system. The dual enhancement of the ECL signal improved the sensitivity of the sensor.
Collapse
Affiliation(s)
- Shuhuai Li
- Analysis and Test Center, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311, China.
| | - Jinmei Luo
- Analysis and Test Center, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Yuwei Wu
- Analysis and Test Center, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311, China
| | - Xionghui Ma
- Analysis and Test Center, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311, China
| | - Chaohai Pang
- Analysis and Test Center, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311, China
| | - Mingyue Wang
- Analysis and Test Center, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311, China.
| | - Jinhui Luo
- Analysis and Test Center, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311, China.
| | - Chenghui Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Gaohao Tan
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, 570311, China
| |
Collapse
|
6
|
Zhang X, Tian L, Wu K, Sun Z, Wu Q, Shan X, Zhao Y, Chen R, Lu J. High sensitivity electrochemiluminescence sensor based on the synergy of ZIF-7 and CdTe for determination of glucose. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|