1
|
Guo X, Wang M. Recent progress in optical and electrochemical aptasensor technologies for detection of aflatoxin B1. Crit Rev Food Sci Nutr 2023:1-19. [PMID: 37778392 DOI: 10.1080/10408398.2023.2260508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
AFB1 (Aflatoxin B1) contamination is becoming a global concern issue due to its extraordinary occurrence, severe toxicity, as well as the great influence on the economic losses, food safety and environment. Therefore, it is desirable to develop novel analytical techniques for simple, rapid, accurate, and even point-of-care testing of AFB1. Fortunately, aptamer, considered as a new generation bioreceptor and even superior to classic antibody and enzyme, has been emerged remarkable application in food hazards detection. Correspondingly, aptasensors have been well-established toward AFB1 determination with outstanding performance. In this article, we first discuss and summarize the recent progress in optical and electrochemical aptasensors to monitor AFB1 over the past three years. In particular, the embedding of advanced nanomaterials for their improved analytical performance is highlighted. Furthermore, the critical analysis on various signal transduction strategies for aptasensors construction is discussed. Finally, we reveal the challenges and provide our opinion in future opportunities for aptasensor development.
Collapse
Affiliation(s)
- Xiaodong Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Kunene K, Sayegh S, Weber M, Sabela M, Voiry D, Iatsunskyi I, Coy E, Kanchi S, Bisetty K, Bechelany M. Smart electrochemical immunosensing of aflatoxin B1 based on a palladium nanoparticle-boron nitride-coated carbon felt electrode for the wine industry. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Qiao L, Zhao Y, Zhang Y, Zhang M, Tao Y, Xiao Y, Zeng X, Zhang Y, Zhu Y. Designing a Stable g-C 3N 4/BiVO 4-Based Photoelectrochemical Aptasensor for Tetracycline Determination. TOXICS 2022; 11:17. [PMID: 36668743 PMCID: PMC9865260 DOI: 10.3390/toxics11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The excessive consumption of tetracycline (TC) could bring a series of unpredictable health and ecological risks. Therefore, it is crucial to develop convenient and effective detection technology for TC. Herein, a "signal on" photoelectrochemical (PEC) aptasensor was constructed for the stable detection of TC. Specifically, the g-C3N4/BiVO4 were used to promote the migration of photo-generated charges to an enhanced photocurrent response. TC aptamer probes were stably fixed on the g-C3N4/BiVO4/FTO electrode as a recognition element via covalent bonding interaction. In the presence of TC, the aptamer probes could directly recognize and capture TC. Subsequently, TC was oxidized by the photogenerated holes of g-C3N4/BiVO4, causing an enhanced photocurrent. The "signal on" PEC aptasensor displayed a distinguished detection performance toward TC in terms of a wide linear range from 0.1 to 500 nM with a low detection limit of 0.06 nM, and possessed high stability, great selectivity, and good application prospects.
Collapse
Affiliation(s)
- Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yue Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yuanyuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Mingjuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xinxia Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
4
|
Photoelectrochemical biosensor based on FTO modified with BiVO4 film and gold nanoparticles for detection of miRNA-25 biomarker and single-base mismatch. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Li J, Wang Q, Xiong C, Deng Q, Zhang X, Wang S, Chen MM. An ultrasensitive CH3NH3PbBr3 quantum dots@SiO2-based electrochemiluminescence sensing platform using an organic electrolyte for aflatoxin B1 detection in corn oil. Food Chem 2022; 390:133200. [DOI: 10.1016/j.foodchem.2022.133200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 12/23/2022]
|
6
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
7
|
High-efficiency enzyme-free catalyzed hairpin assembly-mediated homogeneous SERS and naked-eyes dual-mode assay for ultrasensitive and portable detection of mycotoxin. Biosens Bioelectron 2022; 214:114526. [DOI: 10.1016/j.bios.2022.114526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
|
8
|
Liu D, Jia F, Wei Y, Li Y, Meng S, You T. Programmable analytical feature of ratiometric electrochemical biosensor by alternating the binding site of ferrocene to
DNA
duplex for the detection of aflatoxin
B1. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Fan Jia
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| |
Collapse
|
9
|
Electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene for rapid detection of aflatoxin B1 in peanut oil. Anal Biochem 2022; 650:114710. [PMID: 35568158 DOI: 10.1016/j.ab.2022.114710] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
Peanut oil is a basic food raw material in life. However, aflatoxin contamination in peanut oil is considered to be one of the most serious food safety problems in the world. Based on AuNPs/Zn/Ni-ZIF-8-800@graphene composite, a simple, efficient and sensitive electrochemical immunosensor was developed to detect aflatoxin B1 (AFB1) in peanut oil. The bare glassy carbon electrode was modified by graphene, bimetallic organic framework material (Zn/Ni-ZIF-8-800), chitosan and gold nanoparticles. The electrochemical immunosensor was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) and cyclic voltammetry (CV), and the electrochemical signal changes after antibody and AFB1 binding were investigated in detail. Under the optimal conditions, the linear range of the electrochemical immunosensor was 0.18-100 ng/mL, and the detection limit was 0.18 ng/mL. In addition, the prepared sensor has high selectivity and long-term stability, which lays a foundation for the simple, rapid and sensitive detection of AFB1 in peanut oil.
Collapse
|
10
|
Chen Q, Yuan C, He Z, Wang J, Zhai C, Bin D, Zhu M. A label-free photoelectrochemical sensor of S, N co-doped graphene quantum dot (S, N-GQD)-modified electrode for ultrasensitive detection of bisphenol A. Mikrochim Acta 2022; 189:208. [PMID: 35501498 DOI: 10.1007/s00604-022-05289-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/19/2022] [Indexed: 01/01/2023]
Abstract
S, N co-doped graphene quantum dot (S, N-GQD) materials have been composited via a one-pot pattern and used as photosensitive materials to construct a label-free photoelectrochemical (PEC) sensor. The PEC experiments show an enhanced photocurrent response toward Bisphenol A (BPA) sensing due to the increased charge transfer rate and the enhanced absorption of visible light. Compared with dark conditions, the photocurrent signal (- 0.2 V vs. SCE) is greatly increased because of the effective oxidation of BPA by photogenerated holes and the rapid electron transfer of S, N-GQDs on the PEC sensing platform. Under optimal conditions linear current response to BPA is in two ranges of 0.12-5 µM and 5-40 µM. The limit of detection is 0.04 µM (S/N = 3). The designed sensor has enduring stability and admirable interference immunity. It provides an alternative approach for BPA determination in real samples with recoveries of 99.3-103% and RSD of 2.0-4.1%.
Collapse
Affiliation(s)
- Qiaowei Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Chen Yuan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zhilong He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Duan Bin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 510632, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Pan LM, Zhao X, Wei X, Chen LJ, Wang C, Yan XP. Ratiometric Luminescence Aptasensor Based on Dual-Emissive Persistent Luminescent Nanoparticles for Autofluorescence- and Exogenous Interference-Free Determination of Trace Aflatoxin B1 in Food Samples. Anal Chem 2022; 94:6387-6393. [PMID: 35414169 DOI: 10.1021/acs.analchem.2c00861] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensitive and accurate determination of aflatoxin B1 (AFB1) is of great significance to food safety and human health as it is recognized as the most toxic mycotoxin and carcinogenic. Herein, we report a ratiometric luminescence aptasensor based on dual-emissive persistent luminescent nanoparticles (PLNP) for the accurate determination of trace AFB1 in complex food samples without autofluorescence and exogenous interference. Dual-emissive PLNP ZnGa2O4:Cr0.0001 was prepared first and acted as the donor for energy transfer as well as the signal unit with phosphorescence at 714 and 508 nm (the detection and the reference signal, respectively). AFB1 aptamer was then bonded on the surface of PLNP to offer specific recognition ability. Aptamer complementary DNA modified with Cy5.5 was employed as the acceptor for energy transfer and the quenching group to eventually develop a turn-on ratiometric luminescence aptasensor. The developed ratiometric luminescence aptasensor combined the merits of long-lasting luminescence, in situ excitation and autofluorescence-free of PLNP, exogenous interference-free and self-calibration reading of ratiometric sensor, as well as the high selectivity of aptamer, holding great promise for accurate determination of trace AFB1 in complex matrix. The developed ratiometric aptasensor exhibited excellent linearity (0.05-70 ng mL-1), low limit of detection (0.016 ng mL-1), and good precision (2.3% relative standard deviation for 11 replicate determination of 1 ng mL-1 AFB1). The proposed ratiometric aptasensor was successfully applied for the determination of AFB1 in corn, wheat, peanut, millet, oats, and wheat kernels with recoveries of 95.1-106.5%.
Collapse
Affiliation(s)
- Lu-Ming Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiang Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
A separated type cathode photoelectrochemical aptasensor for thrombin detection based on novel organic polymer heterojunction photoelectric material. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Hong F, Huang C, Wu L, Wang M, Chen Y, She Y. Highly sensitive magnetic relaxation sensing method for aflatoxin B1 detection based on Au NP-assisted triple self-assembly cascade signal amplification. Biosens Bioelectron 2021; 192:113489. [PMID: 34293688 DOI: 10.1016/j.bios.2021.113489] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Highly sensitive detection of aflatoxin B1 (AFB1) is of great significance because of its high toxicity and carcinogenesis. We propose a magnetic relaxation sensing method based on gold nanoparticles (Au NPs)-assisted triple self-assembly cascade signal amplification for highly sensitive detection of AFB1. Both AFB1 antibody and initiator DNA (iDNA) are labeled on Au NPs to form Ab-Au-iDNA probe. iDNA is enriched by Au NPs to achieve first signal amplification. Different amounts of Ab-Au-iDNA were bound with AFB1 antigen by indirect competitive immunoassay, and then hybridization chain reaction event was initiated by iDNA to produce long hybridization chain reaction products to enrich more horseradish peroxidase-streptavidin for the second signal amplification. Dopamine could be rapidly converted to polydopamine by HRP catalysis, which is used as the third signal amplification. The Fe3+ solution, providing paramagnetic ions with a strong magnetic signal, could be adsorbed by the polydopamine due to the formation of coordination bonds of phenolic hydroxyl groups with Fe3+. This effective interaction between polydopamine and Fe3+ significantly changes the transverse relaxation time signal of Fe3+ supernatant solution, which can be used as a magnetic probe for highly sensitive detection of AFB1. The sensor exhibited high specificity and sensitivity with a detection limit of 0.453 pg/mL owing to the Au NP-assisted triple self-assembly cascade signal amplification strategy. It has been successfully employed for AFB1 detection in animal feed samples with consistent results of enzyme linked immune sorbent assay and high-performance liquid chromatography.
Collapse
Affiliation(s)
- Feng Hong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Long Wu
- College of Food Science and Engineering, Hainan University, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Miao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of MOA, Beijing, 100081, PR China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China.
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of MOA, Beijing, 100081, PR China.
| |
Collapse
|
14
|
|
15
|
Khairy M. A synergetic effect of cerium oxide nanocubes and gold nanoparticles for developing a new photoelectrochemical sensor of codeine drug. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Li H, Li Y, Zhang X, Liu P, He M, Li C, Wang Y. Near-infrared photoactive Yb-MOF functionalized with a large conjugate ionic liquid: synthesis and application for photoelectrochemical immunosensing of carcinoma embryonic antigen. NANOSCALE 2021; 13:9757-9765. [PMID: 34023865 DOI: 10.1039/d1nr01606g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A novel near-infrared (NIR)-excited photoelectrochemical (PEC) immunosensor based on an ionic liquid functionalized metal organic framework (Yb-MOF) and gold nanoparticles (Au-NPs) was designed for the high-performance determination of carcinoembryonic antigen (CEA). The Yb-MOF was synthesized from the coordination of the Yb3+ metal ion with the 1,1'-(1,5-dihydropyrene-2,7-diyl)bis(3-(4-carboxybenzyl)-1H-imidazol-3-ium) bromide [DDPDBCBIm(Br)2] ionic liquid by a hydrothermal method. To improve the photoelectric conversion efficiency of the Yb-MOF in the NIR region, the surface of the Yb-MOF was integrated with gold nanoparticles (AuNPs) to fabricate a Yb-MOF@AuNP nanocomposite through an in situ reduction of chloroauric acid with sodium borohydride. The NIR photoelectrochemical response of the Yb-MOF@AuNPs at 808 nm was enhanced 4-fold over the pristine Yb-MOF. Subsequently, a photoelectrochemical platform based on the Yb-MOF@AuNPs was constructed for loading the CEA antibody (anti-CEA). After cross-linking with glutaraldehyde followed by blocking with bovine serum albumin, a photoelectrochemical sensor for assaying CEA was fabricated. Upon specifically interacting with CEA, CEA can block the photogenerated electron-hole pair transfer and the mass transfer of ascorbic acid to the sensing interface, thus leading to a decrease in photocurrent response. The photocurrent variation can be used for determining CEA quantitatively. After optimizing the experimental conditions, the photocurrent variations before and after incubation with CEA were linearly correlated with the CEA concentration over the range of 0.005-15 ng mL-1. The detection limit of CEA was calculated to be 0.25 pg mL-1 (S/N = 3). The immunosensor was employed for the measurement of free CEA in clinical serum samples, and the results were very consistent with the values obtained by clinical tests. The NIR PEC immunosensor also demonstrated excellent accuracy and recovery, which corroborates its potential as a practical technique in clinical diagnosis.
Collapse
Affiliation(s)
- Huiyue Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yadav N, Yadav SS, Chhillar AK, Rana JS. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food Chem Toxicol 2021; 152:112201. [PMID: 33862122 DOI: 10.1016/j.fct.2021.112201] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most potent mycotoxin contaminating several foods and feeds. It suppresses immunity and consequently increases mutagenicity, carcinogenicity, teratogenicity, hepatotoxicity, embryonic toxicity and increasing morbidity and mortality. Continuous exposure of AFB1 causes liver damage and thus increases the prevalence of cirrhosis and hepatic cancer. This article was planned to provide understanding of AFB1 toxicity and provides future directions for fabrication of cost effective and user-friendly nanomaterials based analytical devices. In the present article various conventional (chromatographic & spectroscopic), modern (PCR & immunoassays) and nanomaterials based biosensing techniques (electrochemical, optical, piezoelectrical and microfluidic) are discussed alongwith their merits and demerits. Nanomaterials based amperometric biosensors are found to be more stable, selective and cost-effective analytical devices in comparison to other biosensors. But many unresolved issues about their stability, toxicity and metabolic fate needs further studies. In-depth studies are needed for development of advanced nanomaterials integrated biosensors for specific, sensitive and fast monitoring of AFB1 toxicity in foods. Integration of biosensing system with micro array technology for simultaneous and automated detection of multiple AFs in real samples is also needed. Concerted efforts are also required to reduce their possible hazardous consequences of nanomaterials based biosensors.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Deparment of Botany, MaharshiDayanand University, Rohtak, Haryana, 124001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
18
|
Kong FY, Zou HY, Xiong M, Zhang JD, Wang W, Zhao WW. 3D NiO nanoflakes/carbon fiber meshwork: Facile preparation and utilization as general platform for photocathodic bioanalysis. Anal Chim Acta 2021; 1143:173-180. [PMID: 33384115 DOI: 10.1016/j.aca.2020.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
Herein, we describe a customized approach for facile preparation of three-dimensional (3D) NiO nanoflakes (NFs)/carbon fiber meshwork (CFM) and its validation as a common photocathode matrix for photoelectrochemical (PEC) bioanalysis, which to our knowledge has not been reported. Specifically, 3D NiO NFs/CFM was fabricated by a sequential liquid phase deposition and annealing process, which was then characterized by scanning electron microscopy, X-ray photoelectron spectrum, UV-vis absorption spectra and N2 adsorption-desorption measurement. Sensitized by BiOI and incorporated with an alkaline phosphatase (ALP)/tyrosinase (TYR) bi-enzyme cascade system, a sensitive split-type cathodic PEC bioanalysis for the determination of ALP was achieved. This method can detect ALP concentrations down to 3 × 10-5 U L-1 with a linear response range of 0.001-10 U L-1. Moreover, this proposed system exhibited good selectivity, stability and excellent performance for real sample analysis. This research features the facile preparation of 3D NiO NFs/CFM that could acts as a universal matrix for photocathodic analysis, and is envisioned to stimulate more effort for advanced 3D photocathode for PEC bioanalysis and beyond.
Collapse
Affiliation(s)
- Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hui-Yu Zou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Jia-Dong Zhang
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|