1
|
Veríssimo de Oliveira WB, Couto da Silva G, Oliveira RS, Henrique de Souza Leite Rocha P, Cunha de Souza C, Costa Matos MA, Lisboa TP, Matos RC. A cost-effective method for the sensitive detection of levofloxacin using a 3D composite electrode composed of nail polish, graphite and aluminium oxide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6011-6019. [PMID: 39171860 DOI: 10.1039/d4ay01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The potential impact on human health and the environment has spurred significant interest in detecting and quantifying pharmaceutical compounds across various matrices, from environmental to biological samples. Here, we present an electrochemical approach for determining levofloxacin in drug, synthetic urine, water, and breast milk samples. An affordable sensor was constructed using 3D printing and composite material based on nail polish, graphite, and aluminum oxide. The conductive composite material was characterized spectroscopically, electrochemically, and by imaging techniques. Subsequently, an electrochemical method based on square wave voltammetry was optimized and applied. The method exhibited good sensitivity (5.11 ± 0.0912 μA L μmol-1 cm-2) and enhanced stability (RSD = 7.2%), with electrochemical responses correlating with the concentration of levofloxacin in the samples tested, yielding recovery values in the range of 98 to 111%. The developed method demonstrated a robust linear working range from 2 to 100 μmol L-1 and a nanomolar detection limit of 128 nmol L-1, rendering it suitable for quantitative analysis. The sensor also shows promise as a platform for the sensitive detection of pharmaceutical compounds, contributing to greater safety and sustainability in these domains.
Collapse
Affiliation(s)
| | - Gabriela Couto da Silva
- Chemistry Department, Federal University of Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| | - Raylla Santos Oliveira
- Chemistry Department, Federal University of Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| | | | - Cassiano Cunha de Souza
- Chemistry Department, Federal University of Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| | | | - Thalles Pedrosa Lisboa
- College of Exact Sciences and Technology, Federal University of Grande Dourados, 79804-970, Dourados, MS, Brazil
| | - Renato Camargo Matos
- Chemistry Department, Federal University of Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| |
Collapse
|
2
|
Kokilambigai KS, Irina VM, Sheba Mariam KC, Adila K, Kathirvel S. Comprehensive overview of analytical and bioanalytical methodologies for the opioid analgesics - Tramadol and combinations. Anal Biochem 2024; 692:115579. [PMID: 38797485 DOI: 10.1016/j.ab.2024.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Synthetic opioids like Tramadol are used to treat mild to moderate pain. Its ability to relieve pain is about a tenth that of morphine. Furthermore, Tramadol shares similar effects on serotonin and norepinephrine to several antidepressants known as serotonin-norepinephrine reuptake inhibitors (SNRIs), such as venlafaxine and duloxetine. The present review paper discusses the recent developments in analytical methods for identifying drugs in pharmaceutical preparations and toxicological materials, such as blood, saliva, urine, and hair. In recent years, a wide variety of analytical instruments, including capillary electrophoresis, NMR, UV-visible spectroscopy, HPTLC, HPLC, LC-MS, GC, GC-MS, and electrochemical sensors, have been used for drug identification in pharmaceutical preparations and toxicological samples. The primary quantification techniques currently employed for its quantification in various matrices are highlighted in this research.
Collapse
Affiliation(s)
- K S Kokilambigai
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - V M Irina
- Dr. Moopen's College of Pharmacy, Naseera Nagar, Meppadi PO, Wayanad, 673577, Kerala, India
| | - K C Sheba Mariam
- Department of Pharmaceutical Analysis, National College of Pharmacy, Manassery, Mukkam Post., Kozhikode, 673602, Kerala, India
| | - K Adila
- Department of Pharmaceutical Analysis, National College of Pharmacy, Manassery, Mukkam Post., Kozhikode, 673602, Kerala, India
| | - S Kathirvel
- Department of Pharmaceutical Analysis, National College of Pharmacy, Manassery, Mukkam Post., Kozhikode, 673602, Kerala, India.
| |
Collapse
|
3
|
Mahmoud BG, Abualreish MJA, Ismael M, Khairy M. Synchronous analysis of acetaminophen, codeine, and caffeine in human fluids employing graphite screen-printed electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3993-4001. [PMID: 38855887 DOI: 10.1039/d4ay00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A facile electrochemical approach is proposed for the synchronous determination of acetaminophen (ACP), codeine (COD) and caffeine (CAF) utilizing unmodified screen-printed electrodes (SPEs). The determination of ACP, COD and CAF has been explored across different supporting electrolytes including sulfuric acid (H2SO4), hydrochloric acid (HCl), phosphoric acid (H3PO4) and Briton Robinson (B.R) buffer solutions. It was found that a 0.05 mol L-1 sulfuric acid solution is an optimal supporting electrolyte utilized for voltammetric analysis of ACP, COD, and CAF with improved sensitivity, stability, and reproducibility. The electro-analytical sensing of ACP, COD and CAF was investigated using SPEs within linear concentration ranges of 3.0-35.0 μmol L-1, 10-160 μmol L-1 and 10-160 μmol L-1 and revealed competitively low limits of detection (3S/N) of 0.9, 4.8 and 6.3 μmol L-1 for ACP, COD and CAF, respectively. The results indicated the possibility of such a simple and quick electroanalytical protocol for online monitoring of pharmaceutical formulations comprising ACP, COD, and CAF drugs in human fluids with satisfactory recovery.
Collapse
Affiliation(s)
- Bahaa G Mahmoud
- Department of Chemistry, Faculty of Science, Sohag University, 82524, Eqypt.
| | - Mustafa J A Abualreish
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Mohamed Ismael
- Department of Chemistry, Faculty of Science, Sohag University, 82524, Eqypt.
| | - Mohamed Khairy
- Department of Chemistry, Faculty of Science, Sohag University, 82524, Eqypt.
| |
Collapse
|
4
|
Pan Y, Zhang J, Guo X, Li Y, Li L, Pan L. Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications. Polymers (Basel) 2024; 16:1597. [PMID: 38891543 PMCID: PMC11174834 DOI: 10.3390/polym16111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Electrochemical sensors play a pivotal role in various fields, such as biomedicine and environmental detection, due to their exceptional sensitivity, selectivity, stability, rapid response time, user-friendly operation, and ease of miniaturization and integration. In addition to the research conducted in the application field, significant focus is placed on the selection and optimization of electrode interface materials for electrochemical sensors. The detection performance of these sensors can be significantly enhanced by modifying the interface of either inorganic metal electrodes or printed electrodes. Among numerous available modification materials, conductive polymers (CPs) possess not only excellent conductivity exhibited by inorganic conductors but also unique three-dimensional structural characteristics inherent to polymers. This distinctive combination allows CPs to increase active sites during the detection process while providing channels for rapid ion transmission and facilitating efficient electron transfer during reaction processes. This review article primarily highlights recent research progress concerning CPs as an ideal choice for modifying electrochemical sensors owing to their remarkable features that make them well-suited for biomedical and environmental applications.
Collapse
Affiliation(s)
- Youheng Pan
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yarou Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Lanlan Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Ling C, Xu L, Ou L, Wu J, Tan C, Zhu L, Xiong X. NiCo-LDH coupled with 2D ZIF-derived Co nitrogen doped carbon nanosheet arrays as a self-supporting electrocatalyst for detection of formaldehyde. Chemistry 2024; 30:e202304024. [PMID: 38391394 DOI: 10.1002/chem.202304024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Formaldehyde is susceptible to illegal addition to foodstuffs to extend their shelf life due to its antimicrobial, preservative and bleaching properties. In this study, a self-supporting "nanosheet on nanosheet" arrays electrocatalyst with core-shell heterostructure was prepared in situ by coupling NiCo layer double hydroxide with 2D ZIF derived Co-nitrogen-doped porous carbon on carbon cloth (Co-N/C@NiCo-LDH NSAs/CC). Co-N/C nanosheet arrays act as a scaffold core with good electrical conductivity, providing more NiCo-LDH nucleation sites to avoid NiCo-LDH agglomeration, thus having fast mass/charge transfer performance. While the NiCo-LDH nanosheet arrays shell with high specific surface area provide more active sites for electrochemical reactions. As an electrocatalytic sensing electrode, Co-N/C@NiCo-LDH NSAs/CC has a wide linear range of 1 μM to 13 mM for formaldehyde detection, and the detection limit is 82 nM. Besides, the sensor has been applied to the detection of formaldehyde in food samples with satisfactory results.
Collapse
Affiliation(s)
- Chengshuang Ling
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Li Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Lian Ou
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Jiaying Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Chao Tan
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, 644000, China
| | - Liping Zhu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xiaoli Xiong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| |
Collapse
|
6
|
Macedo AA, Arantes LC, Pimentel DM, de Deus Melo T, Magalhães de Almeida Melo L, Alves de Barros W, Rocha CM, de Fátima Â, Pio Dos Santos WT. Comprehensive detection of lysergic acid diethylamide (LSD) in forensic samples using carbon nanotube screen-printed electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5837-5845. [PMID: 37874181 DOI: 10.1039/d3ay01385e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Lysergic acid diethylamide (LSD) is a prevalent psychoactive substance recognized for its hallucinogenic properties, often encountered in blotter papers for illicit consumption. Given that LSD ranks among the most widely abused illicit drugs globally, its prompt identification in seized samples is vital for forensic investigations. This study presents, for the first time, an electrochemical screening method for detecting LSD in forensic samples, utilizing a multi-wall carbon nanotube screen-printed electrode (SPE-MWCNT). The LSD detection process was optimized on SPE-MWCNT in a phosphate buffer solution (0.1 mol L-1, pH 12.0) using square wave voltammetry (SWV). The combined use of SPE-MWCNT with SWV displayed robust stability in electrochemical responses for both qualitative (peak potential) and quantitative (peak current) LSD assessment, with a relative standard deviation (RSD) of less than 5% across the same or different electrodes (N = 3). A linear detection range was established between 0.16 and 40.0 μmol L-1 (R2 = 0.998), featuring a low limit of detection (LOD) of 0.05 μmol L-1. Interference studies with twenty-three other substances, including groups of phenethylamines typically found in blotting papers (e.g., NBOHs and NBOMes) and traditional illicit drugs, were performed, revealing a highly selective response for LSD using the proposed method. Consequently, the integration of SPE-MWCNT with SWV offers a robust tool for qualitative and quantitative LSD analysis in forensic applications, providing rapid, sensitive, selective, reproducible, and straightforward preliminary identification in seized samples.
Collapse
Affiliation(s)
- Anne Alves Macedo
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, 39100000, Minas Gerais, Brazil.
| | - Luciano C Arantes
- Laboratório de Química e Física Forense, Instituto de Criminalística, Polícia Civil do Distrito Federal, 70610-907, Brasília, Distrito Federal, Brazil
| | - Dilton Martins Pimentel
- Laboratório Integrado de Pesquisas do Vale do Jequitinhonha, Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, CampusJK, 39100000 Diamantina, Minas Gerais, Brazil
| | - Tifany de Deus Melo
- Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | - Larissa Magalhães de Almeida Melo
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, 39100000, Minas Gerais, Brazil.
| | - Wellington Alves de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia Mancilha Rocha
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Wallans Torres Pio Dos Santos
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, 39100000, Minas Gerais, Brazil.
- Laboratório Integrado de Pesquisas do Vale do Jequitinhonha, Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, CampusJK, 39100000 Diamantina, Minas Gerais, Brazil
| |
Collapse
|
7
|
Garkani Nejad F, Beitollahi H, Sheikhshoaie I. A UiO-66-NH 2 MOF/PAMAM Dendrimer Nanocomposite for Electrochemical Detection of Tramadol in the Presence of Acetaminophen in Pharmaceutical Formulations. BIOSENSORS 2023; 13:bios13050514. [PMID: 37232874 DOI: 10.3390/bios13050514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
In this work, we prepared a novel electrochemical sensor for the detection of tramadol based on a UiO-66-NH2 metal-organic framework (UiO-66-NH2 MOF)/third-generation poly(amidoamine) dendrimer (G3-PAMAM dendrimer) nanocomposite drop-cast onto a glassy carbon electrode (GCE) surface. After the synthesis of the nanocomposite, the functionalization of the UiO-66-NH2 MOF by G3-PAMAM was confirmed by various techniques including X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM), and Fourier transform infrared (FT-IR) spectroscopy. The UiO-66-NH2 MOF/PAMAM-modified GCE exhibited commendable electrocatalytic performance toward the tramadol oxidation owing to the integration of the UiO-66-NH2 MOF with the PAMAM dendrimer. According to differential pulse voltammetry (DPV), it was possible to detect tramadol under optimized circumstances in a broad concentration range (0.5 μM-500.0 μM) and a narrow limit of detection (0.2 μM). In addition, the stability, repeatability, and reproducibility of the presented UiO-66-NH2 MOF/PAMAM/GCE sensor were also studied. The sensor also possessed an acceptable catalytic behavior for the tramadol determination in the co-existence of acetaminophen, with the separated oxidation potential of ΔE = 410 mV. Finally, the UiO-66-NH2 MOF/PAMAM-modified GCE exhibited satisfactory practical ability in pharmaceutical formulations (tramadol tablets and acetaminophen tablets).
Collapse
Affiliation(s)
- Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
8
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
9
|
Ehirim T, Ozoemena OC, Mwonga PV, Haruna AB, Mofokeng TP, De Wael K, Ozoemena KI. Onion-like Carbons Provide a Favorable Electrocatalytic Platform for the Sensitive Detection of Tramadol Drug. ACS OMEGA 2022; 7:47892-47905. [PMID: 36591171 PMCID: PMC9798499 DOI: 10.1021/acsomega.2c05722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
This work reports the first study on the possible application of nanodiamond-derived onion-like carbons (OLCs), in comparison with conductive carbon black (CB), as an electrode platform for the electrocatalytic detection of tramadol (an important drug of abuse). The physicochemical properties of OLCs and CB were determined using X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA). The OLC exhibits, among others, higher surface area, more surface defects, and higher thermal stability than CB. From the electrochemical analysis (interrogated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy), it is shown that an OLC-modified glassy carbon electrode (GCE-OLC) allows faster electron transport and electrocatalysis toward tramadol compared to a GCE-CB. To establish the underlying science behind the high performance of the OLC, theoretical calculations (density functional theory (DFT) simulations) were conducted. DFT predicts that OLC allows for weaker surface binding of tramadol (E ad = -26.656 eV) and faster kinetic energy (K.E. = -155.815 Ha) than CB (E ad = -40.174 eV and -305.322 Ha). The GCE-OLC shows a linear calibration curve for tramadol over the range of ∼55 to 392 μM, with high sensitivity (0.0315 μA/μM) and low limit of detection (LoD) and quantification (LoQ) (3.8 and 12.7 μM, respectively). The OLC-modified screen-printed electrode (SPE-OLC) was successfully applied for the sensitive detection of tramadol in real pharmaceutical formulations and human serum. The OLC-based electrochemical sensor promises to be useful for the sensitive and accurate detection of tramadol in clinics, quality control, and routine quantification of tramadol drugs in pharmaceutical formulations.
Collapse
Affiliation(s)
- Tobechukwu
J. Ehirim
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Okoroike C. Ozoemena
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Patrick V. Mwonga
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Aderemi B. Haruna
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Thapelo P. Mofokeng
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Karolien De Wael
- A-Sense
Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
- NANOlab
Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Kenneth I. Ozoemena
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| |
Collapse
|
10
|
Khairy M. Facile synthesis of nanostructured Prussian blue analogue for high performance symmetric supercapacitor device. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Designing of surface engineered Ytterbium oxide nanoparticles as effective electrochemical sensing platform for dopamine. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022; 54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The strong development of mankind is inseparable from the proper use of drugs, and the electroanalytical research of drugs occupies an important position in the field of analytical chemistry. This review mainly elaborates the research progress of drugs electroanalysis based on direct electrochemical redox on various electrodes for the recent decade from 2011 to 2021. At first, we summarize some frequently used electrochemical data processing and electrochemical mechanism research derivation methods in the literature. Then, according to the drug therapeutic and application/usage purposes, the research progress of drugs electrochemical analysis is classified and discussed, where we focus on drugs electrochemical reaction mechanism. At the same time, the comparisons of electrochemical sensing performance of the drugs on various electrodes from recent studies are listed, so that readers can more intuitively compare and understand the electroanalytical sensing performance of each modified electrode for each of the drug. Finally, this review discusses the shortcomings and prospects of the drugs electroanalysis based on direct electrochemical redox research.
Collapse
Affiliation(s)
- Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Feichen Shen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Rupesh K Mishra
- Identify Sensors Biologics at Bindley Bioscience Center, West Lafayette, Indiana, USA
- School of Material Science and Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Zhao
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
13
|
Tyszczuk-Rotko K, Kozak J, Czech B. Screen-Printed Voltammetric Sensors-Tools for Environmental Water Monitoring of Painkillers. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072437. [PMID: 35408052 PMCID: PMC9003516 DOI: 10.3390/s22072437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 05/03/2023]
Abstract
The dynamic production and usage of pharmaceuticals, mainly painkillers, indicates the growing problem of environmental contamination. Therefore, the monitoring of pharmaceutical concentrations in environmental samples, mostly aquatic, is necessary. This article focuses on applying screen-printed voltammetric sensors for the voltammetric determination of painkillers residues, including non-steroidal anti-inflammatory drugs, paracetamol, and tramadol in environmental water samples. The main advantages of these electrodes are simplicity, reliability, portability, small instrumental setups comprising the three electrodes, and modest cost. Moreover, the electroconductivity, catalytic activity, and surface area can be easily improved by modifying the electrode surface with carbon nanomaterials, polymer films, or electrochemical activation.
Collapse
|
14
|
Chen S, Zhang M, Zhang H, Yan X, Xie J, Qi J, Sun X, Li J. Dicyandiamide-assisted HKUST-1 derived Cu/N-doped porous carbon nanoarchitecture for electrochemical detection of acetaminophen. ENVIRONMENTAL RESEARCH 2021; 201:111500. [PMID: 34147465 DOI: 10.1016/j.envres.2021.111500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
MOFs-derived metal/carbon materials have been considered as promising candidates for the electrochemical detection of micropollutants. However, the aggregation of metal nanoparticles and structure collapse of precursor MOFs during pyrolysis significantly hamper the improvement on detecting performance. Herein, a dicyandiamide-assisted strategy is utilized to synthesize well-dispersed Cu/N-doped porous carbon nanoarchitecture (CuNC) for the electrochemical detection of acetaminophen (AP). The constructed CuNC sensor exhibits excellent electro-analytical performance for monitoring AP with linear range from 0.01 μM to 921.2 μM, and the low detection limit of 2.46 nM (S/N = 3). The improved performance of CuNC sensor is ascribed to the introduction of dicyandiamide, which can prevent HKUST-1 framework breakage and reduce the aggregation tendency of Cu, leading to the evenly distributed small Cu nanoparticles, abundant N species, hierarchical channel structure, and high conductivity carbon framework. These advantages endow predominant repeatability, stability, and selectivity of CuNC sensor. This strategy provided a novel approach to preparing MOFs-derived carbon nanoarchitectures with excellent electroanalysis performance to monitor micropollutants.
Collapse
Affiliation(s)
- Saisai Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Ming Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jia Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
15
|
Khairy M. A synergetic effect of cerium oxide nanocubes and gold nanoparticles for developing a new photoelectrochemical sensor of codeine drug. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Petroni JM, Neves MM, de Moraes NC, Bezerra da Silva RA, Ferreira VS, Lucca BG. Development of highly sensitive electrochemical sensor using new graphite/acrylonitrile butadiene styrene conductive composite and 3D printing-based alternative fabrication protocol. Anal Chim Acta 2021; 1167:338566. [PMID: 34049626 DOI: 10.1016/j.aca.2021.338566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Here, a novel electrically conductive thermoplastic material composed of graphite/acrylonitrile butadiene styrene (G/ABS) is reported for the first time. This material was explored on the production of 3D printing-based electrochemical sensors with enhanced sensitivity using a novel fabrication approach. The developed G/ABS electrodes showed lower charge transfer resistance (157 vs. 3279 Ω), higher electroactive area (0.61 vs. 0.19 cm2) and peak currents ca. 69% higher when compared with electrodes fabricated using carbon black/polylactic acid (CB/PLA) commercial filament, which has been widely explored in recent literature. Moreover, the G/ABS sensor provided satisfactory repeatability, reproducibility and stability (relative standard deviations (RSDs) were 1.14%, 6.81% and 10.62%, respectively). This improved performance can be attributed to the fabrication protocol developed here, which allows the incorporation of greater amounts of conductive material in the polymeric matrix. The G/ABS electrode also required a simpler and quicker protocol for activation when compared to CB/PLA. As proof of concept, the G/ABS sensor was employed for electroanalytical quantification of paracetamol (PAR) in pharmaceutical products. The linear concentration range was observed from 0.20 to 30 μmol L-1 and the limit of detection achieved was 54 nmol L-1, much lower than several recent studies dealing with the same analyte. The sensitivity of the G/ABS electrode regarding PAR was also far better when compared to CB/PLA sensor (0.50 μA/μmol L-1 vs. 0.12 μA/μmol L-1). Analyses in commercial pill samples showed good accuracy (recoveries ca. 108%) and precision (RSDs < 5%), suggesting great potential for use of this novel conductive thermoplastic in electroanalytical applications based on 3D printing.
Collapse
Affiliation(s)
| | - Matheus Meneguel Neves
- Chemistry Institute, Federal University of Mato Grosso Do Sul, Campo Grande, MS, 79074-460, Brazil
| | | | | | - Valdir Souza Ferreira
- Chemistry Institute, Federal University of Mato Grosso Do Sul, Campo Grande, MS, 79074-460, Brazil
| | - Bruno Gabriel Lucca
- Chemistry Institute, Federal University of Mato Grosso Do Sul, Campo Grande, MS, 79074-460, Brazil.
| |
Collapse
|
17
|
Emran MY, Talat E, El-Safty SA, Shenashen MA, Saad EM. Influence of hollow sphere surface heterogeneity and geometry of N-doped carbon on sensitive monitoring of acetaminophen in human fluids and pharmaceutical products. NEW J CHEM 2021; 45:5452-5462. [DOI: 10.1039/d0nj05442a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A sensitive and selective acetaminophen sensor assay was designed based on N-HCCS. The surface morphology, and composition of open hollow conjugated spheres of N-HCCS resulted in facile AC diffusion/loading and electrocatalytic oxidation.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS)
- Ibaraki-ken
- Japan
- Department of Chemistry
- Faculty of Science
| | - Eslam Talat
- Department of Chemistry
- Faculty of Science
- Suez University
- Suez
- Egypt
| | | | | | - Eman M. Saad
- Department of Chemistry
- Faculty of Science
- Suez University
- Suez
- Egypt
| |
Collapse
|
18
|
Development of a new electrochemical DNA biosensor based on Eu 3+-doped NiO for determination of amsacrine as an anti-cancer drug: Electrochemical, spectroscopic and docking studies. Anal Chim Acta 2020; 1133:48-57. [PMID: 32993873 DOI: 10.1016/j.aca.2020.07.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
The present research reported a new electrochemical biosensor based on ds-DNA/Eu3+ doped NiO/CPE to detect amsacrine. Therefore, UV-Vis spectrophotometry, docking, and differential pulse voltammetry (DPV) have been used to study the interactions between amsacrine and dsDNA. Then, experimental parameters affected DNA immobilization and interactions between amsacrine and ds-DNA have been optimized. Afterwards, guanine oxidation peak current of ds-DNA has been chosen as a signal to analyze amsacrine in a concentration ranging between 0.1 and 100.0 μM and finally, limit of detection (LOD) of 0.05 μM has been calculated at optimal condition. Ultimately, it was found that the suggested biosensor is able to determine amsacrine in human serum and urine samples successfully.
Collapse
|