1
|
Xie L, Qiu H, Chen Y, Lu Y, Chen Y, Chen L, Hu S. Construction of a zero-dimensional halide perovskite in micron scale towards a deeper understanding of phase transformation mechanism and fluorescence applications. RSC Adv 2024; 14:35490-35497. [PMID: 39507690 PMCID: PMC11539010 DOI: 10.1039/d4ra06404f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Zero-dimensional (0D) halide perovskites have garnered significant interest due to their novel properties in optoelectronic and energy applications. However, the mechanisms underlying their phase transformations and fluorescence properties remain poorly understood. In this study, we have synthesized a micron-scale 0D perovskite observable under confocal laser scanning microscopy (CLSM). This approach enables us to trace the phase transformation process from 0D to three-dimensional (3D) structures, offering a deeper understanding of the underlying mechanisms. Remarkably, we discovered that this in situ transformation is highly sensitive to water, allowing for label-free fluorescent analysis of trace amounts of water in organic solvents through the phase transformation process. Additionally, we have designed a reusable paper strip for humidity analysis leveraging this sensitivity as an application of the micron scale material. Our findings not only elucidate the physicochemical properties of perovskites but also expand the potential of halide perovskite materials in analytical chemistry.
Collapse
Affiliation(s)
- Lili Xie
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P.R. China
| | - Haiyan Qiu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P.R. China
| | - Yuxin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P.R. China
| | - Yingxue Lu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P.R. China
| | - Yanyan Chen
- College of Chemistry, Key Laboratory of Analysis and Detecting Technology, Food Safety MOE, Fuzhou University Fuzhou 350002 Fujian P.R. China
| | - Lanlan Chen
- College of Chemistry, Key Laboratory of Analysis and Detecting Technology, Food Safety MOE, Fuzhou University Fuzhou 350002 Fujian P.R. China
| | - Shanwen Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P.R. China
| |
Collapse
|
2
|
Meza López FDL, Hernández CJ, Vega-Chacón J, Tuesta JC, Picasso G, Khan S, Sotomayor MDPT, López R. Smartphone-Based Rapid Quantitative Detection Platform with Imprinted Polymer for Pb (II) Detection in Real Samples. Polymers (Basel) 2024; 16:1523. [PMID: 38891469 PMCID: PMC11174601 DOI: 10.3390/polym16111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
This paper reports the successful development and application of an efficient method for quantifying Pb2+ in aqueous samples using a smartphone-based colorimetric device with an imprinted polymer (IIP). The IIP was synthesized by modifying the previous study; using rhodizonate, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N'-methylenebisacrylamide (MBA), and potassium persulfate (KPS). The polymers were then characterized. An absorption study was performed to determine the optimal conditions for the smartphone-based colorimetric device processing. The device consists of a black box (10 × 10 × 10 cm), which was designed to ensure repeatability of the image acquisition. The methodology involved the use of a smartphone camera to capture images of IIP previously exposed at Pb2+ solutions with various concentrations, and color channel values were calculated (RGB, YMK HSVI). PLS multivariate regression was performed, and the optimum working range (0-10 mg L-1) was determined using seven principal components with a detection limit (LOD) of 0.215 mg L-1 and R2 = 0.998. The applicability of a colorimetric sensor in real samples showed a coefficient of variation (% RSD) of less than 9%, and inductively coupled plasma mass spectrometry (ICP-MS) was applied as the reference method. These results confirmed that the quantitation smartphone-based colorimetric sensor is a suitable analytical tool for reliable on-site Pb2+ monitoring.
Collapse
Affiliation(s)
- Flor de Liss Meza López
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| | - Christian Jacinto Hernández
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Lima 15333, Peru;
| | - Jaime Vega-Chacón
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| | - Juan C. Tuesta
- Laboratorio de Biotecnología, Universidad Nacional Autónoma de Alto Amazonas, Calle Prolongación, Libertad 1220, Yurimaguas 16501, Peru;
| | - Gino Picasso
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| | - Sabir Khan
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus 45662-900, BA, Brazil;
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14801-970, SP, Brazil
| | - María D. P. T. Sotomayor
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14801-970, SP, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants Radioactives (INCT-DATREM), Araraquara 14801-970, SP, Brazil
| | - Rosario López
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (F.d.L.M.L.); (J.V.-C.); (G.P.)
| |
Collapse
|
3
|
Zhao G, Kou Y, Song N, Wei X, Zhai X, Feng P, Wang F, Yan CH, Tang Y. Intelligent Colorimetric Indicators for Quality Monitoring and Multilevel Anticounterfeiting with Kinetics-Tunable Fluorescence. ACS NANO 2023; 17:7624-7635. [PMID: 37053382 DOI: 10.1021/acsnano.3c00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/19/2023]
Abstract
The spoilage and forgery of perishable products such as food, drugs, and vaccines cause serious health hazards and economic loss every year. Developing highly efficient and convenient time-temperature indicators (TTIs) to realize quality monitoring and anticounterfeiting simultaneously is urgent but remains a challenge. To this end, a kind of colorimetric fluorescent TTI, based on CsPbBr3@SiO2 nanoparticles with tunable quenching kinetics, is developed. The kinetics rate of the CsPbBr3-based TTIs is easily regulated by adjusting temperature, concentration of the nanoparticles, and addition of salts, stemming from the cation exchange effect, common-ion effect, and structural damage by water. Typically, when combined with europium complexes, the developed TTIs show an irreversible dynamic change in fluorescent colors from green to red upon increasing temperature and time. Furthermore, a locking encryption system with multiple logics is also realized by combining TTIs with different kinetics. The correct information only appears at specific ranges of time and temperature under UV light and is irreversibly self-erased afterward. The simple and low-cost composition and the ingenious design of kinetics-tunable fluorescence in this work stimulate more insights and inspiration toward intelligent TTIs, especially for high-security anticounterfeiting and quality monitoring, which is really conducive to ensuring food and medicine safety.
Collapse
Affiliation(s)
- Guodong Zhao
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yao Kou
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Nan Song
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaohe Wei
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaoyong Zhai
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Pengfei Feng
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, P.R. China
| | - Chun-Hua Yan
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yu Tang
- Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, P.R. China
| |
Collapse
|
4
|
Modified lanthanide-doped carbon dots as a novel nanochemosensor for efficient detection of water in toluene and its potential application in lubricant base oils. Mikrochim Acta 2023; 190:97. [PMID: 36806984 PMCID: PMC9938817 DOI: 10.1007/s00604-023-05659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2022] [Accepted: 01/10/2023] [Indexed: 02/21/2023]
Abstract
A fast and efficient method was developed for obtaining europium(III)-doped surface-modified carbon dots with a hydrophobic coating. This surface functionalization improved the dispersibility of the nanoparticles in non-polar media, as well as modified the accessibility of water molecules to the europium ions. These two features allowed studying the application of doped carbon dots as moisture nanochemosensor, demonstrating high stability over time of both the photoluminescent signal intensity and the stability of the dispersions. The developed nanochemosensor was used to determine water in toluene with a detection limit of 8.5 × 10-4 M and a quantification limit of 2.4 × 10-3 M. The proposed system matches and even improves other methodologies for water determination in organic solvents; it has a low detection limit and a fast response time (almost instantaneous) and requires neither expensive material nor trained personnel. The results suggest a promising future for the development of a new sensing phase for moisture determination in lubricant base oil.
Collapse
|
5
|
A Multiresponsive Luminescent Hydroxyl-Functionalized MIL-53(Al) for Detection of F− and Water. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|