1
|
Yang D, Shao T, Zhang L, Wang X, Yue Q. Novel carbon dots from phenylenediamine for simultaneous detection of peroxydisulfate and phosphate with a smart phone by dual-channel of fluorometry and colorimetry. Food Chem 2025; 472:142905. [PMID: 39848051 DOI: 10.1016/j.foodchem.2025.142905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Carbon dots (CDs), one type of zero-dimensional carbon nanomaterial, showed extensive application in food analysis. Herein, CDs as fluorometry and colorimetry probes were developed to determine peroxydisulfate (PDS) and phosphate ion (Pi) in food samples. CDs were developed with one-pot hydrothermal process from 5-amino salicylic acid and o/m-phenylenediamine named o/m-CDs. o-CDs and m-CDs showed bright green fluorescence with quantum yield at 5.73 % and 6.40 %, which was quenched by PDS and Pi. Fluorometry was based on fluorescence quenching with LOD at 1.6 nM (PDS) and 5.2 nM (Pi). The colorimetry was based on color change of CDs from colorless to brown and indigo blue with LOD at 2.4 (PDS) and 21.1 μM (Pi). Interestingly, for both channels there was no interfering of each other. For portable detection, a wechat mini program of smart phone was employed to calculate the color change. Furthermore, the systems were potential for application in food safety analysis.
Collapse
Affiliation(s)
- Dou Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Tong Shao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Likai Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiaoshuang Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
2
|
Namazi Koochak N, Fatmehsari Haghshenas D, Firoozi S, Hassanzadeh M. Selective colorimetric sensing of histidine in aqueous media via Ag nanotriangles in the presence of HgCl 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125072. [PMID: 39232307 DOI: 10.1016/j.saa.2024.125072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Silver nanotriangles (AgNTs) were successfully synthesized as a colorimetric probe for selective and sensitive histidine detection in aqueous media within a 15-100 µM range and a detection limit of 330 nM using UV-Vis spectroscopy. The interaction of HgCl2 with AgNTs would lead to the formation of disk-shaped Ag/Hg amalgam as observed from the transmission electron images and X-ray diffraction patterns. Histidine prevents these structural and morphological changes and accordingly, the detection approach was developed based on the correlation between the histidine concentration and the in-plane dipole plasmon resonance (DPR) intensity.
Collapse
Affiliation(s)
- Niloofar Namazi Koochak
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Davoud Fatmehsari Haghshenas
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Sadegh Firoozi
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammadreza Hassanzadeh
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
3
|
Aldakhil F, Alarfaj NA, Al-Tamimi SA, El-Tohamy MF. Development of silver-doped carbon dots sensor derived from lignin for dual-mode fluorometric and spectrophotometric determination of valsartan in a bulk powder and a commercial product. Heliyon 2024; 10:e40848. [PMID: 39687104 PMCID: PMC11648884 DOI: 10.1016/j.heliyon.2024.e40848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Doping of carbon dots (CDs) with heteroatoms has garnered growing attention in recent years as a useful method of controlling their physicochemical properties. In this study, a new dual-mode sensor based on silver-doped CDs (AgCDs) derived from lignin was developed for fluorometric and spectrophotometric determination of valsartan (VAL). The analysis of AgCDs revealed a structure that closely resembled graphene oxide, with the successful doping of Ag. The mean particle size of AgCDs was 3.50 ± 0.89 nm and it exhibited a reasonable fluorescence quantum yield of 28.1 %. The emission at 612 nm of AgCDs is quenched by VAL after being excited at 275 nm due to a combination of dynamic and static quenching mechanisms. The enhancement in the absorbance of AgCDs upon the addition of the medication was measured at 275 nm. The most favorable circumstances for the dual-mode sensing were achieved with a pH of 8 and a volume of 0.10 mL of AgCDs. The measurements were conducted using fluorometry after 3 min at 10 °C, followed by spectrophotometry after 7 min at 20 °C. The fluorometric data indicated a linear response within the range of 2.0-50.0 μg/mL, while the spectrophotometric results showed a dynamic range of 5.0-100.0 μg/mL. The limits of detection (LODs) were 0.57 and 1.38 μg/mL for the fluorometric and spectrophotometric methods, respectively. The limits of quantification (LOQs) were 1.72 and 4.19 μg/mL for the fluorometric and spectrophotometric methods, respectively. The nano sensor efficiently assessed the presence of VAL in pharmaceutical tablets and produced a favorable outcome with the mean of recovery of 98.91 % and 99.76 % with relative standard deviation (RSD%) of 0.79 and 0.78 for the fluorometric and spectrophotometric methods, respectively.
Collapse
Affiliation(s)
- Fatemah Aldakhil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Salma A. Al-Tamimi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
4
|
Wang P, Lv Y, Hou X, Yang X, Tao Q, Li G. Chitosan based fluorescent probe with AIE property for detection of Fe 3+ and bacteria. Int J Biol Macromol 2024; 279:135478. [PMID: 39250988 DOI: 10.1016/j.ijbiomac.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Fluorescent probe with aggregation-induced emission (AIE) property has been widely used because of the advantages of high sensitivity, good selectivity and non-destructive testing. The development of fluorescent probe with good biocompatibility, photostability and biodegradability is of great significance in biomedicine and environmental detection. Herein, a novel type of fluorophore CS-TPE for detection of Fe3+ and bacteria was prepared by the Schiff base reaction of chitosan (CS) and 4-(1,2,2-triphenylethenyl) benzaldehyde (TPE-CHO). The fluorescence response mechanism of CS-TPE system was investigated by various characterization techniques. CS-TPE had an obvious AIE behavior with strong blue-green emissions at 473 nm and reaches the highest photoluminescence (PL) emission in 90 % H2O/ethanol mixtures. CS-TPE fluorescent probe exhibited sensitive quenching response to Fe3+, which can be used as a biosensor for detecting the concentration of Fe3+ with short response time (5 min), low detection limit (0.998 μM) and wide detection range (10-300 μM). Meanwhile, CS-TPE exhibited good antibacterial performance for S. aureus and E. coli. It is expected to realize the real-time fluorescence monitoring of metal ion detection and antibacterial process.
Collapse
Affiliation(s)
- Peiyao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yupeng Lv
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xiaoluan Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Qian Tao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.
| |
Collapse
|
5
|
Wen H, Li M, Zhao CY, Xu T, Fu S, Sui H, Han C. Magnetic Titanium Dioxide Nanocomposites as a Recyclable SERRS Substrate for the Ultrasensitive Detection of Histidine. Molecules 2024; 29:2906. [PMID: 38930970 PMCID: PMC11206314 DOI: 10.3390/molecules29122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
A highly sensitive, selective and recyclable histidine detection method based on magnetic Fe3O4@mTiO2 (M-TiO2) nanocomposites with SERRS was developed. Mesoporous M-TiO2 nanoparticles were functionalized with 4-aminothiophenol and then coupled with histidine through an azo coupling reaction in 5 min, producing the corresponding azo compound. The strong and specific SERRS response of the azo product allowed for ultrasensitive and selective detection for histidine with an M-TiO2 device loaded with Ag NPs due to the molecular resonance effect and plasmonic effect of Ag NPs under a 532 nm excitation laser. The sensitivity was further enhanced with the magnetic enrichment of M-TiO2. The limit of detection (LOD) was as low as 8.00 × 10-12 mol/L. The M-TiO2 demonstrated applicability towards histidine determination in human urine without any sample pretreatment. Additionally, the M-TiO2 device can be recycled for 3 cycles with the photodegradation of the azo product under UV irradiation due to TiO2-assisted and plasmon-enhanced photocatalysis. In summary, a multifunctional and recyclable M-TiO2 device was synthesized based on azo coupling and SERRS spectroscopy for ultra-sensitive and specific histidine sensing. In addition, the proposed system demonstrated the potential for the multiplex determination of toxic compounds in the fields of food safety, industrial production and environmental protection, which benefit from the fingerprint property and universality of SERRS.
Collapse
Affiliation(s)
| | | | | | | | | | - Huimin Sui
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161000, China (C.-Y.Z.); (T.X.)
| | - Cuiyan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161000, China (C.-Y.Z.); (T.X.)
| |
Collapse
|
6
|
Aldakhil F, Alarfaj NA, Al-Tamimi SA, El-Tohamy MF. A Dual-Mode Spectrophotometric and Fluorescent Probe Based on Lignin-Derived Carbon Dots for the Detection of Atorvastatin Calcium in a Bulk Powder and a Commercial Product. J Fluoresc 2024:10.1007/s10895-024-03745-2. [PMID: 38814526 DOI: 10.1007/s10895-024-03745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Recently, dual-mode techniques have garnered considerable attention and have been shown to be effective approaches for biomedical analysis and environmental monitoring. A novel and simple dual-mode spectrophotometric and fluorometric probe based on lignin-derived carbon dots (LCDs) was developed to detect atorvastatin calcium (ATS) in a bulk powder and its commercial product. The synthesized LCDs exhibit exceptional fluorescence characteristics and are highly soluble in water while maintaining reasonable stability. The average particle size of the LCDs was 3.42 ± 1.03 nm. The characterization of the produced LCDs indicated a structure resembling graphene oxide with the presence of several functional groups. The developed LCDs show a good fluorescence quantum yield of 32.2%. The fluorescence of the LCDs is quenched by ATS at an emission wavelength of 315 nm after excitation at 275 nm through dynamic and static quenching mechanisms. The optimal reaction conditions for the dual-mode reaction were a pH of 9 and 0.05 mL of the LCDs, which were measured after 3 min at 30 °C by spectrophotometry, followed by 7 min at 20 °C by fluorometric methods. According to the spectrophotometric results, the response of ATS was linear in the range of 4.0-100.0 µg/mL, while according to the fluorometric results, the dynamic range was 3.0-50.0 µg/mL. The limits of detection (LODs) and the limits of quantification (LOQs) were 0.97 µg/mL and 2.95 µg/mL for the fluorometric method, respectively. The nanoprobe effectively analyzed ATS in medication samples and yielded good results.
Collapse
Affiliation(s)
- Fatemah Aldakhil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Nawal A Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Salma A Al-Tamimi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Maha F El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| |
Collapse
|
7
|
Mohagheghpour E, Farzin L, Sadjadi S. Alendronate-Functionalized Graphene Quantum Dots as an Effective Fluorescent Sensing Platform for Arsenic Ion Detection. Biol Trace Elem Res 2024; 202:2391-2401. [PMID: 37597070 DOI: 10.1007/s12011-023-03819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Alendronate-functionalized graphene quantum dots (ALEN-GQDs) with a quantum yield of 57% were synthesized via a two-step route: preparation of graphene quantum dots (GQDs) by pyrolysis method using citric acid as the carbon source and post functionalization of GQDs via a hydrothermal method with alendronate sodium. After careful characterization of the obtained ALEN-GQDs, they were successfully employed as sensing materials with superior selectivity and sensitivity for the detection of nanomolar levels of arsenic ions (As(III)). According to the mechanistic investigation, arsenic ions can quench the fluorescence intensity of ALEN-GQDs through metal-ligand interaction between the As(III) ions and the surface functional groups of the fluorescent probe. This probe provided a rapid method to monitor As(III) with a wide detection range (44 nM-1.30 µM) and a low detection limit of 13 nM. Finally, to validate the applicability, this novel fluorescent probe was successfully applied for the quantitative determination of As(III) in rice and water samples.
Collapse
Affiliation(s)
- Elham Mohagheghpour
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Sodeh Sadjadi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| |
Collapse
|
8
|
Wu J, Luo Y, Cui C, Han Q, Peng Z. Carbon dots as multifunctional fluorescent probe for Fe 3+ sensing in ubiquitous water environments and living cells as well as lysine detection via "on-off-on" mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123840. [PMID: 38217985 DOI: 10.1016/j.saa.2024.123840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Iron and amino acids are essential nutrients for living organisms, and their deficiency or excess can cause a range of diseases. Therefore, there is considerable interest in developing sensing assays capable of detecting these nutrients with sensitivity, selectivity, and multifunctionality even in complex environments. In this report, hydrothermally synthesized blue fluorescent carbon dots (C-dots) from zinc gluconate were utilized for the detection of Fe3+ and lysine via "on-off" and "on-off-on" mechanisms, respectively. Specifically, the Fe3+ sensing assay achieved a broad linear range of 0-200 μM and a low limit of detection (LOD) of 1.9 μM. It is worth mentioning that the assay was also well adapted to natural aqueous environments (e.g., lake water), and its linear detection range could be extended to 0-1000 μM with a LOD of 3.3 μM. Furthermore, the assay was also effective for intracellular Fe3+ tracking. Most importantly, the assay could also be applied for the quantitative detection of lysine with a linear range of 0-1200 μM and LOD of 8.6 μM. Systematic mechanistic studies revealed that Fe3+ sensing was based on a static quenching process between C-dots and Fe3+, whereas a stronger complexation might have formed between Fe3+ and Lys, leading to the release of C-dots and thus the recovery of fluorescence.
Collapse
Affiliation(s)
- Jiajia Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China; Electron Microscopy Center, Yunnan University, Kunming 650091, China
| | - Yuanping Luo
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Chen Cui
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Qiurui Han
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Zhili Peng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China.
| |
Collapse
|
9
|
Li X, Wu J, Zhu X. Multi-component determination based on high quantum yield "on-off-on" carbon quantum dots sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123662. [PMID: 37984116 DOI: 10.1016/j.saa.2023.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The nitrogen(N)-sulfur(S)-sodium(Na(I)) co-doped carbon quantum dots (CQDs) were synthesized via a one-step hydrothermal method, which exhibited a remarkably high fluorescence quantum yield (24.58%) and exceptional optical properties. The fluorescence "on-off-on" sensor was constructed. The fluorescence of CQDs was rapidly quenched with Fe(III) and the fluorescence recovered by ascorbic acid (Asc) partially and arginine (Arg)/histidine (His) completely. The CQDs fluorescence sensor demonstrated rapid response, exceptional sensitivity, excellent stability, remarkable selectivity, and robust anti-interference performance, which was feasible to simultaneously determine the concentrations of multiple analytes in the sample with satisfactory recovery rates. The "on-off-on" fluorescence mechanism of CQDs was investigated, revealing the significant potential of carbon nano-functionalized materials in the field of drug detection through fluorescence sensing.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou 225002, China
| | - Jun Wu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou 225002, China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
10
|
Zheng Y, Zheng Y, Zhang Y, Meng H, Tan C. An Ultra-low Detection Limit Fe 3+ Optical Fiber Fluorescent Sensor Based on a Anti-B 18H 22 Derivative with Aggregation-induced Emission Enhancement. J Fluoresc 2024:10.1007/s10895-023-03550-3. [PMID: 38193953 DOI: 10.1007/s10895-023-03550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
A fluorescent Fe3+ probe ((C10H7NO2)2B18H20, M1) by introducing two isoquinoline-1-carboxylic acid group into the 6,9-position of anti-B18H22 was designed and synthesized. The structure of M1 was investigated by 1H NMR, MS, FT-IR and theoretical calculation, and its optical properties were characterized with UV-Vis and PL. M1 showed aggregation induced emission enhancement (AIEE) properties in THF/H2O solution, and exhibited an excellent selectivity toward Fe3+ in THF/H2O (v/v, ƒw = 95%) solution with a detection limit of 1.93 × 10-5 M. The interaction mechanism of probe for detecting Fe3+ is attributed to the involvement of intramolecular charge transfer (ICT) process. Furthermore, a optical fiber fluorescent Fe3+ sensor based on M1 sensing film was developed, the detection limit of the optical fiber Fe3+ fluorescent sensor could be improved to13.8 pM, the ultra-low detection limit is superior to most reported fluorescent probes (or sensors) towards Fe3+. This method has the advantages of high sensitivity, anti-interference and easy to operate, and has great potential in the field of the analysis of environmental and biological samples.
Collapse
Affiliation(s)
- Yong Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Yulian Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Yimei Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Hongyun Meng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Chunhua Tan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Yang D, Shao T, Wang X, Hong M, Li R, Li C, Yue Q. N-doped carbon dots for the determination of Al 3+ and Fe 3+ using aggregation-induced emission. Mikrochim Acta 2024; 191:78. [PMID: 38182922 DOI: 10.1007/s00604-023-06143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
New portable hydrogel sensors for Al3+ and Fe3+ detection were designed based on the aggregation-induced emission (AIE) and color change of N-doped carbon dots (N-CDs). N-CDs with yellow fluorescence were prepared by a one-pot hydrothermal method from 2,5-dihydroxyterephthalic acid and acrylamide. The fluorescence of N-CDs was enhanced by Al3+ about 20 times and quenched by Fe3+. It was interesting that although Fe3+ showed obvious quenching on the fluorescence of N-CDs it did not cause a noticeable change in the fluorescence of N-CDs + Al3+. The colorless solution of N-CDs appeared blue in the presence of Fe3+ without the influence of Al3+. Therefore, the turn-on fluorometry and colorimetry systems based on N-CDs were constructed for the simultaneous detection of Al3+ and Fe3+. Furthermore, the portable sensing of Al3+ and Fe3+ was realized with the assistance of hydrogel, filter paper, cellulose acetate, and cellulose nitrate film. The proposed approach was successfully applied to the detection of Al3+ and Fe3+ in food samples and cell imaging.
Collapse
Affiliation(s)
- Dou Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Tong Shao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiaoshuang Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
12
|
Yang D, Jiang S, Zhang S, Fan X, Shao X, Wang S, Li R, Yue Q. Paper test strip for fluorescence detection of iron ion based on nitrogen, zinc and copper codoped carbon dots. Methods Appl Fluoresc 2023; 12:015006. [PMID: 37875096 DOI: 10.1088/2050-6120/ad0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
In this study, a test strip for fluorometric analysis of iron ion (Fe3+) was constructed based on nitrogen, zinc and copper codoped carbon dots (NZC-CDs) as fluorescence probes. NZC-CDs were synthesized by hydrothermal method. The morphology, size, components, crystal state and optical properties of NZC-CDs were characterized by transmission electron microscope (TEM), Fourier-transform infrared (FT-IR), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), UV-vis absorption and fluorescence spectroscopy techniques, respectively. NZC-CDs exhibited bright blue fluorescence under UV lamp with a quantum yield at 17.76%. The fluorescence of NZC-CDs was quenched by Fe3+possibly due to the static quenching. The possible fluorescence quenching mechanism was also discussed. The quenching fluorescence was linear with the concentration of Fe3+in the range of 2.5-400μM with a low detection limit of 0.5μM. For the convenient detection, the test strips based on filter paper were employed for Fe3+assay. Moreover, the present approach was successfully applied in the determination of Fe3+in real samples including black fungus, duck blood and pork liver. The sensing method had the potential application in more food analysis.
Collapse
Affiliation(s)
- Dou Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Shuhan Jiang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Shuai Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Xiaoyu Fan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Xiaodong Shao
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute, Xi'an 710077, People's Republic of China
| | - Shuhao Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| |
Collapse
|
13
|
He M, Xiao Y, Wei Y, Zheng B. Semiquantitative and visual detection of ferric ions in real samples using a fluorescent paper-based analytical device constructed with green emitting carbon dots. RSC Adv 2023; 13:31720-31727. [PMID: 37908650 PMCID: PMC10613948 DOI: 10.1039/d3ra05320b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
A simple and portable paper-based analytical device was developed for visual and semiquantitative detection of ferric ion in real samples using green emitting carbon dots (CDs), which were prepared via microwave method using sodium citrate, urea and sodium hydroxide as raw materials and then loaded on the surface of paper substrate. When Fe3+ exists, the green fluorescence of CDs was quenched and significant color change from green to dark blue were observed, resulting the visual detection of Fe3+ with a minimum distinguishable concentration of 100 μM. By analyzing the intensity changes of green channels of test paper with the help of smartphone, the semiquantitative detection was realized within the range of 100 μM to 1200 μM. The proposed paper-based analytical devices have great application prospects in on site detection of Fe3+ in real samples.
Collapse
Affiliation(s)
- Mengyuan He
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Yu Xiao
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Yuanhang Wei
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Bo Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| |
Collapse
|
14
|
Jiang X, Li W, Liu M, Yang J, Liu M, Gao D, Li H, Ning Z. A Ratiometric Fluorescent Probe Based on RhB Functionalized Tb-MOFs for the Continuous Visual Detection of Fe 3+ and AA. Molecules 2023; 28:5847. [PMID: 37570824 PMCID: PMC10421046 DOI: 10.3390/molecules28155847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, a red-green dual-emitting fluorescent composite (RhB@MOFs) was constructed by introducing the red-emitting organic fluorescent dye rhodamine B (RhB) into metal-organic frameworks (Tb-MOFs). The sample can be used as a ratiometric fluorescent probe, which not only avoids errors caused by instrument and environmental instability but also has multiple applications in detection. The results indicated that the RhB@MOFs exhibited a turned-off response toward Fe3+ and a turned-on response for the continuous detection of ascorbic acid (AA). This ratiometric fluorescent probe possessed high sensitivity and excellent selectivity in the continuous determination of Fe3+ and AA. It is worth mentioning that remarkable fluorescence change could be clearly observed by the naked eye under a UV lamp, which is more convenient in applications. In addition, the mechanisms of Fe3+- and AA-induced fluorescence quench and recovery are discussed in detail. This ratiometric probe displayed outstanding recognition of heavy metal ions and biomolecules, providing potential applications for water quality monitoring and biomolecule determination.
Collapse
Affiliation(s)
- Xin Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Wenwei Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Min Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Jie Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Mengjiao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
- Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Chengdu 610066, China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China;
| | - Zhanglei Ning
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
15
|
The interactive effect between the oxazole-containing optical switch nucleus and carbazole-containing salicylidene Schiff base: Enhancing photoreactivity and tuning the ion sensing property. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Tarara M, Tsiasioti A, Tzanavaras PD, Tsogas GZ. Development of an equipment free paper based fluorimetric method for the selective determination of histidine in human urine samples. Talanta 2022; 249:123685. [PMID: 35717751 DOI: 10.1016/j.talanta.2022.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
A direct fluorimetric method, employing μicro-analytical paper-based devices (μ-PADs) for the selective determination of histidine (HIS) is described. The suggested method exploits the fluorescence emission of histidine after its rapid reaction with o-phthalaldehyde (OPA) at a basic medium (pH = 10) on the surface of a paper device with the application of a UV lamp at 354 nm. The devices are inexpensive and are composed of chromatographic paper and wax barriers. The analytical protocol is easily applicable with minimal technical expertise and without the need of expensive experimental apparatus. The user has to add a test sample, illuminate the device with a UV lamp, and read the fluorescence of the sensing area using a simple imaging device such as a cell-phone camera. The method is free from common interferences likely to affect the measurement of histidine and is selective among all other amino acids. This analytical procedure was optimized and validated, paying special attention to its intended application. The detection limits are as low as 1.8 μM with very satisfactory precision ranging from 6.4% (intra-day) to 8.9% (inter-day). Random urine samples from adult volunteers (n = 5) were successfully analyzed and HIS content ranged between 260 and 1114 μmol L-1 with percentage recoveries in the range of 78.2 and 124.6%.
Collapse
Affiliation(s)
- Maria Tarara
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Apostolia Tsiasioti
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - George Z Tsogas
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
17
|
Atchudan R, Edison TNJI, Perumal S, Vinodh R, Sundramoorthy AK, Babu RS, Lee YR. Morus nigra-derived hydrophilic carbon dots for the highly selective and sensitive detection of ferric ion in aqueous media and human colon cancer cell imaging. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Ashkar MA, Chandhru M, Sundar M, Kutti Rani S, Vasimalai N. The rapid synthesis of intrinsic green-fluorescent poly(pyrogallol)-derived carbon dots for amoxicillin drug sensing in clinical samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj03915j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of the amoxicillin drug using pyrogallol-derived carbon dots.
Collapse
Affiliation(s)
- M. A. Ashkar
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - M. Chandhru
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - M. Sundar
- Research, Science Academy of India, Madambakkam, Chennai-603 202, India
| | - S. Kutti Rani
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - N. Vasimalai
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| |
Collapse
|
19
|
Li X, Bao Y, Dong X, Shi L, Shuang S. Dual-excitation and dual-emission carbon dots for Fe 3+ detection, temperature sensing, and lysosome targeting. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4246-4255. [PMID: 34591950 DOI: 10.1039/d1ay01165k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dual-excitation and dual-emission carbon dots (CDs) have been prepared by simple one-step hydrothermal treatment of p-phenylenediamine and 5-aminosalicylic acid. The as-prepared CDs emit bright green fluorescence under excitation at 320-400 nm and bright orange fluorescence under excitation at 490-560 nm. Interestingly, the CDs can be employed as a dual-excitation and dual-emission fluorescent probe for Fe3+ detection in aqueous solution and living cells. Furthermore, the obtained CDs can function as a promising dual-excitation and dual-emission temperature sensor. Additionally, the CDs can be utilized for lysosomal targeting.
Collapse
Affiliation(s)
- Xiaofeng Li
- Taiyuan University, Taiyuan 030012, PR China
| | - Yuejing Bao
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Xiaorui Dong
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Lihong Shi
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
20
|
Pu J, Liu C, Wang B, Liu P, Jin Y, Chen J. Orange red-emitting carbon dots for enhanced colorimetric detection of Fe3+. Analyst 2021; 146:1032-1039. [DOI: 10.1039/d0an02075c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Orange red-emitting CDs were constructed from 2,3-diaminopyridine and successfully used for visual colorimetry and near-infrared cellular imaging.
Collapse
Affiliation(s)
- Jianlin Pu
- Chongqing Key Laboratory for Advanced Material & Technologies of Clean Energies
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Chang Liu
- Guangan Changming Research Institute for Advanced Industrial Technology
- Guangan 638500
- China
| | - Bin Wang
- Chongqing Key Laboratory for Advanced Material & Technologies of Clean Energies
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Pei Liu
- Chongqing Key Laboratory for Advanced Material & Technologies of Clean Energies
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Yanzi Jin
- Chongqing Key Laboratory for Advanced Material & Technologies of Clean Energies
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Jiucun Chen
- Chongqing Key Laboratory for Advanced Material & Technologies of Clean Energies
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|